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ABSTRACT 

This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and struc- 
ture misalignment in image stitching. Given that the input images are roughly aligned, our approach is implemented in 
two stages. In the first stage, we discover motions between input images, and then extract their corresponding regions 
through a multi-seed based region growing algorithm. In the second stage, with prior information provided by the ex- 
tracted regions, we perform a graph cut optimization in gradient-domain to determine which pixels to use from each 
image to achieve seamless stitching. Our method is simple to implement and effective. The experimental results illus- 
trate that the proposed approach can produce comparable or superior results in comparison with state-of-the-art me-
thods. 
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1. Introduction 

Image stitching refers to creating a high-resolution pano- 
rama that seamlessly combines two or more images with 
overlapping fields of view [1]. There are many good ex- 
isting methods for creating pleasing panoramas. However, 
they usually have a number of requirements to produce 
satisfactory results: limited camera translation, limited 
motion of objects in the scene and similar exposure set- 
tings between images. 

Generally, there are three problems which often occur 
in the field of image stitching, namely exposure differ- 
ence, structure misalignment and ghosting artifacts. In 
this paper, we are concentrating with two of them, one is 
ghosting effect caused by moving objects within a scene, 
and the other is structure misalignment in the overlapped 
region, which is usually due to inaccuracy of registration 
methods, motion parallax and etc. 

For the problem of de-ghosting, Uyttendaele etc pro- 
pose to use regions of difference [2]. This technique 
identifies dynamic objects by checking the source images 
to see where pixels differ by more than a threshold, and 
then decide which objects to keep and which ones to 
erase using a weighted vertex cover algorithm. This al- 
gorithm works well, but it may fail when images are not 
prior well-registered and exposure correction. In addition, 

it does not establish the correspondence for regions re- 
lating to the same object. Thus, ambiguous situation may 
occur when multiple moving objects exist in the scene. 
Another technique with excellent results is proposed by 
Agarwala [3]. Its main idea is to place a seam along the 
edges of objects in the picture, and then pick pixels from 
one photo or another based on which side of the seam 
they fall. Similar works have also been done in [4,5]. 
However, these techniques require the user manually 
labels all regions of moving objects, therefore is not 
suitable for our goal of a fully automated solution. 

Several methods have been proposed to alleviate the 
structure misalignment problem in image stitching. The 
most famous method in this field could be using optimal 
seam [6]. These methods first compute the color dif- fe-
rence in the overlapped area between the two input im-
ages. Alternative way includes computing the differ- 
ence in gradient or texture feature domain [7,8]. Then the 
task of finding the optimal boundary is formulated as the 
minimization of an energy function, which is usually 
solved by graph cut [9]. More sophisticated approach can 
be found in [10], which is based on structure deformation 
and propagation. Moreover, this method can simultane- 
ously achieve structure consistency as well as color cor- 
rection within the same framework. 
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After extensively reviewing the previous work on mis- 
alignment correction and de-ghosting, we can find that 
existing approaches have its own advantages as well as 
disadvantages. Moreover, we did not find any work in 
the literature, which can simultaneously deals with both 
of them. In this paper, we propose a novel technique to 
address them together. After detecting feature corre- 
spondence between two images, the first step is to dis- 
cover motions by interactively applying Random Sample 
Consensus (RANSAC) [11] in a divide and conquer 
manner. Once motions are found, we take feature pixels 
belonging to them as seed points, and use a region grow- 
ing method to roughly extract moving objects. However, 
to completely remove ghosting artifacts, we have to ac- 
curately determine which regions in the input images are 
not static. To this end, we formulate it as a labeling 
problem, and remove ghosting artifacts and structure 
misalignment together via graph cut. The paper is or- 
ganized as follows. Section 2 gives the detail of the pro- 
posed algorithm. The experimentation results are pro- 
vided in Section 3, followed by conclusions in Section 4. 

2. Our Image Stitching Algorithm 

For clarity, in this paper, we consider the basic case of 
stitching two roughly aligned images. Our algorithm is 
implemented in two stages. In the first stage, we discover 
the motions between two input images, and then extract 
their corresponding regions. With prior information pro- 
vided by the extracted regions, the second stage is to find 
an optimal seam, which can simultaneously eliminate 
visual artifacts caused by the moving objects and struc- 
ture misalignment. We formulate the task as a labeling 
problem, and solve it by graph cut. The following sec- 
tions describe the details of the algorithm. 

2.1. Motion Discovery 

Let us denote the two images to be stitched as SI  and 

TI , and assume that feature correspondence between 
them has been already established through Scale-invari- 
ant feature transform (SIFT) matching [12]. To extract 
motions between them, we cluster the correspondence by 
interactively applying RANSAC in a divide and conquer 
manner. More specifically, we first select the homogra- 
phy with largest no. of coincident key points. Then we 
remove these points and apply RANSAC again in the 
remaining points until the no. of points to be matched is 
below some threshold. 

The above process is similar to the work of [13] and 
[14]. Different from them, before implementing RANSAC, 
we remove mismatches by our previous proposed method 
[15]. The reason is, from our experiment, we found that 
the stability of result is very poor if there exists lots of 
mismatches in the correspondences, especially when we 

try to find multiple motion models in them. The output of 
this stage is a set of motions, in which the one with larg- 
est no. of coincident image points corresponds to the 
background (the global background motion), and the 
others correspond to the moving objects (the local mo- 
tion). Figure 1 shows an example scene, where two mo- 
tions are detected by fitting two homography transforma- 
tions to the feature matches. One for the background 
(Figure 1(a)), the other for the chair (Figure 1(b)). 

2.2. Locating Moving Region 

After finding a set of motions, the next step is to find 
their corresponding regions, so as to using pixel values 
from only one of the contributing images for them to 
eliminate ghosting artifacts. This task can be solved by 
multiple-seeds based region growing algorithm [16]. 

Formally, assuming there are N local motions found in 
the last step and each local motion i  is defined by a 
homography transformation i

m
H  with associated feature 

correspondence  ,i i
k kx y , where 1 . Similarly, 

the global background motion 
i  N

gm  is denoted by a ho- 
mography transformation gH  with associated feature 
correspondence  ,g g

k kx y . Next, for each i , we take m
 ,i i

k kx y  as seed points, and gradually grow them by 
including neighboring pixel , which obey one of the 
following criteria: 

p

Criteria 1: Motion cues 
We assume that the background is dominant in the 

scene. Based on this assumption, motion cues are defined 
as the discrepancy between the local motion and the 

 

 
(a)                            (b) 

Figure 1. Fitting motion models using SIFT matches. In this 
scene, the camera is translating and the chair moves. We 
detect both motions by fitting two homography transforma-
tions to the feature matches. One for the background (Fig-
ure 1(a)), the other for the chair (Figure 1(b)). 
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global background motion, which is written as: 

         S T i S T gI p I f p I p I f p       (1) 

where  if p  and  gf p  are mapping functions gen- 
erated by location motion i  and global motion m gm , 
which map the pixel  in Sp I , to the  if p  and 

g  in f p TI  respectively. Their definitions are as fol- 
lows: 

 if p p iH                (2) 

 gf p p Hg                (3) 

Criteria 2: Color similarity 

1( ) ( )S SI p I seed  
          (4) 

Here, 1  stands for the intensity threshold. 
The advantage of using both cues is two fold: on one 

hand, motion cues can effectively determine the neigh- 
boring pixels which have the consistent motion with the 
seed. On the other hand, the color similarity ensures the 
extracted region smooth and complete, in case using ob- 
ject motion information alone can only detect a part of 
the moving object. We run the region growing algorithm 
twice. The first time is to generate a set of region 

1 2 , , , s s s
NR R R  in SI . Similarly, the second time is to 

generate a set of  1 2 , , ,T T T
NR R R  in TI  with the in- 

verse motion filed relating TI  and SI . Accordingly, 
the applied region growing criteria are changed to (5) and 
(6) as follows: 

         1
T S i T S gp pI I f I p I f   1 p    (5) 

    1T TI I sp eed             (6) 

where i  and   1
i ppf  H   1

g ppf  Hg . To conclude, 
the result of this stage is a set of region pair 

1 2 , , ,s s s
NRR R , where ands t

i iR R  are related to the 
regions which are consistent with motion  in two 
images.  

im

2.3. Optimal Seam Selection 

With the information provided by the extracted regions, 
we can now create a seam which is able to eliminate 
structure inconsistence between images as well as being 
avoided passing through moving objects. To do so, we 
formulate it as a labeling problem, and solve it by graph 
cut. In the following, fI  represent the final composite 
image with the overlapped region .  pf  denotes the 
label for every pixel fp I , which is assigned either 0 
or 1. If pf = 0, the value pixel p comes form image sI , 
otherwise, it comes from tI  

In order to make the final composite image fI  like as 
if the image were captured without the moving objects in 

the scene, we use information from only one image for 
each extracted region pair  , s t

i iR R  , and ignore corre- 
sponding information in the other images. In other words, 
we preassign the same label pf  for pixels in the 

ands t
iR iR  as follows: 

  i

herwise

  1

0

s t
i

p

if R R
f

ot

  



       (7) 

Next we consider the label assignment for the remain- 
ing pixels in  , and define a objective function,  E f  
as the sum of two terms: a data term  over all pixel 

i  and an interaction term 
,p q

C sV  over all pairs of neigh-
boring pixels :  ,p q

    
,

s
p p

V  , ) , , ,d p p q
q

V p f p q f fE f        (8) 

where the data term encourages transitions between the 
extracted regions and their nearby pixels to be natural 
and seamless. We use the following cost function to ex-
press this desired property: 

   
2

, exp
2

pf
 d p

d p
V p f



 


 
         (9) 

where   is the Gaussian scale and is set to 1 in the 
experiment.  d p

pf  is the distance between the pixel 
 and its nearest region that is pre-assigned with label p

pf . This can be calculated by distance transformation 
[17]. 

The interaction term takes gradient smoothness into 
account and penalizes pixel dissimilarity in the gradient 
domain, which makes the seam favor smooth area in   
and in turn reduces the structure complexity along the 
seam. Specifically, we define it as follows [10]: 

 
   

, , ,

1 , ,

s p q

p

p q

q f f

S p q if f f

if f f

   m dS p q

0

V p

q  



 


   (10) 

     
   

,m S TS p q p p

p p

 

  S T

I I

I I




        (11) 

     
   

,d s sS p q I p p

p p

 

  T T

I

I I

 

 
        (12) 

where m  and d  are two costs measuring the gradi- 
ent smoothness and similarity between the neighboring 
pixels  and q . 

S

p

S

  denotes the norm of the gradi- 
ent for each pixel.   is a weight used to balance the 
relative influence of the two costs, which is set to 0.3 in 
our experiments. We use the graph cut algorithm to find 
a labeling to minimize the objective function. 
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3. Experiment Results 

Having already illustrated the proposed image stitching 
algorithm by an example, we proceed by further demon- 
strating the performance of our method in two examples 
captured in different conditions. Comparison with other 
methods using our implementation is also given. 

3.1. Result Analysis 

We first show a simple case, where only one moving 
object exists in the scene. The two sources images, as 
shown in Figures 2(a) and (b) are provided as input. Fig- 
ure 2(c) is the initial alignment, where the visual artifact 
(indicated in the red box) is obvious because of moving 
objects and inaccuracy registration. Figures 2(d) and (e) 
show the result of Auto Stitching [18] and Panorama 
Maker [19], respectively. As can be seen, although the 
structure misalignment is alleviated, it does not help in 
solve the problem of ghost effect. Figure 2(f) is obtained 
by our method, in which only one instance of the moving 
object is kept in the final composite image and structures 
are properly aligned. This demonstrates that our method 
can handle moving object and structure misalignment 
within the same framework. 
 

 
(a)                            (b) 

 
(c)                            (d) 

 
(e)                            (f) 

Figure 2. (a) and (b) are the two registered images. (c) The 
initial alignment. (d) Auto stitching (e) Panorama factory (f) 
our method. 

Next, we apply our algorithm to a more complicated 
example. This scene is challenging because it contains 
multiple moving objects, and also exists occlusion be-
tween them. Figure 3 shows the process. Figure 3(a) 
and (b) are the original images. Our algorithm first de-
tects motions between images, and then roughly extracts 
their corresponding region (one for the red box (Figure 
3(c)), and the other for the bag (Figure 3(d)). After that, 
by taking gradient similarity and transition smoothness 
into account, we obtain the final panoramic image by 
selecting an optimal seam in an intelligent manner (indi-
cated by a red curve in Figure 4(c)). As can been seen, 
our seam favors smooth area in the overlapped region 
and being avoided passing through moving object. Thus, 
the final composite image is pleasing and structure con-
sistent, while the artifacts caused by moving objects and 
misregistration still exist in AutoStitching (Figure 4(a)) 
and Panorama Factory (Figure 4(c)). 

3.2. Computation Times 

We finally discuss the computation time needed for our  
 

 
(a)                            (b) 

 
(c)                            (d) 

Figure 3. (a) and (b) are the two registered images. (c) (d) 
Detected two motions, one for the red box, the other for the 
bag. 
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) AutoStitching (b) Panorama Factory (c) Out 
Method. 
 
method. To give an idea for the possible reader, we con-
sider the Figures 2(a) and (b) (640 × 480 pixels) as a 
benchmark. In reporting this result, we use a PC with an 
Intel Core(TM)2 Duo processor with a 2.4 GHz clock 
speed 1 GB RAM, and use matlab as our coding platform 
to perform the algorithm. 

We tabulate the computation times for each step in 
Table 1. As can be seen, the total time needed for image 
stitching is 18.65 s. In the same setting, the time needed 
for AutoStitching and Panorama Factory was 12.16 s and 
19.1 s, respectively. Therefore, the computation time of 
our method is acceptable. 

4. Conclusions 

A novel technique has been presented to achieve seam-
less image stitching without producing visual artifacts 
caused by moving objects and structure misalignment. 
The proposed method includes two major components: 1)  

Table 1. Computation time for each step of the proposed 
approach. 

Step Computation time (second) 

Motion discovery 12.52 

Locating the moving region 1.78 

Optical seam selection 4.35 

Total time 18.65 

 
Motion discovery 2) a graph cut based optimization 
framework for seamless stitching. We create data cost to 
ensure that transition between moving objects and their 
nearby pixels to be natural and seamless, and smooth 
cost to encourage the seam favor smooth area. Thus, 
moving object removal and structure correction are si-
multaneously achieved within the same framework. 

There are also some minor limitations for our method. 
First, our framework relies heavily on feature matches to 
extract every independent motion in the scene. Thus, it 
may fail when correspondence between motions are not 
detected. Second, our framework can not handle the ex-
posure difference, which is another challenge problem in 
the filed of image stitching. Therefore, future work aims 
at making our framework robust to these phenomena, and 
also extending it to videos and multiple images.  
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