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Abstract 
It is well known that the boundary element method (BEM) is capable of converting a boundary- 
value equation into its discrete analog by a judicious application of the Green’s identity and com-
plementary equation. However, for many challenging problems, the fundamental solution is either 
not available in a cheaply computable form or does not exist at all. Even when the fundamental 
solution does exist, it appears in a form that is highly non-local which inadvertently leads to a sys-
tem of equations with a fully populated matrix. In this paper, fundamental solution of an auxiliary 
form of a governing partial differential equation coupled with the Green identity is used to dis-
cretize and localize an integro-partial differential transport equation by conversion into a boun-
dary-domain form amenable to a hybrid boundary integral numerical formulation. It is observed 
that the numerical technique applied herein is able to accurately represent numerical and closed 
form solutions available in literature. 
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1. Introduction 
The governing equation for a convective-dispersive transport phenomenon is given by:  

( ) ( ) ( ]ˆ in 0,
d
∂

+∇ ⋅ −∇ ⋅ ⋅∇ = ℜ Ω×
c vc c T
t

D                        (1) 

where c is concentration; v is the flow velocity; D  is the dispersive tensor; t is the time variable and ℜ̂  is the 
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rate of solute mass exchange. Equation (1) yields satisfactory results in controlled environments in the absence 
of media heterogeneities. However, it exhibits certain limitations in modeling real life phenomenon. Its devia-
tion from Fickian theory, results in an infinite speed of propagation of the scalar field (Cattaneo [1] Curtin and 
Pipkin1 [2], Ferreira and Oliveira [3], Hristov [4]). In order to overcome this unphysical property, Fick’s law is 
replaced by a flux accompanied by a memory term ( ),J x t τ= + . It was proposed (Cattaneo’s [1]) that the flux 
at a certain point x and at time t should be a consequence of scalar variation at some point x but after an elapsed 
time. Based on this, Ficks equation is modified to read:  

( ) ( ), ,J x t D c x tτ+ = − ∇                                  (2) 

where τ  is a delay parameter. Applying a first order Taylor series expansion to the flux we obtain the so-called 
Cattaneo’s flux term. 

( )
( )

( )
0

, e , d
t stDJ x t c x s sτ

τ

−
−

= − ∇∫                               (3) 

Without any loss in generality, Equation (1) can be recast to read 

( ) ( )
( )2 2

2 2
0

, e d
t stc c c D cf c q x t v D s

t x x x
τ

τ

−
−∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂∫                      (4) 

where ( ) ( ), ,f c q x t  are the reaction and source/sink terms. The source/sink term accounts for the injection or 
extraction of mass into or out of the system. ,D v  are the diffusion coefficient and velocity variables. The term 
inside the integral term accounts for the memory of the system. Equation (4) is a one-dimensional integro-partial 
differential equation which describes the transport of quantities such as heat, vorticity, energy and mass and is 
very important in many physical systems especially those involving the environment. It comes with the follow-
ing constraints. 

An initial condition of the type 

( ) ( )0, 0 , 0c x g x x L= ≤ ≤                                 (5) 

and boundary conditions 

( ) ( ) ( )
( ) ( ) ( )

0 0 0

1 1 1

, , ,

, ,

c a t a t b t

c b t b t b t

α β

α β

+ =

+ =
                                (6) 

where 0t � . In addition, 0 1 0 1, , ,α α β β  are given constants. 
Fundamental solutions generated from “free-space” Greens functions are usually applied in boundary integral 

analysis of transport equations. Efforts to make them more applicable to boundary element method (BEM) for-
mulation, especially for non-homogeneous material, can be found in (Shaw [5]) and (Shaw and Manolis [6]). 
These have not only met with mixed results but have also been found to be inadequate for a good number of 
problems of engineering interest. 

For example, adopting the classical boundary element approach to viscoelastic materials or to cases which 
incorporate the memory term requires fundamental solutions that are yet not well known except for the simple 
Maxwell material whose analytical solution is available (Gaul and Schanz [7]). Numerical attempts to deal with 
this include that of Schanz and Antes [8]. They studied a BEM viscoelastic formulation based on the so called 
convolution integral method proposed by Lubich [9] in 1988. In this work, a quadrature formula whose weights 
are determined by the Laplace transform of the fundamental solution is applied to evaluate a convolution inte- 
gral and the entire formulation numerically handled by a multi-step procedure. 

The hybrid boundary-integral-finite element procedure adopted herein employs the Green’s function of the 
Laplace operator, and retains the time marching feature of classical BEM, but its spatial discretization enlists a 
local support feature that is similar to that of the finite element. This guarantees some attractive outcomes; it fa-
cilitates the hybridization process especially for schemes that are element or nodal based (Onyejekwe [10] [11]) 
and establishes a hybrid computational method which exploits the strengths of its composite parts. This is the 
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key motivation for this study. 

2. Numerical Formulation 
A typical boundary integral discretization requires both the complementary differential equation and the free- 
space Green’s function.  

( ) ( )
2

2
1 , ,i

G G x x t x t t
D tx

δ δ τ∂ ∂
− = − − −∞ ≤ ≤ ∞ ≥

∂∂
�                       (7) 

( ) ( )
( )

( )
( )

2

, ; , exp
44π

i
i

H t t x x
G x t x t

D t tD t t

 − − −
= − 

−  −   

�
�

��
                         (8) 

where ix  is the source node and x is the field node and by the same token both t and t�  represent the source 
and field nodes in the temporal coordinates. The flexibility offered by a hybridization procedure allows the 
integral kernel in equation (4) to be evaluated at each node.  

We consider ( ),i kx t  defined in the region [ ] [ ], 0,a b T×  where  

1 2 1 1,M M i ia x x x x b x x x+ += = − = ∆≺ ≺�≺ ≺                          (9) 

and 

1 2 1 10 ,N N k kt t t t T t x t+ += = − = ∆≺ ≺�≺ ≺                          (10) 

We adopt a composite weighted trapezoidal rule in the temporal coordinate for the memory term.  

( ) ( ) ( ) ( )

( ) ( ) ( )
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1
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2
1

2

1, 2 , 1,
d e

2

1, 1 2 , 1 1, 1
e

N kN

N k

t tt N

kt

t t

c i k c i k c i kts s
x

c i k c i k c i k
I

x

τ

τ

++

+

− − 
 

=

− − 
 

 + − + +∆
ℑ ≈ 

∆
+ + − + + + +

+ =
∆ 

∑∫
              (11) 

Equation (4) is finally converted to its integral analog by the Green’s second identity to yield:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1

2

1

2 2 2

1 1 1

1 * *
2 2 1 1

2 2 1 1

1 1 1

, , ; , , , ; , d

, ; , , , ; , , d

1 1, ; , , , ; , , d d 0

t
m

i i i
t

t

i i
t

x t x

i i
x t x

c c x t G x t x t c x t G x t x t t

G x t x t x t G x t x t x t t

cG x t x t c x t G x t x t f c q x t I x t
D D x

λ

ϕ ϕ

α β γ η

+  − + − 

 − − 

∂ − + + + + = ∂ 

∫

∫

∫ ∫ ∫

� �

� �

� �

      (12) 

where , , ,α β γ η  are given and I is the “memory” or the hereditary’ term; α  can be a constant or a function of  

the dependent variable, ( ) ( )
( ) ( ) ( ) ( )* ,

, ; , , ; , , , .
2

ϕ
− ∂∂

= = − =
∂ − ∂

� �
�

i
i i

x x c x tGG x t x t G x t x t x t
x D t t x

 

This hybrid formulation unlike a typical boundary integral formulation requires that the computational do-
main be discretized into elements over which the scalar variable will assume some functional distributions. This 
is represented for the dependent variable as 

( ) ( ) ( ) ( ) ( ), ; 1, 2, , , 1, 2m m
jc x t c j n mτ ζ≈ Ω Ω = =�                      (13) 

where 2m =  represents the current time level, while 1m =  denotes previous time level. ( )j ζΩ  and 
( ) ( )m τΩ  are interpolating functions in space and time respectively. The element equation can now be written 

as: 
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( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
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∆

∫

∫

∫

∫

∫

( )( ) ( ) ( ) ( )
1 1

0 0

, ;0,0 , d d 0m
i j

t cG l t f c q x t I
D x

ζ ζ ζ α β γ η ζ τ∂ − ∆ Ω Ω + + + = ∂ ∫ ∫

         (14)

 
Equation (14) is put in a compact matrix form 

( ) ( ) ( ) ( ) ( )m m m m m
ij j ij j ij jR c L Tϕ+ + Ψ                                  (15)

 

3. Numerical Test Examples 
Example 1 Consider the following special case of Equation (4) with reaction term of the nonlinear variety 
(Khuri and Sayfy [12]), 

( )

( )
2 2

2 2
2 2 2

0

1 e d ,
2π

t stc c cc s q x t
t x x

−
−∂ ∂ ∂

= + + +
∂ ∂ ∂∫                           (16) 

where ( ) ( ) ( ], 0,1 0,1x t ∈ ×  subject to the initial condition 

( ) ( )sin π 0 0.5
,0

1 0 1
x x

c x
x

 ≤ ≤= 
≤ ≺

                             (17) 

and boundary conditions 

( ) ( ) 20, 0, 1, e .−= = tc t c t                                 (18)
 

Next we account for the source term where ( ]0,1 .∈t  

( ) ( ) ( )2 2 2π e sin π e sin π 0 0.5
,

1 0.5 1

t tt x x x
q x t

x

− − − ≤ ≤= 
− ≤ ≺

                     (19) 

The exact solution is given by  

( ) ( )2

2

e sin π , 0 0.5
,

e , 0.5 1

t

t

x x
c x t

x

−

−

 ≤ ≤= 
≤ ≤

                            (20) 

The numerical solutions are obtained with 0.02, 0.005x t∆ = ∆ =  respectively. The closeness of Figure 1 to 
that of Khuri and Sayfy [12] and the magnitude of absolute errors as a result of comparison between analytic and 
numerical results in Table 1 demonstrate the reliability of the numerical formulation developed herein. 

Example 2 We consider a special case of Equation (4) given by:  

( )

( )
2 2

2 2
0

e , d
t stc c c cv d x s s

t x x x
τ
−

−∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂∫                           (21) 
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Figure 1. 3D plot of scalar profiles for Ex. 1.                               

 
Table 1. Comparison of numerical and analytical results at time = 0.025.                       

x Numerical Exact Abs. Error 

0.628319 0.587831 0.587602 0.000228 

1.884956 0.951078 0.950759 0.000320 

3.141593 −0.000030 0.000000 0.000030 

4.398230 −0.951099 −0.950759 0.000339 

5.654867 −0.587775 −0.587602 0.000173 

At time = 0.025000, L2-Norm = 0.000178, L-Infinity Norm = 0.000463, Root Mean Square Error = 0.000899. 
 
where ( ) ( ) ( ], 0,1 0,1x t ∈ × , ,v d  are the velocity and diffusion coefficient s respectively. 

The initial and boundary conditions are given as: 

( ), 0 0, 0 1c x x= ≺ ≺                                 (22) 

( ) ( )0, 0, 1, 1, 0cc t t t
x
∂

= =
∂

�                             (23) 

Equation (21) is a transport equation that involves a convective-diffusive process coupled with a memory 
term. It is one of the most important equations of mathematical physics and has been used to describe the trans-
port of such quantities like mass, heat, vorticity, energy and momentum. In the absence of the memory term, the 
analytical solution can be determined by method of separation of variables. This is expressed as: 

( )

( )

( ) ( ) ( )2 2π 41 2
2

1 2

1 πe 1.0 e sin π e
e 1.0

π
2

mvx d t m d v dv x d
v d

m

m
m x

vm
d

∞  − +−   

=

−−
+

−  +  
 

∑                 (24) 

The numerical solution has been found to develop a steep front or boundary layers at x = 1 (Feng and Tian 
2006). Profiles of the numerical solution of equation (21) and the corresponding analytical solution without the 
memory term (equation (24)) are displayed in Figure 2(a) and Figure 2(b) for the following problem parame-
ters: 0.1, 0.5, 0.02, 0.005d v x t= = ∆ = ∆ = . While some instabilities can be detected in Figure 2(b), none can 
be found in 2a. This confirms an earlier work by Feng and Tian [13]. In addition, this observation validates the  
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(a)                                                       (b) 

Figure 2. 3D numerical scalar profiles (with memory term) for 0.02, 0.005, 0.5, 0.1x t v d∆ = ∆ = = = . 3D analytic scalar 
profiles (without the memory term) for 0.1, 0.5, 0.02, 0.005d v x t= = ∆ = ∆ = .                                         
 
interesting physics brought to play by the introduction of the memory term in the C-D equation. The modifica-
tion of the flux term which takes care of the infinite speed of species propagation introduces an additional diffu-
sion term. Again a close look at Equation (21) shows that we have two elliptic operators whose second order de-
rivatives are multiplied by positive parameters. These derivatives model the diffusion process while the only 
first order derivative is associated with the convective process. Diffusion has always been known to play a sig-
nificant role in the region of rapid changes (the boundary layers) where the scalar profile exhibits a steep profile. 
When a standard numerical procedure is applied to a C-D problem, if the diffusion term is relatively smaller 
than the convective term, the computed solution profile is often oscillatory. Whereas if there exists an “excess” 
(superfluous) diffusion term, the computed profile is smeared as demonstrated in Figure 2(a). It will also be in-
teresting to compare the effects on the scalar profiles introduced by different magnitudes and discretizations of 
the convection term. However, the details of this will be the theme of a forthcoming paper. 

4. Conclusion 
The main thrust of this paper is a seamless incorporation of non-Fickian flux and memory into a localized ele-
ment-based boundary element method. The advantage of this technique lies in the possibility of admitting realis-
tic experimental information into a governing differential equation without complicating BEM formulation. For 
example, it offers a feasible alternative for applying BEM to describe transport processes in viscoelastic media 
where the inclusion of memory term is vital. 

References 
[1] Cattaneo, C.S. (1948) Conduzione del calore, Atti del. Seminario Matematico e fisico dela Universita di Modena, 3, 3- 

21. 
[2] Curtin, M.E. and Pipkin, A.C. (1968) A General Theory of Heat Conduction with Finite Wave Speeds. Archive for Ra-

tional Mechanics and Analysis, 31, 113-126. http://dx.doi.org/10.1007/BF00281373 
[3] Ferreira, J.A. and de Oliveira, P. (2007) Memory Effects and Random Walks in Reaction-Transport Systems. Applica-

ble Analysis, 86, 99-118. http://dx.doi.org/10.1080/00036810601110638 
[4] Hristov, J.A. (2013) Note on the Integral Approach to the Nonlinear Heat Conduction with Jeffrey’s Fading Memory. 

Thermal Sciences, 17, 733-737. 
[5] Shaw, R.P. (1994) Green-Functions for Heterogeneous Media Potential Problems. Engineering Analysis with Boundary 

Elements, 13, 219-221. http://dx.doi.org/10.1016/0955-7997(94)90047-7 
[6] Shaw, R.P. and Manolis, G.D. (2000) Elastic Waves in One-Dimensionally Layered Heterogeneous Soil Media. Adv. 

EarthQ, 5, 215-246. 
[7] Gaul, L. and Schanz, M. (1992) BEM Formulation in time Domain for Viscoelastic Media Based on Analytical Time 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

X

3-D plot of Scalar Profile

Time

D
ep

en
de

nt
 V

ar
ia

bl
e

http://dx.doi.org/10.1007/BF00281373
http://dx.doi.org/10.1080/00036810601110638
http://dx.doi.org/10.1016/0955-7997(94)90047-7


O. O. Onyejekwe 
 

 
1247 

Integration. In: Brebbia, C., Dominguez, J. and Paris, F., Eds., Boundary Elements XIV, Vol. 2, Computational Me-
chanics Publications, Southampton, 223-234. 

[8] Schanz, M. and Antes, H. (1997) Application of Operation Quadrature Methods in Time Domain Boundary Element 
Methods. Meccanica, 32, 179-186. http://dx.doi.org/10.1023/A:1004258205435 

[9] Lubisch, C. (1988) Convolution Quadrature and Discretized Operational Calculus. Numerische Mathematik, 52, 129- 
145. 

[10] Onyejekwe, O.O. (2014) The Effect of Time Stepping Schemes on the Accuracy of Green Element Formulation of Un-
steady Transport. Journal of Applied Mathematics and Physics, 2, 621-633. 

[11] Onyejekwe, O.O. (2015) A Hermitian Boundary Integral Hybrid Numerical Formulation for Nonlinear Fisher-Type 
Equations. Applied and Computational Mathematics, 4, 83-99. 

[12] Khuri, S.A. and Sayfy, A. (2009) A Numerical Approach for Solving an Extended Fisher-Kolmogorov-Petrovskii- 
Piskunov Equation. Journal of Computational and Applied Mathematics, 233, 2081-2089. 

[13] Feng, X.F. and Tian, Z.F. (2006) Alternating Group Explicit Method with Exponential-Type for the Diffusion Convec-
tion Equation. International Journal of Computer Mathematics, 83, 765-775. 
http://dx.doi.org/10.1080/00207160601084463 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit your manuscript at: http://papersubmission.scirp.org/ 

http://dx.doi.org/10.1023/A:1004258205435
http://dx.doi.org/10.1080/00207160601084463
http://papersubmission.scirp.org/

	A Domain-Boundary Integral Treatment of Transient Scalar Transport with Memory
	Abstract
	Keywords
	1. Introduction
	2. Numerical Formulation
	3. Numerical Test Examples
	4. Conclusion
	References

