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Abstract 
A class of general inverse matrix techniques based on adaptive algorithmic modelling methodolo-
gies is derived yielding iterative methods for solving unsymmetric linear systems of irregular 
structure arising in complex computational problems in three space dimensions. The proposed 
class of approximate inverse is chosen as the basis to yield systems on which classic and precondi-
tioned iterative methods are explicitly applied. Optimized versions of the proposed approximate 
inverse are presented using special storage (k-sweep) techniques leading to economical forms of 
the approximate inverses. Application of the adaptive algorithmic methodologies on a characte-
ristic nonlinear boundary value problem is discussed and numerical results are given. 

 
Keywords 
Adaptive Algorithms, Algorithmic Modelling, Approximate Inverse, Incomplete LU Factorization, 
Approximate Decomposition, Unsymmetric Linear Systems, Preconditioned Iterative Methods, 
Systems of Irregular Structure 

 
 

1. Introduction 
In recent years, extensive research work has been focused on the computation of exact and approximate inverse 
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matrices for solving efficiently complex computational problems particularly on parallel computer systems 
[1]-[20]. In this article, a new class of Sparse Approximate Inverses matrices based on adaptive algorithmic 
modelling methods is presented. These adaptive algorithmic solution methods can be used for solving large 
sparse linear finite difference (FD) and finite element (FE) systems of irregular structures derived mainly from 
the discretization of parabolic and elliptic PDE’s in both two and three space dimensions [21]-[31]. 

Let us consider a class of boundary value problems defined by the equation 

( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ),
, 1 1

,
N N

N
p i j j i j j

i j j
a x u x x x b x u x x c x u x f x x D Rε

= =

 − ∂ ∂ ∂ ∂ − ∂ ∂ + = ∈ < ∑ ∑       (1.1) 

subject to the general boundary conditions 

( ) ( ) ( ) , ,x u x u x x Dα β ζ γ+ ∂ ∂ = ∈∂                           (1.1a) 

where D is a closed bounded domain in RN, with N ≤ 3 and ∂D the boundary of D, pε  a predetermined singular 
perturbation parameter, ( ) ( ) ( ), 0, 0, 0i j ja x b x c x> > ≥ ; and the coefficients , , ,i j ja b c  are continuous and dif-
ferentiable functions in D, ( ) ( ) ,0, 0, , ,i j jx x a b cα β> > ; f are sufficiently smooth functions on D and ζ∂  is 
the direction of the outward normal derivative. 

The discrete analogue of Equation (1.1) leads to the solution of the general linear system  

Au s= ,                                      (1.2) 

where the coefficient matrix A is a large sparse real (n × n) matrix of irregular structure. The structure of A is 
shown in the following Figure 1. 

For solving the system (1.2), there is a choice between direct and iterative, assuming that there are no barriers 
due to memory requirements for the former or excessive runtimes (e.g. time dependent problems) for the latter. 
Note that for generality purposes the coefficient matrix is assumed to be unsymmetric (case occurring in the discre-
tization of flow equations that arise in certain Hydrology studies [32] and of irregular non-zero structure (case re-
sulting from the triangulation of irregular or regular domains into irregular elements in pipeline networks [33]. Al-
gorithmic solution methods for the linear systems (1.2) applicable to both two and three space dimensions can be 
applied [22], where the unsymmetric coefficient matrix, in which all the off-centre terms are grouped into regular 
bands, can be factorized exactly to yield direct algorithmic procedures for the FD or FE solution.  

It should be noted that in the case of very large sparse linear and nonlinear systems with coefficients of irre-
gular structure, the memory requirements and the corresponding computational work are prohibitively high and 
the use of exact inverse solvers is usually not recommended. In such cases, preconditioned iterative techniques 
for solving numerically the FD or FE linear systems (1.2) can be used by deriving semi-direct solution methods 
following the principle [27] [34] that implicit procedures based on approximately decomposing discrete opera-
tors into easily invertible factors facilitating the solution of (1.2). Sparse factorization procedures yield efficient  
 

 
Figure 1. The structure of coefficient matrix A.                       
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procedures for the FE or FD solution by manipulating the problem of the fill-in terms, which occur during the 
factorization [22] [35]. Note that simple compact storage schemes for the considered data can be used and pre-
conditioned algorithmic solvers do not require any searching operations. An important feature of the proposed 
adaptive algorithmic methods is the provision of a class of iterative methods for solving large sparse unsymme-
tric systems of irregular non-zero structure, with additional computational facilities, i.e. the choice of fill-in pa-
rameters, rejection parameters, entropy-adaptivity-uncertainty (EAU) parameters [36], by which the best method 
for a given problem can be selected. The proposed methods have a universal scope of application for numerical-
ly solving of elliptic and parabolic boundary value problems by either FD or FE discretization methods in both 
two and three space dimensions with the only restriction being that the coefficient matrix should be diagonally 
dominant.  

2. Approximate LU Decomposition and Approximate Inverse Methods 
The approximate factorization techniques and approximate inverse methodologies have been widely used for 
solving a large class of linear and nonlinear systems resulting in complex computational problems [12] [29] [31] 
[37]-[49]. The LU factorization of a given matrix is characterized as a high level algebraic description of Gaus-
sian elimination and by expressing the outcomes of matrix algorithms in the language of matrix factorizations 
facilitates generalization and certain connections between algorithms that may appear different at scalar level 
[47]. The solution of linear system can be computed by a two-step triangular solving process, i.e.  

,Ly s Ux y Ax LUx Ly s= = ⇒ = = =                           (2.1) 

For solving the symmetric problem Ax s= , a variant of the LU factorization in which A is decomposed into 
three-matrix product, i.e. TA LDM= , where D is diagonal and L, M are lower unit lower triangular. In this case 
the solution can be obtained in ( )2O n  flops by solving Ly s=  (forward elimination), Dz y=  and 

TM x z=  (by substitution). Note that if TA A=  then L = M and the computational work for the factorization is 
half of that required by Gaussian elimination. The factorization takes the form TA LDL=  and can be used for 
solving symmetric problems, as well as the four-matrix product, i.e. TA DTT D= , where TT  is the transpose 
of T (Varga, 1962). In the case of symmetric positive definite systems the factorization TA LDL=  exists and is 
computationally stable. The factorization TA LL=  is known as Cholesky factorization and by solving the tri-
angular system Ly s=  and TL x y= , then ( )Ts Ly LL x Ax= = = . Note that the Gaxpy Cholesky version re-
quires 3 3n  flops, where Gaxpy is a BLAS level-2 routine defined algebraically as z Ax y= +  requiring 
( )O mn  operations. 
In the general case, such as the case of three space dimensions and the finite element discretization, the coef-

ficient matrix has an irregular structure of the nonzero elements, where the non-diagonal elements can be 
grouped in regular bands of width 1l  and 2l  (width parameters) in distances m and p (semi-bandwidths) re-
spectively.  

The linear system (1.2) can be solved by direct (explicitly) or iterative (implicitly) methods depending on the 
availability of memory requirements. Several factorization/decomposition techniques can be used for facilitating 
the numerical solution of linear system (1.2), i.e. two, three, four term factorization schemes of the coefficient 
matrix A. Following an explicit solution of system (1.2) this system can equivalently written as 

MAx Ms= ,                                      (2.2) 

where M is the inverse matrix of A, i.e. 1M A−= . Since the computation of the exact inverse is a difficult com-
putational problem particularly in the case of complex 3D problems, the approximate inverse matrix approach 
can be alternatively used.  

Let us consider an approximate factorization of the coefficient matrix A, 

S SA L U≈                                        (2.3) 

where SL  and SU , are lower and upper sparse triangular matrices of irregular structures of semi-bandwidths 
m and p retaining 1r  and 2r  fill-in terms respectively. The decomposition factors SL  and SU  are banded 
matrices with l1 and l2 the numbers of diagonals retained in semi-bandwidths m and p respectively (Figure 2 and 
Figure 3), of the following form. 

The computation of the elements of the sparse decomposition factors has been presented in [23] [24] [27]. 
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Figure 2. The structure of lower decomposition factor sL .                       

 

 
Figure 3. The structure of upper decomposition factor sU .                       

 
The relationships of the elements of V matrix and the corresponding conventional (for 1 5n m− + =  and 

1 3l = ) is shown in the following Figure 4. 
An analogue scheme can be obtained for matrix W, while the relationships of the elements of H matrix and 

the corresponding conventional (for 1 5n m− + =  and 1 1 6lr l+ − = ) is shown in the following Figure 5 (the 
same holds for the matrix F). 

The (near) optimum values of fill-in parameters are mainly depended on the nature of the problem and struc-
ture of the coefficient matrix A [22] [47]-[49]. 

3. Generalized Approximate Inverse Solvers for Unsymmetric Linear Systems of  
Irregular Structure 

3.1. Introduction 
An exact inverse algorithm based on adaptive algorithmic methodologies for solving linear unsymmetric sys-
tems of irregular structure arising in FD/FE discretization of boundary-value problems in three space dimensions 
has been recently presented [36]. This algorithm computes the elements of an exact inverse of a given unsym-
metric matrix of irregular structure using an exact LU factorization [22]. The computational work of the 
EBAIM-1 algorithm is ( ) ( )1 2 1 2O n l l m p l lδ δ≈ + + + +    multiplications, while the memory requirements are 
(n × n) words. In the case of very large systems the memory requirements could be prohibitively high and the 
usage of approximate inverse iterative techniques is desirable.  

It should be also noted that in the case that only 1 1r m< −  and 2 1r p< −  fill-in terms are retained in 
semi-bandwidths m and p respectively, then a class of approximate inverse matrix algorithms for solving large 
sparse unsymmetric linear systems of irregular structure [50] arising in the FD/FE discretization of elliptic and  
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Figure 4. The relationship of matrix V in its banded stored form and the 
corres- ponding one in Figure 1.                                       

 

 
Figure 5. The relationship of matrix H in its stored form and the corres- 
ponding one in Figure 3.                                       

 
parabolic boundary values, can be obtained. Such algorithms are described in the next sections. 

A class of optimized approximate inverse variants can be obtained by considering a (near) optimized choice 
of the approximate inverse M depends on the selection of related parameters, i.e. fill-in parameters r1, r2, reten-
tion parameters δl1, δl2 and entropy-adaptivity-uncertainty (EAU) parameters [36] [51]. Note that the selection 
of retention parameter values as multiples of the corresponding semi-bandwidths of the original matrix leads to 
improved numerical results [22]. Then, the following sub-classes of approximate inverses, depending on the ac-
curacy, storage and computational work requirements, can be derived as indicated in the following Figure 6. 
where 1 2

1 2

,
1, 1

l l
r m r pM δ δ
= − = −  of sub-class I is a banded form of the exact inverse retaining 1 2,l lδ δ  elements along each 

row and column respectively, while its elements are equal to the corresponding elements of the exact inverse. 
The term 1 2

1 2

,
1, 1

S l l
r m r pM δ δ
= − = −  of sub-class II is a banded form of M, retaining only 1 2,l lδ δ  elements along each row 

and column during the computational procedure of the approximate inverse and under certain hypotheses can be 
considered as a good approximation of the original inverse, while the entries of the approximate inverse in 
sub-class III have been retained after computing M* ( )1 21 and 1r m r p< − < −  and are less accurate than the 
corresponding entries of 1 2

1 2

* ,
1, 1

l l
r m r pM δ δ
= − = − . Finally, in sub-class IV the elements of the approximate inverse can be 

computed. 

3.2. Approximate Inverse Algorithmic Methodologies 
Algorithmic solution methods for the linear systems (1.2) applicable to both two and three space dimension can 
be applied [23], where the unsymmetric coefficient matrix, in which all the off-centre terms are grouped into 
regular bands, can be factorized exactly to yield direct algorithmic procedures for the FD or FE solution. Alter-
natively, preconditioned iterative techniques for solving numerically the FD or FE linear systems (1.2) can be 
used by deriving semi-direct solution methods following the principle [28] that implicit procedures based on ap-
proximately decomposing discrete operators into easily invertible factors facilitating the solution of (1.2). Sparse 
factorization procedures yield efficient procedures for the FE or FD solution by manipulating the problem of the 
fill-in terms, which occur during the factorization. Note that simple compact storage schemes for the considered 
data can be used and preconditioned algorithmic solvers do not require any searching operations. An important 
feature of the proposed adaptive algorithmic methods is the provision of both direct and iterative methods for 
solving large sparse unsymmetric systems of irregular non-zero structure, with additional computational facili-
ties, i.e. the choice of fill-in parameters, rejection parameters, entropy-adaptivity-uncertainty (EAU) parameters 
[36] [51], by which the best method for a given problem can be selected. The proposed methods have a universal  
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Figure 6. Subclasses of approximate inverses.                        

 
scope of application for numerically solving of elliptic and parabolic boundary value problems by either FD or 
FE discretization methods in both two and three space dimensions with the only restriction being that the coeffi-
cient matrix be diagonally dominant.  

Let us assume that 
1 2,r rM , a non-singular ( )n n×  matrix, is an approximate inverse of A, i.e.  

{ } 1 2

1 2 ,
,

, i
r

r j
r

rM M= , [ ], 1,i j n∈ . Note that if 1 1r m= −  and 2 1r p= −  non-zero elements have been retained in 
the corresponding decomposition factors, then 

1 2,r rM M= , where M is the exact inverse of A. The elements of 
M can be determined by solving recursively the systems  

1 1andML U UM L− −= = ,                              (3.1) 

having main disadvantages, i.e. high storage requirements and computational work involved particularly in the 
case of solving very large unsymmetric linear systems. A class of approximate inverses 1 2,l lM δ δ  can be ob-
tained by retaining only 1lδ  and 2lδ  diagonals in the lower and upper triangular parts of inverse respectively, 
the remaining elements being just not computed at all. Optimized forms of this algorithm are particularly effec-
tive for solving banded sparse FE systems of very large order, i.e. [ ]1 2 2l l nδ δ+ >  or in the case of nar-
row-banded sparse FE systems of very large order, i.e. [ ]1 2 2l l nδ δ+ � . 

Let us consider now the approximate inverse of A with the form 

( ) [ ] [ ]1 2
1 2 1 2 1 2

,
, , ,

1

1 2, 1, 1 , 1, 1 ,l l
r r r r r rL U rM m r pδ δ −

= ∈ − ∈ −                    (3.2) 

where 1 2,r r  are the fill-in parameters, i.e. the number of outermost off-diagonal entries retained in semi-band- 
widths m and p respectively. 

Then, by post-multiplying Equation (3.2) by 
1 2, r rL  and pre-multiplying the same equation by 

1 2, r rU , we ob-
tain  

( ) ( ) ( )1 2 1 2 1 2 1 2

1 1* *
, , , , ;r r r r r r r rM L U U M L

− −
= =                       (3.3) 

where 1 2
1 2

,*
,
l l

r rM M δ δ≡ . Note that in the 2D symmetric case, i.e. ( ) 1T
r r r rM L D L

−
≈ , [ ]1, 1r m∈ − , where r is the 

fill-in parameter, i.e. the number of outer-most off diagonal entries retained in semi-bandwidth of the tridiagonal 
factor Lr., by considering the equations in the analytical form for i-row with 1j r= +  and the j-column with 

1i r= +  respectively we can obtain 

, , 1 , 1 , ,
0

n m r j

i j j i j r j r i j m r i j
λ

λ λλµ γ µ δβ µ
− + −

+ + − + + + − +
=

+ + =∑                      (3.4) 

where ,i jδ  is the Kronecker delta [21] [27] [52]. 
The elements of the approximate inverse for i n=  can be determined successively as , , 1 ,1, , ,n n n n nµ µ µ− �  

(i.e. elements of the n-th row of the inverse) and for j n=  we obtain 1, 2, 1,, , ,n n n n nµ µ µ− − �  (i.e. the n-th col-
umn of the inverse). Proceeding in a similar manner we can explicitly determine for 1, 2, ,1i n n= − − �  and 

2, 3, , 2j n n= − − �  respectively the remaining elements ,i jµ . In the following Figure 7 the form of an (8 × 8) 
approximate inverse matrix is indicatively demonstrated. 
where 1 2

1 2

,
,
l l

r rM δ δ  is a (8 × 8) banded approximate inverse matrix with retention parameters 1 5lδ =  and 2 4lδ = . 
Note that for simplicity reasons the case 1 2l l lδ δ δ= =  is considered. 

3.3. Optimized Approximate Inverse Matrices and Storage Techniques 
Let us consider the exact inverse M of the original coefficient matrix A in equation (2.1). Note that the computa-
tion of the inverse is indicated in the following characteristic diagram (Figure 8). 

It should be noted that the diagonal elements (in bold) are firstly computed (starting from the last element of 
the inverse, i.e. ,n nµ ) and then computing upwards/column-wise and from right to left/row-wise. Note also that  
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Figure 7. The structure of an (8 × 8) banded approximate inverse.           

 

 
Figure 8. Computing the elements of the approximate inverse M* 
of sub-class IV following the KS technique (K = 2)*. (*) Note that 
this computational technique will be referred as double-sweep (DS) 
technique.                                                 

 
the last diagonal element ,n nµ  is computed and then all the elements of n-row (from right to left) and n-column 
(upwards). Then, only the diagonal element 1, 1n nµ − −  is computed, and next the diagonal element 2, 2n nµ − −  is 
computed and all the elements of (n-2)-row (from right to left) and the elements of (n-2)-column (upwards). 
Continuing in this way the rest elements of this approximate inverse are computed. It should be noted that the 
computational work of the resulting inverse M* of sub-class IV, is almost the half of that required by the ap-
proximate inverse of sub-class III. Note diagrammatically, as it is shown in Figure 8, only the underlined ele-
ments of the approximate inverse M* are computed.  

By generalized this storage saving computational technique, we consider the above DS technique can be re-
placed by k-sweep (KS) technique, i.e. after the computation of the last diagonal element ,n nµ , all the elements 
of n-row (from right to left) and n-column (upwards). Then, only the diagonal elements  

1, 1 2, 2 1, 1, , , , 2n n n n n k n k kµ µ µ− − − − − − − − ≥�  are computed, and next the diagonal element 2, 2n k n kµ − − − −  is computed and 
all the elements of (n-k-2)-row (from right to left) and the elements of (n-k-2)-column (upwards). Continuing in 
this way the rest elements of this approximate inverse are computed. It should be noted that the computational 
work of the resulting inverse M* of this sub-class by using the KS-storage technique is considerably smaller than 
that required by the approximate inverse resulting from the application of the DS storage technique. In the case 
of k = 2 the KS-storage technique reduces to the example shown in Figure 4. 

An optimized explicit banded approximate inverse by minimizing the memory requirements of EBAIM-1 algo-
rithm 

In order to minimize the memory requirements of EBAIM-1 algorithm, which in particular in the case of very 
large matrices of irregular structure can be prohibitively high, we consider the inverse M of equation (5.4) re-
volving its elements by 180˚ about the anti-diagonal removing the diagonal and the (δl-1) super diagonals in the 
first δl columns, while the rest δl sub-diagonals in the rest δl columns, then results the following form of the in-
verse (Figure 9). 

4. The Optimized Approximate Inverse Algorithm 
The application of this storage scheme on the approximate inverse leads to the following optimized approx-
imate inverse algorithm. Note that the computation of the approximate inverse algorithm pre-assumes the ap-
proximate factorization of the coefficient matrix A, i.e. s sA L U≈ , where sL  and sU  are the lower and upper  
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Figure 9. Transformed forms of optimized approximate 
inverse M* (in banded storage).                                      

 
sparse triangular decomposition factors [21] [23]-[25] [49]. 

Algorithm OBAIM-1 (a, b, c, n, F, H, g, Γ, Ζ, ω, β, r1, r2, m, p, l1, l2, δl, M*) 
Purpose: This algorithm computes the elements of the approximate inverse of a given real (n × n) matrix of 

irregular structure 
Input: diagonal elements a of matrix A; superdiagonal elements b, subdiagonal elements c, n order of A; sub-

matrices F, H, of upper triadiagonal decomposition factor U, superdiagonal elements g of L; submatrices Γ, Z, of 
lower tridiagonal matrix L; diagonal elements ω of L; subdiagonal elements β of L; fill-in parameters r1, r2; 
semi-bandwidths m, p; l1 and l2 numbers of diagonals retained in semi-bandwidths m and p respectively, 1lδ  
and 2lδ  are the numbers of diagonal retained in approximate inverse M*/for simplicity reasons 1 2 l l lδ δ δ= =  
is chosen/ 

Output: elements ,i jµ  of the approximate inverse *M  
Computational Procedure: 
step 1: let 1 11rl r l= + ; 2 22rl r l= + ; 11 1 1rl rl= − ; 21 2 1rl rl= − ; 11mr m r= − ; 11ml m l= + ;  

22pr p r= − ; 22pl p l= + ; 11= − +nmr n m r ; 22npr n p r= − +  
step 2: for to 1i n=  
step 3: for ( )to max 1, 1j i i lδ= − +  
step 4: if 1j nmr>  then 
step 5: if i j=  then 
step 6: if i n=  then 
step 7: 1,1 1µ =  
step 8: else 
step 9: 1,1 , 11n i j n j lg δµ µ− + − += −  
step 10: 1,1 , 1–n i n j n j lδµ ω β µ− + − +=  
step 11: else 

1, 1 1,n i i j j n i i jgµ µ− + − + − + −= −  
step 12: 1, 1 , 1 –n i i j j n j lδµ β µ− + − + − +=  
Step 13: else 

if 2j npr>  and 1j nmr≤  then 
step 14: if i j=  then 

step 15: 
1

1

1,1 , 1 11 , 1 ,
0

1
nmr j

n i j n j l rl k j k r x y
k

g hδµ µµ
−

− + − + − + + −
=

= − − ∑  

step 16: ( )  , , , 1 , ,call mw n l i j mr k x yδ + +  

step 17: 
1

1

1,1 1 , 1 11 , 1 ,
0

 
nmr j

n i j i j rl k j k r x y
k

µ µω β µ γ
−

− + + − + + −
=

= − − ∑  

step 18: ( )  , , , 1 , ,call mw n l i j mr k x yδ + +  
step 19: else 

if 1j rl≥  and 2j npr≤  then 
step 20: if i j=  then 
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step 21: 
1 2 2 2 1 1

1 2

1,1 , 1 11 , 1 , 12 , 1 ,
0 0

1
nmr j npr j

n m j n j l rl k j k r x y rl k j k r x y
k k

g h fδµ µ µ µ
− −

− + − + − + + − − + + −
= =

= − − ⋅ − ⋅∑ ∑  

step 22: ( )2 2  , , , 1 , ,call mw n l i j mr k x yδ + +  
step 23: ( )1 1  , , , 2 , ,call mw n l i j pr k x yδ + +  

step 24: 
1 2 2 2 1 1

1 2

1,1 , 1 11 , 1 , 12 , 1 ,
0 0

1
nmr j npr j

n m j n j l rl k j k r x y rl k j k r x y
k k

g h zδµ µ µ µ
− −

− + − + − + + − − + + −
= =

= − − ⋅ − ⋅∑ ∑  

step 25: ( )2 2  , , , 1 , ,call mw n l i j mr k x yδ + +  
step 26: ( )1 1  , , , 2 , ,call mw n l i j pr k x yδ + +  

step 27: else 
1 2 2 2 1 1

1 2

1, 1 1, 11 , 1 , 12 , 1 ,
0 0

nmr j npr j

n i i j j in i i j rl k j k r x y rl k j k r x y
k k

g h fµ µ µµ
− −

− + − + − + − − + + − − + + −
= =

= − − ⋅ − ⋅∑ ∑  

step 28: ( )2 2  , , , 1 , ,call mw n l i j mr k x yδ + +  
step 29: ( )1 1  , , , 2 , ,call mw n l i j pr k x yδ + +  

step 30: 
1 2 2 1 1

1 2

1, 1 1, 11 , 1 , 12 , 1 2 ,
0 0

 
nmr j npr j

n i i j j i n i i j rl k j k r x y rl k j k r x y
k k

zµ γβ µ µ µ
− −

− + − + − + − − + + − − + + −
= =

= − − ⋅ − ⋅∑ ∑  

step 31: ( )2 2  , , , 1 , ,call mw n l i j mr k x yδ + +  
step 32: ( )1 1  , , , 2 , ,call mw n l i j pr k x yδ + +  
step 33: else 

if i j=  then 
step 34: if 1i =  then 

step 35:  
1 2

2 2 1 1 ,1 1 1, 1 1, , 1, ,
1 1

1
l l

n n l k x y k x y
k k

g h fδµ µ µ µ− +
= =

= − − ⋅∑ ∑  

step 36: ( )1 1  , , , 1, ,call mw n l l p k x yδ + −  
step 37: ( )2 2  , , , 1, ,call mw n l l m k x yδ + −  

step 38: 
1 2

2 2 1 1,1 1 1 1, 1 1, , ,
1 1

 1,

l l

n n l k x y k x y
k k

zδµ ω β µ µγ µ− +
= =

= − − −∑ ∑  

step 39: ( )1 1  , , , 1, ,call mw n l l p k x yδ + −  
step 40: ( )2 2  , , , 1, ,call mw n l l m k x yδ + −  

step 41: else 
1 2

1 1 2 2 2 3 3 4 4
1 2

1 1

1,1 , 1 ,11 , , , , , , ,
1 1 1 1

1
l lj j

n i j n j l j k k x y j k x y j k l k x y j k x y
k k j r k k j r

g h h f fδµ µ µ µ µ µ
− −

− + − + − + − +
= = + − = = + −

= − − ⋅ − − − ⋅∑ ∑ ∑ ∑  

step 42: ( )1 1  , , , 1 1, ,call mw n l i ml k x yδ + −  
step 43: ( )2 2  , , , 1, ,call mw n l i m k x yδ + −  
step 44: ( )3 3  , , , 2 1, ,call mw n l i pl k x yδ + −  
step 45: ( )4 4  , , , 1, ,call mw n l i p k x yδ + −  

step 46: 
1 2

1 1 2 2 2 3 3 4 4
1 2

1 1

1,1 1 , 1 ,11 , , , , , , ,
1 1 1 1

l lj j

n i j n j l j k k x y j k x y j k l k x y j k x y
k k j r k k j r

z zδω µ µ µ µµ β γ µ γ
− −

− + − + − + − +
= = + − = = + −

= − − − − ⋅ −∑ ∑ ∑ ∑  

step 47: ( )1 1  , , , 1 1, ,call mw n l i ml k x yδ + −  
step 48: ( )2 2  , , , 1, ,call mw n l i m k x yδ + −  
step 49: ( )3 3  , , , 2 1, ,call mw n l i pl k x yδ + −  
step 50: ( )4 4  , , , 1, ,call mw n l i p k x yδ + −  

step 51: else 
1 2

1 1 2 2 2 3 3 4 4
1 2

1 1

1, 1 1, ,11 , , , , , , ,
1 1 1 1

l lj j

n i i j j n i i j j k k x y j k x y j k l k x y j k x y
k k j r k k j r

g h h f fµ µ µ µµ µ
− −

− + − + − + − − + − +
= = + − = = + −

= − − − − −∑ ∑ ∑ ∑  

step 52: ( )1 1  , , , 1 1, ,call mw n l i ml k x yδ + −  
step 53: ( )2 2  , , , 1, ,call mw n l i m k x yδ + −  
step 54: ( )3 3  , , , 2 1, ,call mw n l i pl k x yδ + −  
step 55: ( )4 4  , , , 1, ,call mw n l i p k x yδ + −  

step 56: 
1 2

1 1 2 2 2 3 3 4 4
2

1 1

1, 1 1 1, ,11 , , , , , , ,
1 1 1 1 1

l lj j

n i i j j n i i j j k k x y j k x y j k l k x y j k x y
k k j r k k j r

z zω β µ µµ µ µγ γ µ
− −

− + − + − + − − + − +
= = + − = = + −

= − − − − −∑ ∑ ∑ ∑  

step 57: ( )1 1  , , , 1 1, ,call mw n l i ml k x yδ + −  
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step 58: ( )2 2  , , , 1, ,call mw n l i m k x yδ + −  
step 59: ( )3 3  , , , 2 1, ,call mw n l i pl k x yδ + −  
step 60: ( )4 4  , , , 1, ,call mw n l i p k x yδ + −  
step 61: for ( ) ( )1 to max 1, 1j i i lδ= − − +  
step 62: 1, 1, 1n i l i j n i i jδµ µ− + + − − + − +=  
step 63: form the approximate inverse matrix { }*

,i jM µ=  
The subroutine mw (n, δl, s, q, x, y) performs the transformation in the indexes of the explicit approximate 

inverse matrix from its banded form to the optimized form. This routine has the following form: 
Subroutine mw (n, δl, s, q, x, y) 
If s q≥  
Then 

1x n s= + −  

1y s q= − +  

else 

1x n q= + −  

–y l q sδ= +  

The computational work of the optimized OBAIM-1 algorithm is ( )1 2 1 2 1O n l r r l lδ≈ + + + +    multiplica- 

tions, while the memory requirements have been reduced down to ( )2 1n lδ× −    words. It should be also 
noted that a class of approximate inverse matrix can be considered containing several sub-classes of approx-
imate inverses according to memory requirements, computational work, accuracy, as indicated in the diagram-
matic schemes (Figure 3 and Figure 7). 

5. Explicit Adaptive Iterative Methods 
A class of Adaptive Iterative Schemes for solving large sparse linear systems includes the following adaptive 
preconditioned iterative methods: 

*
1 , 0i i iu u M r iα+ += ≥ , (Explicit preconditioned simultaneous displacement)         (5.1) 

*
1 , 0i i i iu u M r iα+ = + ≥ , (Explicit Preconditioned first order Richardson)          (5.2) 

*
1  , 0,i i iu M r u iδ α βδ+ = + ≥  (Explicit Preconditioned second order Richardson)       (5.3) 

*
1 , 0,i ii i iu M r u iδ α β δ+ = ⋅ + ≥  (Explicit Preconditioned Chebyshev)            (5.4) 

where i ir s Au= − , α and β are predetermined acceleration parameters, iα  and iβ  are sequences of precondi-
tioned acceleration parameters and 1 1 –i i iu u uδ + += , i ≥ 0.  

5.1. The Explicit Preconditioned Iterative Method 
During the last decades extensive research work has been focused in the preconditioned approach and precondi-
tioned iterative methods for solving large linear and nonlinear problems in sequential and parallel environments 
[5] [8] [11] [12] [14] [26] [29] [30] [38] [39] [41] [47] [53]-[58]. A predominant role in the usage of the precon-
ditioned iterative schemes possess the explicit preconditioned Conjugate Gradient (EPCG) method and its va-
riants using the sparse approximate inverse M* due to its superior convergence rate for solving very large com-
plex computational problems [47]. A characteristic explicit solver of this sub-class is the Explicit Preconditioned 
Generalized Conjugate Gradient (EPGCG) method [58]. This basic EPCG method can be expressed in the fol-
lowing compact form: 

Algorithm EPCG-1 (A, n, s, u0, u, r) 
Purpose: This algorithm computes the solution vector of the linear system Au s=  by using the explicit pre-

conditioned generalized Conjugate Gradient method. 
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Input: A given matrix, n order of A, s known rhs vector, u0 initial guess 
Output: solution vector u, residual r 
Computational Procedure: 
Step 1: let 0u  be an arbitrary initial approximation to the solution u 
Step 2: set 0 0r s Au= − , form *

0 0r M r∗ =  and set 0 0rσ ∗=  
Step 3: for 1, 2,i = �  (until convergence) 

compute 1 1 1, ,i i iu r σ+ + +  
//compute scalar quantities 1,i iα β +  as follows:// 
Step 4: form i iq Aσ=  and set ( ),i i ip r r∗=  (only for 0i = ) 
Step 5: evaluate ( ),i i i ip qα σ=  and compute 1i i i iu u α σ+ = +  
Step 6: compute 1 –i i i ir r a q+ =  and form * *

1 1i ir M r+ +=  
Step 7: compute ( )1 1 1,i i ip r r∗+ + +=  and evaluate 1 1i i ip pβ + +=  

Step 8: compute 1 1 1i i i irσ β σ∗
+ + += +  

Step 9: if there is no convergence go to step 3, 
Step 10: else 

print the approximate solution 0u  and corresponding residual 0r . 
Note that a good approximant M* leads obviously to an improved EPCG method. The effectiveness of the ex-

plicit preconditioned iterative methods for solving certain classes of elliptic boundary value problems on regular 
domains is related to the fact that the exact inverse of A (although is full) exhibits a similar fuzzy structure 
around the principal diagonal and m-diagonals [22]. 

5.2. The Symmetric Case 
In the case of symmetric coefficient matrix by using the four-matrix decomposition [27] [41] the corresponding 
inverse subclasses can be enlarged as follows in Figure 10. 
where 1) the elements of exact inverse of subclass I are obtained after the exact decomposition  
( )1 21, 1r m r p= − = −  of M+, with excessive memory and computational requirements, 2) the elements of the 
inverse 1 1 1SD M D− −  of subclass II have been computed after the application of the exact inverse algorithm
( )1 21, 1r m r p= − = − , while only 1lδ  and 2lδ  diagonals have been retained, 3) the elements of inverse MS2 of 
subclass III have been computed from the approximate inverse, while the exact decomposition 
( )1 21, 1r m r p= − = −  has been applied, 4) the elements of the inverse of subclass IV have been computed from 
the approximate factorization and the banded approximate inverse algorithm has been used for computing the 
elements of the inverse ( )1 21, 1r m r p≤ − ≤ − , 5) the elements of inverse of subclass V have been retained only 
on the diagonal elements of the inverse, i.e. 1 2 1l lδ δ= = , that is 

1 2

3
,r r

SM I≡ , leading to a fast algorithm for 
computing of approximate inverse. 

Note that the largest elements of inverse matrix are mainly gathered around the main diagonal in distances 
*mp m  and *pp p  in a recurring wave like pattern (Lipitakis, 1984), where m and p are respectively the 

semi-bandwidths of the coefficient matrix A, and ( )1, 2, , 1mp m= −�  and ( )1, 2, , 1pp p= −� . Based on this 
observation the selection of retention parameters 1lδ , 2lδ  is recommended to be multiples of values of m and 
p, leading to preconditioners with better performance [22]. 

An indication of the sparsity and memory requirements of optimized versions of approximate inverses is giv-
en in the following Table 1. 

It should be noted that in the case that δl2 = 0 the approximate inverse algorithm is reduced to an algorithm for 
solving FE systems in two space dimensions of semi-bandwidth m, while if 1 2 1l lδ δ= =  then the algorithm 
reduces to one for solving FD linear systems in three space dimensions of semi-bandwidths m and p [23]. In the 
case of δl1 = 1 and δl2 = 0, then the approximate inverse reduces to one for solving linear FD systems in two 
space dimensions of semi-bandwidth m [25], while if 1 2 0l lδ δ= =  then the approximate inverse reduces to the 
one for solving tridiagonal linear systems (Thomas algorithm) [59]. 
 

 
Figure 10. Subclasses of inverses for the symmetric case.                                  
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Table 1. Memory and sparsity requirements of the approximate inverse matrix (n = 8000, m = 21, p = 401), where δl denotes 
here the retention parameters 1 2l l lδ δ δ= = .                                                                    

 δl = 2 δl = m δl = 2m δl = p δl = 2p δl = 4p 

Diagonal vectors 3 41 83 801 1603 3207 

Spasity 99.9 99.5 99 90 80 59.9 

6. Numerical Experiments 
In this section a nonlinear case study by using approximate inverse preconditioned methods are presented. 

The nonlinear case 
Let us consider the nonlinear elliptic PDE  

( )2 2 2 2 , , ,UU x U y e x y R∂ ∂ + ∂ ∂ = ∈                           (6.1) 

where ( ){ }max max, : 0 ,0R x y x x y y≡ ≤ ≤ ≤ ≤  subject to the Dirichlet boundary conditions   

( ) ( ) ( ), , , , ,U x y x y x y Rγ= ∈∂                            (6.1a) 

where ∂R is the exterior boundary of the domain R. 
Equation (6.1) arises in magnetohydrodynamics (diffusion-reaction, vortex problems, electric space charge 

considerations) with its existence and uniqueness assured by the classical theory [32] [33]. The solution of Equ-
ation (6.1) can be obtained by the linearized Picard and quasi-linearized Newton iterative schemes as outer itera-
tive schemes of the form: 

( ) ( ) ( ) ( ) ( )12 2 , , ,k u k
x y i j x yu e x y ih jh Rδ δ ++ = ≡ ∈  and                    (6.2) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 12 2 1 , , , ,k u k k k u k
x y i j x yu e u u e x y ih jh Rδ δ + +  + − = − ≡ ∈               (6.3) 

where δ denotes here the usual central difference operator. 
The resulting large sparse nonlinear system is of the form 

( ) ( )( )1 kku s u+Ω = ,                                 (6.4) 

where Ω is a block tridiagonal matrix [23]. 
Then, composite iterative schemes can be used, where Picard/Newton iterations are the outer iteration, while 

the inner iteration can be carried out either directly by an exact algorithm or by an approximate algorithm in 
conjunction with an explicit iterative method (6.3). The latter method can be written as  

( ) ( )1 1*
1 , 0, 0l l

i iu M r i lδ α+ +
+ = ≥ ≥ ,                          (6.5) 

where the superscript l denotes the outer iteration index, the subscript I denotes the inner iteration and 
( ) ( ) ( )( )1 1–l l l

i i l ir s u A u+ += . 

The outer iteration was terminated when the following criterion was satisfied 

( ) ( )( ) ( )1 ? 6
, , , 0max 10l l l

j i j i j i ju u u ε+ + −< =− ,                        (6.6) 

while the termination criterion of the inner iteration was 

( )1 1 1– 1 , 0,i i iu u u iε+ + + < ≥                            (6.7) 

where ε1 was taken initially as 2
1 10ε −=  and then was decreased at each iterative step by 1/10 to 10−6, where it 

remained constant during the next iterative steps. Numerical experiments were carried out for nonlinear problem 
(6.4) with max max1 20, 1h x y= = =  and the initial guesses when u was on the boundary 0.0, 5.0, 10.0 were 



A.-D. Lipitakis 
 

 
1237 

chosen as 0.0, 4.0, 6.0 respectively. The performance of the composite schemes Newton-Explicit Preconditioned 
Simultaneous Displacement (EPSD) and Picard/Newton-EPCG are given in the following Table 2 and Table 3. 

7. Conclusions 
A class of exact and approximate inverse adaptive algorithmic procedures has been presented for solving nu-
merically initial/boundary value problems. Several subclasses of optimized variants of these algorithms have 
been also proposed for solving economically highly nonlinear systems of irregular structure. It should be stated 
that the proposed explicit preconditioned iterative methods and their related variants can be efficiently used for 
solving large sparse nonlinear systems of irregular structure of complex computational problems and for the 
numerical solution of highly nonlinear initial/ boundary value problems in two and three space dimensions. 
 
Table 2. The performance of composite iterative schemes Picard/Newton for the nonlinear system (6.4) using the EPSD 
method (r = 4), with n = 361, m = 20, for several values of acceleration parameter α and retention parameters δl.                

Picard-EPSD Newton-EPSD 

δl 40 100 180 40 100 180 

B.C. U ≡ 0.0 

a Inner 
Iterat 

Outer 
Iterat 

Inner 
Iterat 

Outer 
Iterat 

Inner 
Iterat 

Outer 
Iterat 

Inner 
Iterat 

Outer 
Iterat 

Inner 
Iterat 

Outer 
Iterat 

Inner 
Iterat 

Outer 
Iterat 

1.20 72 27 56 23 55 23 79 30 61 25 59 24 

1.30 73 31 52 22 51 22 74 29 56 23 55 23 

1.40 >200 - 50 21 47 20 >200 - 52 22 50 21 

1.50 - - 45 20 44 20   48 21 47 21 

1.60 - - 42 19 41 19   45 20 45 21 

B.C. U ≡ 2.0 

1.20 188 9 142 9 131 9 58 7 48 7 37 6 

1.30 173 9 130 9 122 9 >200 - 44 7 38 7 

1.40 >200  123 9 114 9   41 7 42 6 

1.50  - 118 9 117 9   42 7 38 6 

1.60   132 10 130 10   >200 - 44 6 

             

 
Table 3. The performance of composite iterative schemes Picard/Newton for the nonlinear system (6.4) using the EPCG 
method, with n = 361, m = 20, for several values of retention parameters δl and fill-in parameters r.                         

 Picard -EPCG Newton-EPCG 

 Overall iterations Outer iterations Overall iterations Outer iterations 

δl r = 1 r = 2 r = 4  r = 1 r = 2 r = 4  

   B.C. U ≡ 0.0     

20 103 96 >150 6 85 94 161 6 

40 75 70 64 6 68 54 55 6 

60 71 53 57 6 65 49 49 6 

         

   B.C. U ≡ 10.0     

20 * * * - 138 127 131 6 

40 * * * - 115 112 92 6 

60 * * * - 114 85 84 6 
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Future research work includes the parallelization of the proposed class of exact and approximate inverse ma-
trices of irregular structure. These adaptive exact and approximate inverse algorithmic techniques can be used 
for solving efficiently highly nonlinear large sparse systems arising in the numerical solution of complex com-
putational problems in parallel computer environments. 
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