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Abstract 
This research paper is on Density Functional Theory (DFT) within Local Density Approximation. 
The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHI- 
AIMS) code based on numerical atomic-centered orbital basis sets. The electronic band struc-
ture, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and 
Aluminium-Arsenide in diamond structures. The result of minimum total energy and computa-
tional time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide 
and Aluminium Arsenide is −114,915.7903 eV and 64.989 s, respectively. The electronic band 
structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while 
Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs 
is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to 
AlAs. This indicates that GaAs can exhibit high transport property of the electron in the semi-
conductor which makes it suitable for optoelectronics devices while the wider band gap of AlAs 
indicates their potentials can be used in high temperature and strong electric fields device ap-
plications. The results reveal a good agreement within reasonable acceptable errors when com- 
pared with the theoretical and experimental values obtained in the work of Federico and Yin 
wang [1] [2]. 
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1. Introduction 
The understanding of the physical properties of interacting many body systems is one of the most important 
goals of physics after the foundation of quantum mechanics in the mid 1920’s (Rerum, 2005) [3]. However 
many computer simulation code has been employed in solving some challenges encountered in the calculation of 
the many body problem using DFT. One of the most immediate consequences of the periodic structure of crys-
talline solids is the arrangement of the electronic states within bands. This band has a particular importance for 
semiconductors as many properties of semiconductors are determined by only a small number of these bands 
(electronic band gap). The electronic band gap of a material may be defined as the difference between the elec-
tron affinity (the energy of adding an electron to the system) and the first ionization energy (the energy of the 
removing an electron from the system). The two can be calculated using conventional DFT which often leads to 
delta SCF method for band gap calculation. However it is only directly applicable to finite systems, for extended 
solids. It would be necessary to calculate the effect of addition or removal of a single electron from the infinite 
total. 

Perdew shows that when DFT is extended to fractional occupation number, the exchange-correlation to frac-
tional occupation number of the electron count is discontinuous at the Fermi level. This fundamental discontinu-
ity in the exact Vxc is precisely the difference between the kohn-sham and true band gaps, but is not reproduced 
in LDA or GGA. Another major contribution to the band-gap error arises from the electrostatic electron-electron 
contribution to the Hamiltonian which is usually computed as the Hartree energy EH. Although the equation in-
cludes the correct coulomb repulsion, by using the total density, it has included a coulomb repulsion between an 
electron and its own charge. This spurious self-interaction is exactly cancelled by the exchange term in some 
non-DFT methods but is only partially cancelled by LDA (or GGA) exchange. This residual self-interaction is one 
of the most significant causes of the under estimation of the band gap in LDA or GGA based DFT calculations. 
[4]. 

In Lichteinstein work, we observed the introduction of Hubbard U to correcting the self-interaction as LDA + 
U or DFT + U method; this phenomenon introduces a repulsion between the localized electrons on a given atom 
[5]. However this repulsion can cause a breaking of symmetry and lead to the operating of an insulating gap. 
Computationally it is a low-cost method for open-shell systems that can also be used for self-consistency in 
structural relaxations. The inclusion of the Hubbard-U term does not fix the self -interaction problem itself, but 
it can correct for the resultant under localization of particles and incorrect magnetic structure. Many works re-
gards the strength of the Hubbard-U term as a parameter of the simulation and DFT + U has often been used in-
correctly as a method for widening the band gap for general semiconductors. Empirically fixing the band gap for 
closed-shell system usually requires an un-physically large Hubbard U, causing over-localization and a flatten-
ing of the valence and conduction bands. Therefore DFT + U calculation are semi-empirical rather than ab-initio 
in nature. However cococcioni and dc curoncoli showed that the correct value of the Hubbard-U terms could in 
fact be computed using Density Functional Perturbation Theory. This technique removes the empiricism and 
ensures that the values are physically reasonable, though it is not straight forward to apply to material with many 
different elements [6]. 

FHI-aims code solves the DFT + U issues by treating all electrons in an equivalent way. In some special cases 
of different element, frozen core treatment are applied where one compute the correlation energy of only the va-
lence but not the core electron in second order Moller-Plessett (MP2) perturbation theory and for any two-elec- 
tron coulomb operator (hybrid functional, Hatree-forck, MP2, or RPA perturbation theory, GW correction etc.) 
therefore auxillary basis is used to expand the coulomb matrix (four basis functions ≡O(N4) matrix elements) 
into a two-center coulomb matrix, leading instead to O(N3) additional overlap matrix elements which offers an 
ad-hoc correction for strongly correlated systems at negligible computational cost. 

FHI-aim also allows fixing the mixing factor between Around Mean Field (AMF) and Fully-localized limits 
(FLL). These two common schemes deal comfortably with the double counting problem in DFT + U. The AMF 
method assumes that the effect of the DFT + U term on the actual occupations remains small, so that the occu-
pation can be assumed to be equal with each shell for the purpose of the double counting corrections while the 
FLL method assumes a maximal effect of the DFT + U term on the occupation numbers, handling double 
counting correctly in the case that all orbitals within the shell are either fully occupied or empty. This improves 
the handling of intermediate range in self-consistent mixing of both limits [7]. Therefore, Density functional 
theory has become the workhorse in electronic band structure calculations and FHI-aims computer code has 
been used in this work to address this Hartree-fork many particle problem, with more efficiency and accuracy by 
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implementing all-electron density based on numeric atomic-centered orbital basis sets which allow the actual 
predictions for real materials using a computer program code. The code answers many possible general purpose 
electronic structure problems by varying the treatment of exchange correlation in Local density Approximation 
(LDA). This invokes the LDA as exchange correlation functional given by slater and the correlation energy of 
the electron given by Perdew and Wang [8]. Its success rate has helped in producing accurate results with rea-
sonable computational effort. 

This work therefore attempt to calculate and estimate the electronic energy band structures and density of 
state of Gallium-Arsenide and Aluminum-Arsenide semiconductor from ground state density using DFT com-
putational code FHI-aims. The experimental lattice constant parameter values was used to calculate the mini-
mum total energy and tested for different k-grids in order to determine the minimum time required for energy 
stability of the semiconductor in diamond structure. 

2. Theoretical Background 
The first principles of H-K theorem demonstrates that the ground state properties of a many-electron system are 
uniquely determined by an electron density that depends on only three spatial co-ordinates which reduces our 
problem to 3 spatial co-ordinates from 3 N spatial co-ordinates for N body problem because of the use of density 
functional. The N particle system of interacting particles with 3 N degrees of freedom is reduced to a signifi-
cantly more tractable problem, which deals with a function (density) of only three variables. The many-body ef-
fects incorporated in the exchange-correlation potential are typically approximated within either the local densi-
ty approximation or the generalized gradient approximation. The formulation applies to any system of interact-
ing particles in an external potential ( )extV r  including any problem of electrons and fixed nuclei, where the 
Hamiltonian can be written as 

( )
22 2

2 1
2 2i

i j
r ext i

i i i j i je i j i j

Z Z eeH V r
m r r R R≠ ≠

= − ∇ + + +
− −

∑ ∑ ∑ ∑                    (1) 

The first term in this equation corresponds to the kinetic energy of the interacting electrons, the second term is 
the external potential acting on the electrons due to the ions, the third term is the electron Coulomb interaction, 
and the last term is the interaction energy of the nuclei. Since the Hamiltonian is thus fully determined (except 
for a constant shift of the energy), it follows that all properties of the system can be found given only the ground  
state density ( )n r . This result allowed Hohenberg and Kohn to prove the existence of an energy functional of 

the density ( )E n r   , which assumes its minimum value for the correct ground state density.  

( ) ( ) ( ) ( )dextE n r V r n r r F n r= +      ∫                            (2) 

The minimization of energy functional ( )E n r    with respect to the charge density with the constraint of 
fixed number of electrons gives the ground state energy and the ground state charge density from which all other 
physical properties can be extracted. However in spite of the universality of ( )F n r    no explicit expressions 
for this functional are known to date. In 1965, Kohn and Sham readdressed the problem of minimizing the Ho-
henberg-Kohn density functional (Equation (2)) directly with an improved strategy that maps the original inte-
racting problem into an auxiliary non-interacting one [9]. This is achieved by expressing the charge density 
( )n r  as  

( ) ( )i
i

n r rψ= ∑                                     (3) 

where ψi’s are the single-particle wavefunctions for the non-interacting electron gas with ground state charge 
density ( )n r , and the sum is over all occupied singleparticle states. 

The ( )F n r    functional is now expressed as  

( ) ( ) ( ) ( ) ( )
2

d d
2s xc

n r n reF n r T n r r r E n r
r r

′
′= + +          ′−∫                     (4) 

where the first term corresponds to the kinetic energy of a non-interacting electron gas at the same density 
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( )n r , the second term is the classical Coulomb interaction energy (the Hartree term), and the last term 
( )XCE n r    represents the quantum mechanical exchange-correlation energy. This term accounts for the dif-

ferences between the non-interacting fictitious system and the real interacting one, collecting the contributions 
from the non-classic electrostatic interaction and the differences in their corresponding kinetic energies. The 
success of the Kohn-Sham approach ultimately lies in the fact that ( )XCE n r   , which contains the many-body 
contributions, is a small fraction of the total energy, and although not known exactly, it can be approximated 
surprisingly well. The approximation is at present the strength and the limitation of DFT, providing efficient yet 
not exact reformulation of the quantum mechanical problem, respectively. If the energy functional defined in 
Equation (2) and Equation (4) is now varied with respect to the wave-functions ψi’s subject to the orthonormali-
ty constraint, the following set of Schrodinger equations is obtained 

( )( ) ( ) ( )
2

2 ,
2 r eff i i r

e

v r n r r r
m

ψ εψ
 
− ∇ + = 
 

                           (5) 

where the effective potential ( )( ),effV r n r  is given as 

( )( ) ( ) ( ) ( )
( )

2, d XC
eff ext

E n rn r
v r n r V r e r

r r n r
δ

δ
 ′  ′= + +

′−∫                      (6) 

Equations ((5) and (6)) are called the Kohn-Sham equations and have to be solved self-consistently because of 
the dependence of ( )effv r  on ( )n r . It should be emphasized here that the Kohn-Sham procedure introduces a 
one-body Hamiltonian representing a single-particle electron in the mean field created by the nuclei and by all 
other electrons. However, it assigns no formal interpretation to the calculated orbitals and the eigenvalues. In 
principle, the solution of the Kohn-Sham equations would yield the exact ground state energy of the interacting 
electron gas problem. However, the exact exchange-correlation functional ( )XCE n r    for an inhomogeneous 
interacting electron gas is not known for general ( )n r . To proceed further, approximations to this functional 
are required. The most common and extensively tested approximation is the local density approximation (LDA), 
in which ( )XCE n r    for the inhomogeneous system is constructed from a parameterized form of the ex-
change-correlation energy density of the homogeneous electron gas hom

XCε  [9]. 

( ) ( ) ( )dXC XCE n r r n r rε=   ∫                                (7) 

and 

( )
( )

( ) ( )
( )

XC XCE n r n r r
n r n r

δ ε
δ

∂      =
∂

                              (8) 

with ( ) ( )hom
XC XCr n rε ε=    . These varies the treatment of exchange correlation (LDA) to Kohn-Sham DFT 

given by Perdew and Wang [10]. 

3. Methodology 
FHI-aims (“Fritz Haber Institute ab-initio molecular simulations”) Code [11] is used in the analysis of this work. 
It is a computer program package for computational materials science based on quantum-mechanical first prin-
ciples. The main production method is density functional theory (DFT) to compute the total energy and derive 
quantities of solid condensed matter in its electronic ground state. This allows the description of electronic sin-
gle-quasi-particle excitations in molecules using different self-energy formalisms, and wave-function based on 
molecular total energy calculation of Hartree-Fock and many-body perturbation theory.  

The focus of this work is to use DFT to estimate the local density approximations (LDA) in exchange-corre- 
lation potential of Ceperley and Alder work as parametrized by Perdew and Zunger [12] and an extension to 
Hartree-Fock theory, electron self-energies for total energies and excited state. The construction of transferable, 
hierarchical basis sets is demonstrated by allowing the calculation to range from qualitative tight-binding like 
accuracy to total energy convergence with the basis set. A scalar-relativistic treatment that has different version 
of approximation which can yield considerably different total energies for different systems is also included in 
the approximation. FHI-aims offers two reliable, effective one-component scalar relativistic treatment (by “ef-
fective one component” we mean that no coupling exist between the two spin channels of the calculation with 
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collinear spin) atomic zero-order regular approximation (ZORA) and scalar ZORA. The basis sets provide 
access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based 
algorithms and a ScaLapack-based customized handling of the linear algebra for all matrix operations becomes 
possible thereby guaranteeing efficient scaling (CPU time and memory) [13]. 

To compute the band structure of GaAs, and AlAs, we first calculate the ground state total energies of the 
most stable structure of these semiconductors as a function of their lattice constants [14] [15]. 

All calculations were carried out using FHI-aims code upgrade 6 (released on 17th July, 2011; version 
071711_6). It works on any Linux based operating system. Computations can only be carried out after building 
an executable binary file since the FHI-aims package is distributed in a source code form.  

A working Linux-based operating system (Ubuntu 14.04LTS is used in this case), A working FORTRAN 95 
compiler, in this case we use intel’s ifort compiler (specifically Composerxe 2013_sp1.3.174) was installed and 
used for computation in this work. A compiled version of lapack library, and a library providing optimized li-
near algebra subroutines (BLAS). Standard libraries such as Intel’s mkl or IBM’s essl provide both lapack and 
BLAS support. Intel’s Composerxe 2013_sp1.3.174 comes with mkl. All necessary adjustment were made for 
building the executable binary file for running the code and the executable program was successfully built.  

The FHI-aims requires two input files: the control.in which contains all runtime-specific information and the 
geometry.in which contains information directly related to the atomic structure for a given calculation. The two 
input files must be placed in the same directory from where the FHI-aims binary file is invoked at the terminal.  

Our first step towards studying periodic systems with FHI-aims is to construct periodic geometries in the 
FHI-aims geometry input format (geometry.in). Next, we set basic parameters in control.in for periodic calcula-
tions. Finally, we compare total energies of different GaAs, and AlAs bulk geometries.  

Geometry.in files for the GaAs and AlAs structures were constructed varying the lattice constants around the 
experimental lattice constants a of 5.63 Å for GaAs and 5.63 Å for AlAs. At each lattice constant, if the symme-
try of the system allows the ions to move, a separate geometric optimization must be performed. The form of 
total energy as a function of lattice constant is asymmetric and is well described by Murnaghan’s equation [15]- 
[17]. 

In setting up the geometry.in file of a periodic structure in FHI-aims, the lattice vectors of the two semicon-
ductors as well as their atomic positions in the unit cell are specified.  

The electronic band structure of the stable phases of the semiconductor were then calculated along the high 
symmetry lines of the Brillouin zone by computing the control.in settings to calculate the band-structures and 
density of state. This was done when the control.in input files for GaAs and AlAs were created with the appro-
priate settings.  

Thus the calculation is performed as follows: 
# Geometry for GaAs  
lattice_vector  0.00000000  2.82500000  2.82500000  
lattice_vector  2.82500000  0.00000000  2.82500000  
lattice_vector  2.82500000  2.82500000  0.00000000  
atom_frac  0.00000000  0.00000000  0.00000000 Ga  
atom_frac  0.25000000  0.25000000  0.25000000 As 
# Geometry for AlAs  
lattice_vector  0.00000000  2.83000000  2.83000000  
lattice_vector  2.83000000  0.00000000  2.83000000  
lattice_vector  2.83000000  2.83000000  0.00000000  
atom_frac  0.00000000  0.00000000  0.00000000 Al  
atom_frac  0.25000000  0.25000000  0.25000000 As 

while the control.in input files for the band structure of GaAs and AlAs were created with the following settings 
control.in for GaAs 
# Physical model  
xc  pw-lda  
spin  none  
relativistic atomic_zora scalar  
# SCF convergence  
sc_accuracy_rho 1E-5  
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sc_accuracy_eev 1E−3  
sc_accuracy_etot 1E−6  
sc_iter_limit 100  
# k-grid  
k_grid 12 12 12  
# Density of states  
output dos -18 0 1000 0.1  
dos_kgrid_factors 5 5 5  
# High-symmetry k-points for diamond bandstructure output  
output band 0.5 0.5 0.5 0.0 0.0 0.0 50 L Gamma  
output band 0.0 0.0 0.0 0.0 0.5 0.5 50 Gamma X  
output band 0.0 0.5 0.5 0.25 0.5 0.75 50 X W  
output band 0.25 0.5 0.75 0.375 0.375 0.75 50 W K  
control.in for AlAs 
# Physical model  
xc pw-lda  
spin none  
relativistic atomic_zora scalar  
# SCF convergence  
sc_accuracy_rho 1E−5  
sc_accuracy_eev 1E−3  
sc_accuracy_etot 1E−6  
sc_iter_limit 100  
# k-grid  
k_grid 12 12 12  
# Density of states  
output dos -18 0 1000 0.1  
dos_kgrid_factors 5 5 5  
# High-symmetry k-points for diamond bandstructure output  
output band 0.5 0.5 0.5 0.0 0.0 0.0 50 L Gamma  
output band 0.0 0.0 0.0 0.0 0.5 0.5 50 Gamma X  
output band 0.0 0.5 0.5 0.25 0.5 0.75 50 X W  
output band 0.25 0.5 0.75 0.375 0.375 0.75 50 W K  

4. Results and Discussion 
The band structures of GaAs and AlAs were calculated and the aimsplot.py was used to plot the band structures. 
The position of the Fermi level in the band structure of these crystals is shown by the zero on the energy scale 
and that of symmetry points are indicated by vertical lines on the band graph in Figure 1 and Figure 2. In all the 
two cases, there is an important characteristic of the band structure, namely the range of energies where there are 
no electronic states across the entire Brillouin zone; this is the band gap. We notice that the band below zero 
shows that all the bands are fully occupied since there are eight valence electrons in each of these solid. The 
Fermi level within the band gap shows that all state below it remain occupied and all state above remain unoc-
cupied. This is the hallmark of metallic behaviors that is, the availability of state immediately below and imme-
diately above the Fermi level, which makes it possible to excite electrons thermally. 

Figure 1 shows the GaAs band structure and the bottom valence band indicate an s-like atom character which 
is localized on an anion splits off from the rest of the valence band antisymmetry gap. This gap grows with in-
creasing ionicity or charge transfer. A smaller gap arises from the antisymmetric part of the potential and is lo-
cated between the first and second conduction band along the XΓ →  direction. The smaller gap is important 
for transport properties in zinc-blende semiconductors and has been observed to have subtle effect on the reflec-
tivity spectrum of zinc-blendes [18]. We also notice that the band gap in GaAs is narrow which shows that the 
semiconductor becomes more ionic. This effect arises from dehybridization accompanying the change in bond-
ing from covalent to ionic [18]. The GaAs has three electrons in the Ga orbital and five electrons in the As or-
bital which makes the state near the valence band maximum have p bonding character which are associated with  
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Figure 1. Band structure of gallium-arsenide. 

 

 
Figure 2. Band structure of aluminium-arsenide and density of state. 

 
more electronegative element in the solid, while those near the conduction band minimum have p anti-bonding 
character and are associated with less electronegativity. The energy band gap shown in Table 1 is seen as the 
difference between the conduction band and the valence band which is calculated to be 0.38 eV. 

Figure 1 also shows the Density of state of GaAs as a diamond structure semiconductor; we divide the densi-
ty of state into three general regions while analyzing. The first region is the most tightly bound energy band 
where electron states corresponding to this band are strongly localized on the anion and are descendants of the 
atomic As in 4 s state. 

The next region of noticed is a peak arising from the onset of the second valence band which shows there is 
no energy variation along the symmetry direction; in fact, it is very flat over the entire square face of the Bril-
louin zone. The energy band configuration results in a sharp onset of states above the antisymmetric gap. The 
character of state associated with the second valence band changes from predominantly cation s-like states at the 
bond edge to predominantly anion p-like state at the band maximum. The third region of interest in the density 
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of state extends from the onset of the third valence band (at about 4 eV below the valence band maximum) to the 
valence band maximum. This region encompasses the top two valence bands and is predominantly p-like and is 
associated with anion state. 

Showing the values of Figure 2 in Table 2, we notice that Aluminium-Arsenide (AlAs) Fermi energy is 
0.093005 eV and the highest occupied state (valence band maximum) is −1.37872 eV at -pointΓ  (symmetry 
point) while the lowest unoccupied state ( conduction band minimum) is 0.04475 eV at X-point. Since the va-
lence band maximum and the conduction bandminimum are on different symmetry point it shows that AlAs is 
an indirect band gap semiconductor with an energy gap value of 1.4235 eV and a large band width of 13.272 eV, 
the effect of the wide band width was observed to be stronger at the -pointΓ  and it grows into X, W and K 
symmetries without forming any hybridization. The three bands positioned below the Fermi level are due to 
3s-like and 3p-like electrons of Al and 4p-like electrons of As. The empty conduction bands above the Fermi 
level are due to 3p-like states of Al and 4p-like states of As. The calculated energy gaps are in agreement with 
the theoretical values of AlAs. Of Federico and Yin wang [1] [2]. AlAs is more ionic and due to its increasing 
ionic character, have larger optical band gap and more charges transfer. These also makes it share metallic and 
covalent properties. The large band gap indicates the ability of AlAs for higher photon energy in reflectivity 
measurements and it is often utilized in applications in which higher temperature operation is required. They act 
as a promising candidate in semiconductor technology due to its wide and indirect bandgap [19]. This also 
makes it an active material in the manufacture of optoelectronic devices and also in LEDs etc. It has also gained 
importance in the technology applications of short wave length range of higher power and high frequency elec-
tronic devices. In particular AlAs is a basic material for light emitting diodes, lasers in the blue and ultraviolet 
range of the spectrum, optical pumping structures, photo detectors and hetero structure [20]. 

 
Table 1. Band structure symmetry point for gallium-arsenide (GaAs). 

Material Bands Symmetry points (eV)  
Energy 

Gap 
(eV) 

Fermi 
Energy 

Max/Min 
Energy band 

Gallium-Arsenide 
(GaAs) 

Valence 
Band 

 S band−  xP band−  y zP P band+ −  overlapping 0.367 −0.100682  

L −11.35070 −6.98844 −1.43231     

Γ −13.09560   −0.28436   −0.284356 

X −10.57010 −7.17211 −2.94762     

W −10.52420 −6.98844 −3.86599 Py 
−3.63040 Pz     

Conduction 
Band 

L 0.58809 4.35340      

Γ    3.48095   0.0829912 

X 1.09320 1.32279      

 
Table 2. Band structure symmetry point for aluminium-arsenide (AlAs). 

Material Bands Symmetry points (eV)  
Energy 

Gap 
(eV) 

Fermi 
Energy 

Max/Min 
Energy 
band 

Aluminium-Arsenide 
(AlAs) 

Valence 
Band 

 S band−  xP band−  y zP P band+ −  overlapping 1.4235 0.093005  

L  −11.89400 −6.98076 −2.20525     

Γ  −13.27160 −1.37872 −1.37872 −1.37872   −1.37872 

X  −11.34300 −6.84300 −3.53688     

W  −11.29710 −6.42974 −4.59300 Py 
−4.22566 Pz 

    

Conduction 
Band 

L  0.68761 3.30495      

Γ  0.54985 2.89169      

X  0.87128 0.04475     0.04475 
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Table 3. Summary for Band gap of GaAs, and AlAs crystal structure calculated at the experimental value of the lattice con-
stant 5.4Å for Si, 5.6Å for GaAs and 5.6Å for AlAs. 

Solid Method in this 
work 

Eg(eV) in this 
work 

Eg(eV) Theoretical 
value [2] 

Eg(eV) Theoretical 
value [1] 

Expt. values 
[1] 

 

Expt. values 
[2] 

 
Gallium-Arsenide (GaAs) LDA 0.37 0.49 0.67 1.63 1.52 

Aluminium-Arsenide (AlAs) LDA 1.42 2.01 1.37 2.32 3.09 

 
Figure 2 also shows the Density of state of AlAs which shows similar characteristics with the GaAs only that 

the short spikes near the Fermi energy are due to s-like and p-like electrons of As and p-like electron while the 
short peaks above its Fermi energy are due to the 3p, states of Al and 4p states of As. The third region is ob-
served to encompass the top two valence bands and is predominantly p-like. The general features of the band 
structure and density of states are similar to that of the alkali halides [21] which is associated with anion state. 

Table 3 provides the summary comparison of LDA and Experimental values for, GaAs and AlAs. It is a fact 
that DFT within the local density approximation (LDA) correctly predicts the existence of a band gap of semi-
conductors. In this table, LDA revealed a good approximation when calculating total energies and densities of 
bulk semiconductors. This improvements on LDA have demonstrated a very little change in the KS energy gap. 
The exchange correlation amount represents a significant part in the correct estimation of the LDA energy gap 
of the whole LDA error for the semiconductors. 

However, the under estimation of the band gap from the experimental is mainly due to the fact that the exact 
functional in the Hohenberg-Kohn theorem is not known. Therefore the comparison of FHI-AIMS approxima-
tions for the exchange correlation predicts accurately the band gap when compared to other theoretical values [1] 
[2]. 

5. Summary and Conclusions 
This work has successfully employed Density Functional Theory method to calculate and estimate the band 
structure of Gallium-Arsenide (GaAs) and Aluminium-Arsenide (AlAs) using FHI-AIMS which was success-
fully installed and the knowledge of the input parameters which include the geometry.in and the control.in was 
carefully optimized for the band structure studies.  

All calculations were carried out using FHI-aims code upgrade 6 (released on 17th July, 2011; version 
071711_6) which works on Linux based operating system. In the calculation, Local Density Approximation 
(LDA) has been used to approximate the exchange correlation energy which varied the treatment of exchange 
correlation (LDA) to Kohn-Sham DFT leaving all other settings constant. 

The experimentally lattice constant parameter value was used to calculate the minimum total energy and 
tested for different k-grids. The minimum total energy obtained from the experimental lattice constant of Gal-
lium Arsenide 5.63 A and Aluminium Arsenide 5.63 A results in −114915.7903 eV for GaAs and AlAs with a 
computational time of 64.989 s, for the semiconductors. The result obtained shows that 12 × 12 × 12 k-grids 
enables the energy stability of the semiconductors in diamond structure with less computational time. 

The calculated electronic band structure results shows that AlAs is an indirect band gap semiconductor with 
1.42 eV while GaAs is a direct semiconductor with energy band gap of 0.37 eV. This shows significant im-
provement compared to other theoretical calculation obtained. 

The calculated band width in this work shows large values of 13.00 eV and 13.27 eV for GaAs and AlAs and 
there is no interaction between the s and p orbital of GaAs and AlAs to form hybridization this gives the semi-
conductor an improved ionic characteristic nature.  

The DOS energy level within the semiconductors shows considerable high state of electron occupation and 
the DOS observed around the Fermi level for the semiconductors at zero level indicate that they have conducting 
properties. 

In general, FHI-AIMS code has shown better accuracy and prediction of band structure calculation within a 
reasonable computational time when compared to some other DFT theoretical programs observed in literature. 
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