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Abstract 
Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I 
composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Ap-
plying the physical model for alloys with phase separation developed in [1] [2], we conclude that 
the Giant Hall effect is caused by an electron transfer away from the metallic phase to the in-
sulating phase occupying surface states. These surface states are the reason for the granular  

structure typical for M-I composites. This electron transfer can be described by 
 
 
 

B
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[1] [2], provided that long-range diffusion does not happen during film production (n is the elec-
tron density in the phase A. Aυ  and Bυ  are the volume fractions of the phase A (metallic phase) 
and phase B (insulator phase). β is a measure for the average potential difference between the 
phases A and B). A formula for calculation of R of composites is derived and applied to experimen-
tal data of granular Cu1-y(SiO2)y and Ni1-y(SiO2)y films. 
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1. Introduction 
Nanocomposites play a growing role in both scientific research and practical applications because of the possi-
bility of combination of special properties which cannot be reached in classical materials [3]-[5]. A prominent 
example for both scientific challenge and practical application is the Giant Hall effect (GHE) in metal-insulator 
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composites (M-I composites): Near the metal-insulator transition (M-I transition), the Hall coefficient can be up 
to 104 times larger than that in the pure metal [6]-[16]. 

Applications of the GHE we find in magnetic field sensing elements, in read heads of magnetic recording de-
vices and magnetic switching devices. Other examples for practical applications of nanocomposites are biomed-
ical ones, materials with improved corrosion resistance, and thermoelectric materials with higher efficiency for 
energy harvesting, environmentally friendly refrigeration, direct energy transformation from heat into electricity, 
and temperature sensors. 

As reasons for the GHE, quantum size effects and quantum interference effects on the mesoscopic scale have 
been discussed [8] [11]-[14] [17]. To our knowledge, until now, there is no explanatory model which can in-
terpret the phenomenon of GHE. In the present paper, we present a discussion of the reasons for the GHE ap-
plying the electron transfer model [1] [2] developed for metal-metalloid alloys. This model can be summarized 
by three points1:  

For large ranges of concentration there is 
(1) Phase separation between two phases called phase A and phase B, where each phase has its “own” 

short-range order (SRO), 
(2) The phase separation leads to band separation in the conduction band (CB) and valence band (VB) con-

nected with the phases A and B, respectively, and the electrons are freely propagating and the corresponding 
wave functions are extended over connected regions of one phase as long as the phase forms an infinite (ma-
croscopic) cluster through the alloy.  

(3) Between the two coexisting phases there is electron redistribution (electron transfer) which can be de-
scribed by  

( ) ( )exp ,An nζ βζ= ⋅ −                                  (1) 

where ζ  is the quotient of the volume or atomic fractions2 of the two coexisting phases. ( )n ζ  is the electron 
density in the phase A with ( )0An n= . β  is a constant for a given alloy, which is determined by the average 
potential difference between the two phases. 

The points (1) and (2) imply the fact that each phase can be characterized by its own transport coefficients 
which can be calculated, in principle, by classical transport theory as done in [2] (conductivity) and [18] [19] 
(Seebeck coefficient). 

Since M-I composites also consist of two separate phases with phase grains at the nanoscale, it is obvious to 
ask whether Equation (1) is reflected in the concentration dependence of the Hall coefficient R of M-I compo-
sites as well. Indeed, we have found that in the metallic regime of Cu1-y(SiO2)y and Ni1-y (SiO2)y thin films, the 
concentration dependence of R can be approximated by linear relations  

lnd R dα η′= ⋅                                     (2) 

with constant slope α′ . For Cu1-y(SiO2)y and Ni1-y(SiO2)y it follows from Figure 1(a) and Figure 1(b), 
7.9α′ =  and 10.3α′ =  with the coefficient of determination 2 0.92r =  and 2 0.96r = , respectively. 
( )1y yη = − , where y is the volume fraction of SiO2. This finding is illustrated in Figure 1(a) and Figure 1(b), 

where the absolute R values measured by Zhang et al. [12], Saviddes et al. [20] and Pakhomov et al. [10] are 
drawn versus η . The signs of the R values are negative. For Ni1-y(SiO2)y, Figure 1(b), the extraordinary R val-
ues (taken from Fig. 3 in [10]) are drawn. 

Figure 1(a) and Figure 1(b) reflect immediately Equation (1) provided that 1R n∝  (nearly free electrons - 
NFE). For a more precise discussion, we have to separate the contribution of the metallic phase to R, which can 
be done applying effective medium theory (EMT, [2], Sec. IVA therein). 

The known EMT-formula for the Hall coefficient derived by Cohen and Jortner [21] is  

( )

2 2

2
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σ σ=

−
⋅ =

+
∑                                 (3) 

 

 

1The points (1) and (2) are now confirmed experimentally or supported by independent authors [39]-[50] (details in [2], Sec. I therein). 
Support for point (3) comes from the fact that it is successfully applied for a quantitative description of the concentration dependence of both 
conductivity and Seebeck coefficient in [18] [19] and of the M-I transition and structural features of metal-metalloid alloys and M-I com-
posites in [2]. 
2In [1], the available experimental data were not sufficient to decide this question. This question was discussed in [2] with the result that ζ  
is to be interpreted as volume quotient. 
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Figure 1. Experimental Hall coefficient data at 5 K versus ( )1y y−  for Cu1-y(SiO2)y, (a), (c), 
and Ni1-y(SiO2)y, (b), (d), taken from [12] (circles), [20] (triangles) and [10] (diamonds). (c), (d): 

AR  calculated by ( )3 1
2
A

AR R
υ −

=  according to Equation (16), where 1A yυ = −  is set.  

 
where σ  and R are the electrical conductivity and Hall coefficient of a composite, respectively. iσ  and iR  
are the corresponding transport parameters of the phase i.3 iυ  is the volume fraction of the phase i (i stands for 
the phase A or B). 

As will be argued in Sec. 3.1, Equation (3) seems to be a good approximation for two-phase composites if 
A Bσ σ≈ , but not if A Bσ σ , as typical for M-I composites. Therefore, in Sec. 2 a R formula will be derived 

which holds for A Bσ σ  as well. In Sec. 3.1 this R formula and Equation (3) will be compared and its appli-
cability to M-I composites will be checked. In Sec. 3.2 it will be applied to a quantitative discussion of the GHE 
in M-I composites. In Sec. 3.3 the effect of the grain size on the GHE will be discussed. In Sec. 4 the results will 
be summarized. 

Cu1-y(SiO2)y Ni1-y(SiO2)y 

Cu1-y(SiO2)y Ni1-y(SiO2)y 

(a) (b)

(c) (d)

 

 

3Equation (3) is a comprehensive formulation of the Equations (16)-(20) of [21]. 
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2. Derivation of the R Formula 
Let us consider a non-magnetic two-phase composite, where the phase grains are spherical without preferred 
orientations and arranged in a symmetrical fashion and each phase i can be characterized by a set of transport 
coefficients. The local electric current density in a single grain of the phase i (i = A or B) can be written as  

,i i iσ
↔

=J E                                       (4) 

where iE  and iσ
↔

 are the electric field and the magnetoconductivity tensor [22] in this grain. For the electric 
current density outside of this grain we write analogously 

,σ
↔

=J E                                        (5) 

where E  and σ
↔

 are the electric field and the magnetoconductivity tensor outside of this grain (effective me-
dium). For the determination of the coefficients in iσ

↔
 we start with the equation for iJ  under the influence 

of an electrical and magnetic field, [23]-[25]  

( ) ( )
3 4

2
11, 12, 13,2 .i i

i i i i i i i i
i i

e ee K K K
m m

= + × + ⋅J E E B B E B                      (6) 

,rs iK  are the transport integrals, ie e= −  and e+  for electrons and holes, respectively. e  is the ele-
mentary charge. The third summand in Equation (6) disappears only if E  (or iE ) is always perpendicular to 
B . In a composite, however, B  and E  (or iE ), are generally not perpendicular to each other because of the 
spherical boundary between a phase grain and its surroundings. Without loss of generality, the external fields 
applied to the sample, extE  and B , have the directions of the X and Z axes, respectively. Then Equation (6) 
and Equation (4) lead to  
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where i i i iB R Bξ µ σ≡ = . Analogously we write for σ
↔

,  

2
2

1 0
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0 0 1

ξ
σσ ξ
ξ

νξ

↔
 
 = − +  + 

                             (8) 

with B RBξ µ σ≡ = . 1 cosi iν γ= +  and 1 cosν γ= + , where iγ  and γ  are the angle between iE  and B , 
respectively between E  and B . µ  and iµ  are the Hall mobility in the composite and phase i, respective-
ly.  

At the interface between a single phase grain and its surroundings continuity of the normal components of the 
current density and the tangential components of the potential gradient are to be fulfilled. For the limiting case 

0=B , this demand is fulfilled by  

( ) ( ) ( ) 2, 3 1 3 1 2 0i A B A A B Bf σ σ σ σ σσ υ σσ υ σ≡ + − + − − =                  (9) 

following from the EMT-formula for σ , [27] [28]  

0.
2

i
i

i i

σ συ
σ σ

−
=

+∑                                   (10) 

For the case 0≠B , the tensor properties of iσ
↔

 and σ
↔

, Equation (7) and Equation (8), are to be taken into 
account. Equation (9) expressed in tensor form reads  

( ) ( )3 1 3 1 2 0,A B A A B Bσ σ σ σ υ σ σ υ σ σ
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

+ − + − − =                    (11) 

where the identities A B B Aσ σ σ σ
↔ ↔ ↔ ↔

=  and i iσ σ σ σ
↔ ↔ ↔ ↔

=  have been used. Equation (11) determines the coeffi-
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cients of Equation (8) as a function of the coefficients of Equation (7). Inserting Equation (7) and Equation (8) 
into Equation (11) and comparing coefficients for the tensor elements, we get  

( ) ( ) ( )
( ) ( )2

3 1 3 1
,

4 3 1 3 1
A B A B A A A B B B

A A B B

σ σ ξ ξ σσ ξ υ σσ ξ υ
ξ

σ σσ υ σσ υ
+ + − + −

=
− − − −

                (12) 

following from the tensor elements xyσ  or yxσ , where quadratic and higher powers of ξ , iξ  are neglected, 
i.e., Equation (12) and the following Equations (13), (14) are low-field approximations. Within this approxima-
tion the parameters iν  and ν  do not have an influence on the result. From the tensor elements xxσ , yyσ , or 

zzσ , Equation (10) follows. 
Substituting ξ  and iξ  in Equation (12) by R and iR  and considering Equation (9) we get the R formula 

for two-phase composites: 

( ) ( )
( )

2 2

2

3 1 3 1
.

2
A A B A B B A B

A B

R R
R

σ σ σ υ σ σ σ υ

σ σ σ σ

+ − + + −      =
+

               (13) 

The same formalism can also be applied to composites with more than two phases leading to relatively com-
plex formulae for R. A self-contained and more manageable description of these R formulae is given by  

( )2 2

, ,
, 0i i i

i A B i

R R fσ σ σ σ
σ σ=

 ∂ ∂
+ = ∂ ∂ 
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                    (14) 

with  
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f σ σσ σ σ σ υ
σ σ==

  −
= +  +  

∑∏


                  (15) 

3. Discussion 
3.1. Comparison between Equation (3) and Equation (13) 
For three examples of two-phase composites, in Figure 2(b), Figure 2(d), and Figure 2(f), the concentration 
dependence of R related to its values at 1Aυ =  is shown, calculated by Equation (13), and compared with Equ-
ation (3), denoted as “C & J”. In Figure 2(a), Figure 2(c), and Figure 2(e), the corresponding concentration 
dependence of the Hall mobility µ  ( Rσ= ) is shown, where σ  is calculated by Equation (9). There are two 
essential differences between the two solutions Equation (3) and Equation (13): 

(1) The most striking difference appears in Figure 2(a) and Figure 2(c): The “C & J” curves decrease dra-
matically with increasing Aυ  and pass through a pronounced minimum at 1 3Aυ = , although A Bµ µ=  and 

A Bµ µ> , respectively. In contrast, the µ  curves calculated by Equation (13) agree with the expectation: Fig-
ure 2(a): µ  agrees with Aµ  for all Aυ ; Figure 2(c) and Figure 2(e): µ  increases and decreases with in-
creasing Aυ , respectively. 

A possible interpretation for such dramatic decrease of µ  at 1 3Aυ =  (“C & J” curves) could be additional 
scattering centres in the added phase boundaries. Such an effect by the phase boundaries is expected to be the 
more pronounced the smaller the sizes of the phase grains, iD . However, the C & J formula [21] [26] does not 
contain iD . 

The differences between Equation (13) and the curves “C & J” are the larger the larger the difference between 
Aσ  and Bσ . On the other hand, for the limiting case, A Bσ σ= , Equation (3) and Equation (13) agree. 
(2) Another striking difference between Equation (13) and Equation (3) is represented by the boundary case 

“ 0Bσ =  and 0Aσ ≠ ”, for which one obtains  

( )
( )

13

3 11 1 ,
2
A

ARR
υ −

=                                (16) 

and  

( )
C&J

3 11 1 ,
4
A

ARR
υ +

=                                (17) 
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Figure 2. Aµ µ  and AR R  versus Aυ  calculated by Equation (3) (“C & J”) and by 
Equation (13). The “C & J”-curves in Figure 2(a) and Figure 2(c) agree with the curves 
“5” and “7” shown in Fig. 1(b), Fig. 1 (c) of [21] and Fig. 13, Fig. 14 of [26], where the 
same examples are chosen. 

 
respectively, and for σ , Equation (9) gives  

( )3 1
.

2
A

A
υ

σ σ
−

=                                  (18) 

Starting at 1Aυ = , with decreasing Aυ  both σ  and ( )13

1
R

 decrease continuously until they vanish at  

1 3Aυ = . This result corresponds to the fact that for 1 3Aυ <  there is no longer a connected metal cluster 
through the composite (in correspondence with the assumption made earlier that the phase grains are spherical 
without preferred orientations and arranged in a symmetrical fashion). This result is, however, not reflected by 

Equation (17) which gives C&J
1 0

R
>  even for 1 3Aυ < , where all the metallic granules are separated by ad-

jacent insulating phase regions, that is, electron transport through the sample does not happen, if additional 
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tunneling is excluded. 
These two differences, (1) and (2), suggest the fact that Equation (16) represents the physical situation better 

than Equation (17). Therefore, in the following, Equation (13), respectively Equation (16), will be applied in a 
discussion of the Hall coefficient in M-I composites. 

3.2. The Giant Hall Effect in M-I Composites 
For AR  calculated by Equation (16) applied to the R data of Figure 1(a), Figure 1(b), we find that they can be 
approximated by a relation similar to Equation (2), 

ln ,Ad R dβ η′= ⋅                                  (19) 

where β ′  is a constant for a given M-I composite: For Cu1-y(SiO2)y and Ni1-y(SiO2)y it follows from Figure 1(c) 
and Figure 1(d), 6.5β ′ =  and 9.0β ′ =  with the coefficient of determination 2 0.89r =  and 2 0.95r = , 
respectively.4 This finding suggests that the colossal increase of R  is caused by one (!) effect acting in the 
complete metallic regime. Inserting 1AR n∝  (NFE approximation) in Equation (19) leads to Equation (1), or 
in differential form, 

,dn n dβ ζ− = ⋅ ⋅                                  (20) 

where β β ′≈ . n is the electron density in the metallic phase and B Aζ υ υ= . Bυ  and Aυ  are the volume 
fractions of the insulator phase (B) and metallic phase (A), respectively. Bυ  and Aυ  are identical with y and 
1 y− , respectively, if the insulating phase consists only of SiO2 and the metallic phase only of Cu or Ni. In this 
case, β β ′= . If, however, a certain portion of the metalloid atoms is dissolved in the metallic phase and/or a 
certain portion of the metal atoms is solved in the insulating phase, then β ′  is only an approximation for β . 
Equations (1) and (20) agree with the equations (15a) and (15b) in [1], respectively, which describe electron 
transfer between the phases in amorphous transition-metal—metalloid alloys.5 There the parameter β  was in-
terpreted to be a constant for a given composite, which is determined by the average potential difference be-
tween the phases, V∆ .6 Phase B is the phase with the deeper potential. Because of this analogy, Equation (19) 
suggests the following interpretation of the GHE: The colossal increase of R  with decreasing metal content is 
essentially caused by a decrease of n due to electron transfer to the insulator phase (SiO2) which can be de-
scribed by Equation (1), respectively Equation (20). 

Because the Fermi level lies in the energy gap between the valence band and conduction band of the insulator 
SiO2 phase, the transferred electrons occupy surface states on the SiO2 phase. This is the reason for the granular 
structure: spherical metal grains are embedded in the amorphous SiO2 phase (see, e.g., [29], Figs. 13-16 therein). 
A minimum energy is realized if, firstly, the transferred (pinned) electrons are arranged on spherical surfaces 
and, secondly, the insulating phase forms very thin layers around the metal grains providing the largest possible 
surface to accommodate the large number of transferred electrons. This electron transfer from the metallic phase 
to the phase boundaries provides the logical explanation for the granular structure in M-I composites. Such a 
granular structure has been found in many M-I films [7] [13] [15] [29]. This proposal applies to magnetic M-I 
composites as well. For nonmagnetic M-I composites the parameter C in 

A
A

A

CR
e n

µ
σ

= − =
⋅

                                 (21) 

(NFE approximation) is of the order of one, depending slightly on the magnetic field. [23] [24] Aσ  and Aµ  
are the conductivity and Hall mobility, respectively, of the phase A. e  is the elementary charge. For magnetic 
M-I composites Equation (21) holds approximately if “=” is replaced by “∝ ” considering the effect of the addi-
tional internal magnetic field due to the magnetization: An electron sees the effective magnet field 

w iH H H= + , where iH H . H is the external field applied to the specimen and iH  is the internal field 
produced by the quantum mechanical exchange forces ([30], p. 341). An electron does not distinguish between 
H and iH . It moves according to the Lorentz force determined by wH  and the electrical field E. One can as-

 

 

4RA calculated by Equation (17) can also be approximated by Equation (19) with the slopes β′ = 7.5 and β′ = 9.9 and r2 = 0.92 and r2 = 0.96, 
for Cu1−y(SiO2)y and Ni1−y(SiO2)y, respectively. 
5For large ranges of composition, amorphous transition-metal—metalloid alloys are composed of different amorphous phases [39]-[43] with 
Di ~ 1 - 2 nm [42] [43]. 
6The potential difference ∆V is identical with the difference of the electrochemical potentials of the phases, as long as they are not in contact 
to each other. Only, when a contact is realized, a common electrochemical potential is realized by electron transfer between the phases. 
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sume that wH  is nearly proportional to H as long as iH  is nearly proportional to the magnetization produced by H. 
This assumption is supported by the experimental finding by Xiong et al. [31] that (for not too small fields H), 

in the granular Co-Ag system, the Hall resistivity xyρ  is linearly proportional to H. If so, the measured R val-
ues differ from the calculated R values, Equation (21), only by a factor which is nearly constant. Therefore, we 
assume that the EMT-formula for R, Equation (13), can be applied to magnetic composites as well. 

If the metallic phase of a M-I composite is a noble metal, the NFE approximation is a good one for the metal-
lic phase, above all as the Fermi surface moves away from the Brillouin zone boundary as n decreases. For the 
metallic phase in Ni-SiO2 the NFE approximation is surely also a good one, because Ni has only 0.55 4s valence 
electrons per Ni atom ([30], p. 271). 

If the metallic phase of a M-I composite is a transition-metal, the electron transfer is expected to be composed 
of both the d and s electrons. As the d density of states at the Fermi level is essentially larger than the s density 
of states, the principal share of electrons transferred to the insulating phase, is made up of d electrons, that is, the 
s electron density in the metallic phase remains relatively large. Because the electronic transport is determined 
by the s valence electrons in the A phase, the effect of the electron transfer on the electronic transport in the me-
tallic phase is expected to be relatively small, and the increase of AR  due to electron transfer should be essen-
tially smaller as in M-I composites containing a noble metal as metallic phase. For instance, in Mo1-y(SnO2)y ([7], 
Fig. 2 therein), we do not find an exponential change of AR  with increasing ( )1y y− : for 0 0.55y< <  (i.e. 

( )0 1 1.22y y< − < ), the experimental R values [7] of Mo-SnO2 fluctuate slightly where the average of AR  
calculated by Equation (16) remains nearly independent of y. Only approaching the M-I transition ( 0.6y > ), AR  
increases drastically.7 

Now the question arizes: why do we find an exponential dependence of ( )n ζ  in Ni1-y(SiO2)y although Ni is 
a transition-metal? X-ray emission spectra of amorphous and crystalline Ni1-ySiy and Pd1-ySiy alloys by Tanaka et 
al. [32] have shown that there are strong bonds between d orbitals (of Ni and Pd) and Si p orbitals leading to a 
stronger splitting of the d band into a bonding and antibonding fraction, where the former is lifted, whereas the 
latter lies below the Fermi level. Analogously, for Ni1-y(SiO2)y one can also expect strong bonds between Ni d 
orbitals and Si (and O) p orbitals which leads to a strong reduction or disappearance of the d density of states at 
the Fermi level. Therefore, we find an experimental increase of AR  (Figure 1(d)). Moreover, there is strong 
evidence for the assumption that the metallic phase does not consist of Ni alone, but that there is a certain frac-
tion of Si (and O atoms) dissolved in the metallic phase. 

In summary, for M-I composites containing a noble metal, we expect an exponential ( )n ζ  dependence be-
cause the electron transfer is made up entirely of the s electron density. For M-I composites containing a transi-
tion-metal, an exponential ( )n ζ  dependence can be expected if the d density of states at the Fermi level is 
strongly reduced, for instance caused by a hybridization of the d states with the p states of the metalloid. 

Comparing granular M-I composites with amorphous transition-metal—metalloid alloys ([1]), we state that 
the exponential increase of R and the exponential decrease of σ  with y (respectively ( )1y y− ) is essentially 
caused by the same phenomenon: decrease of the electron density in the metallic phase due to electron transfer 
to the metalloid or insulator phase. The essential difference between these two material classes is the fact that in 
the metalloid phase of the amorphous transition-metal—metalloid alloys an incompletely occupied sp band can 
exist ([2], Sec. IIA therein) for accepting the transferred electrons. In contrast, in the insulator phase of M-I 
composites only localized states on the surface of it are available for acceptance of the transferred electrons. 
This difference is also the reason for the different microscopic structures of M-I composites and amorphous 
transition-metal—metalloid alloys. Another, rather quantitative difference is the fact that the decrease of n is es-
sentially larger than in amorphous transition-metal—metalloid alloys, as the average potential difference be-
tween the phases, V∆ , is essentially larger. 

Our electron transfer model is compatible with a series of other experimental findings: 
1) The GHE occurs both in magnetic M-I composites and non-magnetic ones suggesting a mechanism inde-

pendent from magnetism [13]. 
2) In M-I composites, σ  and Aσ  decrease exponentially with decreasing metal content in correspon-

dence with the exponential increase of R. For some M-I composites, in Figure 3, ( ) ( )log 0yσ σ    and 
( ) ( )log 0A Ayσ σ    are drawn versus ( )1y y− . In the NFE approximation the connection between Aσ  and 

n is given by 

 

 

7In Mo1−y(SnO2)y the carriers are holes [7]; electron transfer away from the metallic phase can lead to an increase of the hole density p, but 
also to a decrease of it depending on the position of the Fermi surface in relation to the Brillouin zones. 
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Figure 3. (a) ( ) ( )log 0yσ σ    versus ( )1y y−  for Ni1-y(SiO2)y, Au1-y(Al2O3)y, W1-y(Al2O3)y and annealed W1-y(Al2O3)y 
(at 1200˚C in H2) taken from Abeles et al. ([29], Fig. 19 therein) and Ag1-y(SiO2)y, Priestley et al. [33]. (b) 

( ) ( )log 0A Ayσ σ    versus ( )1y y− , calculated by Equation (18) and 1A yυ = − . Inlets in (a) and (b): Cu1-y(SiO2)y and 
Ni1-y(SiO2)y, taken from Liu et al. [14] and Pakhomov et al. [10], respectively.  
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 

                             (22) 

where Aµ  is the mobiliy of the carriers which is assumed to be equal to the Hall mobility introduced in Sec. 2. 
h is Plancks constant. L is the (elastic) mean free path of the electronic carriers in the (metallic) phase A. Be-
cause of Equation (22) the exponential concentration dependence of n, Equation (1), is also reflected by the 
concentration dependence of ( ) ( )0A Ayσ σ  in Figure 3 if the concentration dependences of L or Aµ  can ei-
ther be neglected or change exponentially with ( )1y y−  as well. For W1-y(Al2O3)y we assume that there are 
strong bonds between W d orbitals and Si (and O) p orbitals, comparable with the situation in Ni1-y(SiO2)y des-
cussed earlier. 

The only exception in Figure 3, where such an exponential concentration dependence of σ , respectively 
Aσ , does not occur, is represented by the annealed W1-y(Al2O3)y samples. This phenomenon will be discussed in 

Sec. 3.3. 
3) With increasing y the temperature coefficient of resistivity, TCR, decreases and changes sign from positive 

to negative. [6] [11] [12] [14] [15] [34] The reason is an activation of localized electrons to the conduction band 
of the metallic phase. This conductivity contribution by activation is in competition with the positive contribu-
tion to the TCR due to scattering. The activation contribution is the larger the larger the amount of transferred 
electrons, i.e., the larger y, in correspondence to Equation (1). 

In earlier papers it was suggested “that the GHE is a result of the drastic reduction of both the effective elec-
tron density and (in case of EHE) the effective carrier mobility”8 (Pakhomov et al. [11]) or a drastic reduction of 
carrier density (Jing et al. [35]). These two suggestions [11] [35] correspond to our physical model summarized 
in Sec. I. We emphasise, however, that it is not any effective electron density or carrier density (electrons or 
holes), but it is the real electron density which is reduced in the M-I composites. 

3.3. The Effect of the Grain Size on the GHE 
Approaching the M-I transition, the charging energy arising from the positively charged metal ions grows more 
and more and one could assume that such ‘metal’ phase cannot exist, because the electrostatic contribution by 
the positive ions increases more and more as n decreases. However, the growth of the electrostatic energy is not 
unbounded; decrease of n is accompanied with a decrease of the sizes of the metal grains. For granular Al1-yGey 
films, with increasing y the sizes of the metal grains decrease from 10 - 20 nm (on the metallic-rich side) to sizes 
<2 nm beyond the MIT (Rosenbaum et al. [36] [37]). This decrease of AD  with decreasing metal content even 
continues in the dielectric regime, as found for Ni1-y(SiO2)y, Pt1-y(SiO2)y and Au1-y(Al2O3)y thin films ([29], Fig. 
17 therein), where AD  decreases from 4 nm at 0.5y ≈  to 1 nm at 0.9y ≈ . For co-sputtered granular 
Ni1-y(SiO2)y films, Abeles et al. found that the average particel size, AD , decreases with Ni content: AD  = 14 
nm, 9.4 nm, 5.7 nm, and 3.7 nm for 87, 67, 56 and 37 vol % Ni, respectively ([29], Fig. 11 therein). 

We suppose that the electron transfer described by Equation (1), respectively Equation (20), holds also 
beyond the M-I transition. This assumption correlates with the concentration dependence of AD , which de-
creases continuously through the M-I transition as cited. 

As mentioned earlier ([18], Sec. IVA therein), Equation (1), is part and result of a complex energy balance 
realized during solidification of the alloy, where the sizes of the phase grains are part of this balance. Equation 
(1) holds for situations, where atomic diffusion does practically not play a role because of the high cooling rate 
during the film deposition process. Because of this suppression of the long-range diffusion, the EMT provides a 
more realistic description of the electrical properties of disordered alloys with phase separation than any perco-
lation description. This is justified in [2] (Sec. IVA therein). 

On the other hand, at sufficiently high temperatures, appreciable diffusion can take place leading to additional 
growth of AD . With increasing AD , for instance due to annealing, the electron transfer to the phase boundaries 
can no longer be expected to follow Equation (1). Otherwise, the growth of the electrostatic energy could be 
shoreless. 

Therefore, the GHE decreases or disappears by annealing at sufficiently high temperatures [14]. This pheno-
menon is also reflected by the concentration dependences of σ  and Aσ  which can be essentially smaller than 
before annealing. One typical example is W1-y(Al2O3)y, [29], Figure 3: Before annealing, ( ) ( )log 0yσ σ    is 

 

 

8EHE is applied in [11] for the extraordinary Hall effect in magnetic M-I composites. 
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approximately linear in ( )1y y− , but after annealing at 1200˚C it is not. Reason is the fact that after annealing 
the metallic phase grains are essentially larger than before, for instance 20 nmAD ≈  for 0.47y ≈  (Abeles et 
al. [38], Fig. 2 therein), whereas 2 nmAD ≈  for the unannealed samples (Abeles et al. [38], Fig. 1 therein). 
Because of the large phase grains in the annealed W1-y(Al2O3)y samples [38], the electron transfer (related to 
( )0n ) is essentially smaller than in the unannealed samples. Elsewise, the electrostatic energy would be too 

large. 
This can also explain the experimental finding [14] that the maximum of the enhancement of R in Zn1-y(SiO2)y 

is about 60, but 700 in Cu1-y(SiO2)y: the size of the granules in Zn1-y(SiO2)y is much larger ( 20 nmAD ≈ , [14], 
p.608) than in Cu1-y(SiO2)y, for which 1 nmAD ≈  is given as the minimum value ([14], p. 606). Apparently, in 
Zn1-y(SiO2)y a certain measure of atomic diffusion has been happen during film deposition, so that this balance 
was shifted to smaller electron transfer, i.e., Equation (1) does no longer apply. 

4. Conclusions 
A formula is derived for the Hall coefficient R of composites and applied to a discussion of the concentration 
dependence of R in M-I composites. From the empirical relation lnd R dα η′= ⋅  with ( )1y yη = −  found 
for experimental R data of Cu1-y(SiO2)y and Ni1-y(SiO2)y thin films, it is concluded that both the GHE and the 
granular structure typical for M-I composites are caused by electron transfer from the metallic phase to the  

insulating phase which obeys = B

A

dn n d υβ
υ
 

− ⋅ ⋅  
 

. This equation holds for nanocomposites, where long-range  

atomic diffusion does practically not play a role during the film deposition process. It is part and result of a 
complex energy balance realized during solidification of the alloy, where the sizes of the phase grains are part of 
this balance. 

In M-I composites, the decrease of electron density n in the metallic phase occurs as interface charges occu-
pying surface states on the insulating phase which is responsible for the granular structure. 
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