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Abstract

The manuscript investigated
of the light generated by
and the cavity coupled

ture squeezing, b
unlike the m

e variance of the photon number, the quadrature squeez-
ber of atoms. This implies that the quadrature squeezing of the

Squeezed states of light has played a crucial role in the development of quantum physics. Squeezing is one of
the nonclassical features of light that have been extensively studied by several authors [1]-[8]. In a squeezed
state the quantum noise in one quadrature is below the vacuum-state level or the coherent-state level at the
expense of enhanced fluctuations in the conjugate quadrature, with the product of the uncertainties in the two
quadratures satisfying the uncertainty relation [1] [2] [4] [9]. Because of the quantum noise reduction achievable
below the vacuum level, squeezed light has potential applications in the detection of week signals and in
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low-noise communications [1] [3]. Squeezed light can be generated by various quantum optical processes such
as subharmonic generations [1]-[5] [10]-[12], four-wave mixing [13] [14], resonance fluorescence [6] [7],
second harmonic generation [8] [15], and three-level laser under certain conditions [1] [3] [4] [9] [16]-[27].
Hence it proves useful to find some convenient means of generating a bright squeezed light.

A three-level laser is a quantum optical device in which light is generated by three-level atoms in a cavity
usually coupled to a vacuum reservoir via a single-port mirror. In one model of a three-level laser, three-level
atoms initially prepared in a coherent superposition of the top and bottom levels are injected into a cavity and
then removed from the cavity after they have decayed due to spontaneous emission [9] [16]-[21]. In another
model of a three-level laser, the top and bottom levels of the three-level atoms injected into.a,cavity are coupled
by coherent light [22]-[27]. It is found that a three-level laser in either model generatés squeezed light under
certain conditions. The superposition or the coupling of the top and bottom levels is réspensible for the squeezed
of the generated light. It appears to be quite difficult to prepare the atoms in a coherent superposition‘of the top
and bottom levels before they are injected into the cavity. In addition, it should certainly be*hard to find out that
the atoms have decayed spontaneously before they are removed from the cavity.

In order to avoid the aforementioned problems, Fesseha [28] have considered that Ntwo-level atomis available
in a closed cavity are pumped to the top level by means of electron bombardment! He has shewn that the light
generated by this laser operating well above threshold is coherent,and the lightigenerated by the same laser
operating below threshold is chaotic light. In addition, Fesseha?9] has, studied the squeezing and the statistical
properties of the light produced by a degenerate three-level laser,with the,atoms in a clgsed cavity and pumped
by electron bombardment. He has shown that the maximufm quadrature squeezing of the light generated by the
laser, operating far below threshold, is 50% below thefvacuum-state level. Alternatively, the three-level atoms
available in a closed cavity and pumped by coherent light also generated squeezed light under certain conditions,
with the maximum global quadrature squeezing is being 43% below the vacuum-state level [1]. It appears to be
practically more convenient to pump the atoms by coherentilight than electron bombardment.

In this paper, we investigate the steady-stateanalysis of‘the squeezing and statistical properties of the light
generated by a coherently pumped degenerate three-level laser with®open cavity which is coupled to a two-mode
vacuum reservoir via a single-port mirror. We cafry out ourcalculation by putting the noise operators associated
with the vacuum reservoir in nogmal order and by taking into consideration the interaction of the three-level
atoms with the vacuum reservaif outside the cavity.

2. Model and Dynafites of Aggmicmpd Cdivity Mode Operators

Let us consider a systemiof N degeneratesthree-level atoms in cascade configuration are available in an open
cavity and interacting with<the two (degenerate) cavity modes. The top and bottom levels of the three-level
atoms are coupl€ehpy coherentilight. When a degenerate three-level atom in cascade configuration decays from
the top level/to the bottom levelsivia the middle level, two photons of the same frequency are emitted. For the
sake of gdhvenientywe denote the 16p, middle, and bottom levels of these atoms by |a),, |b), , and |c), ,
respectively:\We wish*to represent the light emitted from the top level by &, and the light emitted from the
middlegby &, . Ifi addition, We assume that the two cavity modes a, and a, to be at resonance with the two
transitions) |a), —>|b), and/’[b), —|c), , with direct transitions between levels |a), and |c), to be dipole
forbidden.

The interaction of one of the three-level atoms with light modes a, and a, can be described at resonance
by the Hamiltonian

k k

(1) =io[ 67"a ~al6t +6y'8, ~aldt ] ®
where
61 =|b), (al )
and
Sy =|c), (b ®3)

are lowering atomic operators, &, and &, are the annihilation operators for light modes a, and a,, and g is
the coupling constant between the atom and the light mode a, or light mode a,. And the interaction of the
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three-level atom with the driving coherent light can be described at resonance by the Hamiltonian

A, ()= (60 -6t @
in which
dc =)y (@] (5)
and
Q=2g. (6)

Here ¢ is the amplitude of the driving coherent light and g’ is coupling constant, between the,atom and
coherent light. Thus upon combining Equations (1) and (4), the interaction of,the threeslevel atom with the
driving coherent light and cavity modes a, and a, is described at resonance/dy the Hamiltonian

A, (1) =ig[6]'a, ~alot +oi'a, —ajey |+ (M6t ] ©

On the other hand, the degenerate three-level atoms available infan open cavity,are coupled to a two-mode

vacuum reservoir. The master equation for the three-level atomdinteracting with a twie-modé vacuum reservoir
has the form [1] [3]

sty ==i[ A, (). p () |+ L[ 252 po — 6ot p—pelst |
2 ®

where y is the spontaneous emission decaycohstant associated withsthe two modes a, and a,. Hence with
the aid of Equation (7), the master equation‘describing the twe=mode cavity light of a coherently pumped
degenerate three-level atom would be

d . ntka Af Atk AN At
P =0[6lagalel ok 4]

F
s |8 -+ poTpal" |+ T 260 56" ~ 6163~ pol' 6] ©)

T o nk Atk A
+§[2(70/)O'CT -0,

We recallsthat the laser cavity Isieoupled to a two-mode vacuum reservoir via a single-port mirror. In addition,
we carry,0ut our analysis by putting the noise operators associated with the vacuum reservoir in normal order.
Thus the noise,operators will not have any effect on the dynamics of the cavity mode operators [1] [28]. In view
of thispwe can'drop the noiseioperators and write the quantum Langevin equation for the operators 4 and 4,
as

d . Kk A A

FaO=-5aO-i&).H,0)]. (10)

d . K T A -

e O=-2&1)-i[&(1).A.0)], (11)

where k is the cavity damping constant. Then with the aid of Equation (7), we easily find

d . K K
i —_= - 12
A () =24 (1)-gd (1), (12
9a,t)=—-%a 1)-ger (1) (13)
g W% )

The procedure of normal ordering the noise operators renders the vacuum reservoir to be a noiseless physical
entity. We uphold the view point that the notion of a noiseless vacuum reservoir would turn out to be compatible

(=)
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. do(t) »
with observation [30]. Furthermore, making use of the master equation and the fact that %<A> :Tr( ’1; E ) AJ

(where A is an operator), it is not difficult to verify that

Sot)=allita)-(ika)+{alot) [+ (1) - (%), (14)

d;.
E<0'b (15)
d/.
a<0' (16)
d,.
— 17
g (17)
d ;.
(3 (18)
d /. Atk A At n Qry . . .
S () =-a[(é] — (19)
where
(20)
(21)
(22)
We see that Equations (14)-(19) are nonlinea d differential equations. Therefore, it is not possible
to obtain the exact time-dependen ercome this problem by applying the large-time
approximation [28]. Then using imati cheme, we get from Equations (12) and (13) the appro-
ximately valid relations
(23)
and
(24)
Upon su ti ) and (24) into Equations (14)-(19), we get

%<&:>=_[7’c+7’]<OA':>+%<OA'EK>, (25)
o) =3l )=o), (26)
SHety=-3lrrnfar)  2te) ()] @

)=l i)+ 2[00+ (a4)]. @)
%<ﬁ§>=—[%+y]<ﬁ§>+n (7). (29)
S =l it £ (22) - [0+ 02)] @

where
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4 2
Ve = % (31)

is the stimulated emission decay constant. We next sum Equations (25)-(30) over the N three-level atoms. We
then see that

(32)
(33)
(34)
(35)
(36)

(37)

in which

(38)
(39)
(40)
(41)
(42)

(43)

nd Nlc representing the number of atoms in the top, middle, and bottom levels.
pleteness relation

A+ iy +ie =1, (44)
(R)+(Ny)+(N.)=N. (45)

Furthermore, applying the definition given by (2) and setting for any k
61 =|b)(al, (46)

we have
m, = N|b)(al. (47)
Following the same procedure, one can easily find

M, = N|c)(b], (48)

()



G. A. Gebru

M, = NJ|c)(al, (49)
N, =N/|a)(al, (50)
N, = N |b)(b], (51)
N, = N|c){c|. (52)
Moreover, using the definition
m=rm, +m, (53)
and taking into account Equations (47)-(52), it can be readily established that
=N (N, +N,), (54)
i’ = N (N, +N,), (55)
m? = Nrf. (56)
Upon adding Equations (12) and (13), we have
(57)
where
(58)
In the presence of N three-level atoms, we
(59)
inwhich 4 is a constant whose va
(60)
; Taking into account its adjoint, the mutation relation for the cavity mode operator is found to
e
(61)
and on s ing over all atoms, we
(62)
2 At 1= T4 af
[aa']= é[a,é ] (63)

A

4,4") when the superposed light mode a is interacting with all the N three-level
atoms. On the other hand, using the steady-state solution of Equation (59), one can verify that

22~ .
A A"‘ _ _
[aa ]—N[T} (Nc Na). (64)
Comparison of Equations (62) and (64) shows that

_+ 9
l_i\m. (65)

On account of (65), one can put Equation (59) in the form
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k . g .

—a(t)=—=4a(t)+—=m(t). 66
(O)=-280)+ 5™ (66)
3. Photon Statistics

Here we seek to obtain the global (local) mean photon number and the global (local) variance of the photon
number for the two-mode cavity light beam at steady state.

3.1. The Global Mean Photon Number

We wish to calculate the mean photon number of the two-mode cavity light in the entire nterval. The

steady-state solution of Equation (66) is given by
(67)
is expressible as
(68)

f the two-mode cavity

(69)

ss

P(w)= % Re["dre!™ " (4" (t)a(t+7))._.

Equation (71) and carrying out the integration, we readily get

ﬁ{[kEV}{QU—QJ;3TOMZY:M_[kiv}[(w_1;¥ffoq2f}}' (72)

The mean photon number in the frequency interval between ' =-21 and ' =+A isexpressible as

n, = J‘jP (o) de, (73)

inwhich @' = — a,. Thus upon substituting (72) into Equation (73), we find

O P e Pt T

()
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Figure 1. Plots of the global mean photon number [Equation (69)] versus Q at steady
state for y,=0.4, k=0.8, N =50, and different values of » .

and on carrying out the integratio

(75)
we arrive at
nz(2), (76)
()= [M} tan™ (%) - [%} tan™ (2—/1j (77)
k—v v k—v k

igure 2 that z(0.5)=0.7671, z(1)=0.9362, and z(2)=0.9889 for y=0.
2(0.5)=0.7102, z(1)=0.9015, and z(2)=0.979. Then combination of these
6) yields n,,=0.7671n, n, =0.9362n, and n_,=0.9889n for »=0. And we
n, =0.9015m, and 1, =0.979n for y =0.2. We therefore observe that a large part

3.3. The Global Variance of the Photon Number

The variance of the photon number for the two-mode cavity light is expressible as
(An) = <(a*a)2> ~(a'a)’ (78)
and using the fact that &(t) is a Gaussian variable with zero mean, we arrive at
(AnY? =<é*é><éé*>+<a*2><a2>. (79)

Employing once more (67) and taking into account (55), we readily get
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W A N y i

Figure 2. Plot of z(1) [Equation (77)] versus A for y, =04, k=08, Q=3, and
different values of y .

=%[N—<I\L>]

:&N_ﬁ{u},
2.ty

67) along with (56), we easily obtain

(#)-Len)

so that in viewyof (146) and (69), there follows

, -
(a)=n| 21|

Q(2y, + 7)_
Now on account of Equations (68), (83), and (84), we readily find Equation (79) to be

(Any’ =ﬁ{%N —ﬁ[n—ﬂ/ﬂ+ﬁ2 _M}

2. +7 (27, +7)

This can be put in the form

(80)

(81)

(82)

(83)

(84)

(85)
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e \ven [ty 1@ Cre+yn)-(re+r)| |
(4n) _[k N {27c+7}{ Q*(2y,+7) }n]n' (%)
In view of (69), we arrive at
(anf=(2en | Vi) @@ L
((}/c—i-}/) +0? (3}/c+2;/) ) ((yc+;/) +0? (37/c+27/) )

We immediately see from the plots in Figure 3 that the presence of spontaneous emi
in the global variance of the photon number of the two-mode cavity light beam. In ade
of the photon number of the two-mode cavity light increases with increasing Q

in which n is given by (70). This represents the normally ordered
state.
3.4. Local Variance of the Photon Number

Here we wish to obtain the variance of the photon num interval, employing the spectrum
of the photon number fluctuations for the superposi
common frequency of these modes by «,. The spectr number fluctuations for the superposed
light modes can be expressed as

+z‘)>ss, (89)

where A

300 T T T T T T T T T

250 p e T T T T T T T T T e e e e e e e a e ]

200 - a
1y — =0

i S y=0.1

150r [, 1 i ]

100 [t .

Global variance of the photon number

0 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q

Figure 3. Plots of the global variance of the photon number [Equation (87)] versus Q
at steady state for y, =0.4, k=0.8, N =50, and different values of y .
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A(t)=a'(t)a(t), (90)
A(t+7)=a'(t+7)a(t+7) (91)

and we have used the notation (i(t),A(t+7))=(A(t)A(t+7))—(A(t))(A(t+7)). With the aid of (90) and
(91) and Equation (142), the photon number fluctuation can be expressed as

R(w :_Rej drel [ (& (t)a(t+7))(a(t)a' (t+7))
+(a' (' (t+0))(a(t)a(t+1)) ]

Upon introducing (162)-(165) into Equation (92) and on carrying out the integration‘Quer 7 , the'spectrum of
the photon number fluctuations for the two-mode cavity light is found to be

o) = (AnY k? v/t N % k/x
R(w)=(4n) {|:(k—1/)2}[(a)—w0)2+v2} {(k—v)2:|{(a)—a)o)2+k2}

(92)

(93)
| 2kv (k +v)/2n
(k=v)’ || (0—ap) +(k+v) /4[|
where (An)2 is given by (79).
Upon integrating both sides of (93) over @, one easily finds
[R(w)do<gan);. (94)

On the basis of Equation (94), we observe that R(w)da) represents the steady-state variance of the photon
number for the two-mode cavity light in the interval‘between o“and o +dw . We thus realize that the photon-
number variance in the interval between o' = -4, and” ‘@h=+1 can be written as

(an)?, =R ('), (95)

inwhich @' = - @, . Thus,upon substitdting,(93) intg Equation (95), we find

o 2eany k* | v/m o+ V2 | k/m »
(A )ti (A )ss {[(k—v)zil'[_l |:Cl)l2+|/2:|d li(k_v)Zl.l.A[w/Z_i_kz}d
2k e[ (k) 2n } w}
Lk—v)z}j‘i{w'2+(k+v)z/4 et

so eA‘carrying out,the integration over ', applying the relation described by Equation (75), we readily get

(An):, =(an)’2'(2), (97)

(96)

wherez' (2 Nis,given by

2 2
Z(1)= 2K /n2 tan1(£j+ 2v /nz tanl(i)—{ 4kv/n2}tanl(—2/1 ) (98)
(k—v) v (k-v) k (k—v) kK+v
From the plots in Figure 4 that we easily find z'(0.5)=0.7625, z'(1)=0.9483, and z'(2)=0.9934 for
7=0. And for y=0.2, we find z'(0.5)=0.5204, z'(1)=0.7893, and z'(2)=0.9496. Then combination

of these results with Equation (97) yields (An)il5 = 0.7625(An)2 , (An)i1 = O.9483(An)2 , and
(An):, =0.9934(An)" for y=0.And for =02, we find (An) _=05204(4An)’, (An): =0.7893(An)’,

and (An)’, =0.9496(An)’. We immediately observe that a large part of the total variance of the photon
number is confined in a relatively small frequency interval.

)
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! —'y:[]

Figure 4. Plots of z'(1) [Equation (98)] versus A for y, =04, k=08,
Q0 =20, and different values of y .

4. Quadrature Squeezing

In this section we seek to calculate the quad
interval.

two-mode cavity light in any frequency

4.1. The Global Quadrat

The squeezing properties ity li e described by two quadrature operators defined as
f(t)+4(t), (99)
t)=i(a' (t)-4(t)). (100)

[é_,é+]:2i%(l<la—l<lc). (101)
Aa, Aa 2% <Na>—<|<lc> : (102)

pon replacing the atomic operators that appear in Equation (62) by their expectation values, the

commutationyrelation for the two-mode light can write as
[a, a*] =1, (103)
in which
1:%((&)—(1\]&)). (104)

The variance of the quadrature operators is expressible as

(82, ) =2+2(a (t)a(t))+(a" (1)) (a2 (1)) F(a' (1) F(a(t))’ —2(a (1))(a(t)). (105)

()



G. A. Gebru

In view of Equation (142), one can put Equation (105) in the form

(A, )" =2+2(a" (1)a(t))+(a" (1)) +(8* (1)). (106)

With the aid of (68), (83), and (104) together with (45), we obtain
(Aa+)2:%{N +<r\‘|b>+2(mc)}, (107)
(Aa_)zz%{N +(Ny)-2(m,)}. (108)

Finally, on account of (146) and (148), the global quadrature variance of the twomede cavity light turns out
at steady state to be

2 2
(da ) =Lely, L7 r2retr) g (109)
k (vo+7) +Q° (37, +2/)
and
2 _ 2
(Aa Y =Zelpy SX7e 292(7°+7) N. (110)
k (7e +7) 2" (87, +2/)

It is then not difficult to observe that the two-mode cavity light beam is in a‘squéezed state and the squeezing
occurs in the minus quadrature.

We next proceed to calculate the quadrature squeezingof the two-made cavity light relative to the quadrature
variance of the two-mode cavity vacuum stateéa\We define the,quadraturg squeezing of the two-mode cavity light

by

A 2
PIAC S (111)
(Aa_);
Moreover, upon setting A =0 “in\Equation (110), we see that
(Aa.) = 7? N, (112)

which representSithe quadratureivariance of'the two-mode cavity vacuum state. Hence on account of Equations
(110) and (142), we arrive at

St 00 ty) 2. (113)
) Y 3 2 3 2 ’
(re+7) +Q° (B +2y) (ro+y) +Q°(3y.+2y)

We note that, unlike,thé mean photon number, the quadrature squeezing does not depend on the number of
atoms. Fhispimplies that the quadrature squeezing of the two-mode cavity light is independent of the number of
photons,, We seefrom the plots in Figure 5 that the maximum global quadrature squeezing of the two-mode
cavity light for » =0 is 43.42% (and occurs at 2=0.1717) and for »=0.1 is found 47.15% (and occurs at
0 =0.2323)»7And for y=0.2, the maximum global quadrature squeezing is observed to be 50% below the
vacuum-state level and this occurs when the three-level laser is operating at € =0.303. Moreover, upon setting
¢=0 in Equation (113), we note that

2
s-2% £ (114)
1+3y

where y =Q/y. . Equation (114) is indicates that the quadrature squeezing of the light produced by degenerate
three-level laser with the N three-level atoms available inside a closed cavity pumped to the top level by electron
bombardment which has been reported by Fesseha [1].

()
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0.6

0.1 02 03 04 05 06 07 08 09 1 )

Q

— A N
Figure 5. Plots of the global quadrature squeezing [Equation (113)] versus
Q at steady state for y, =0.4, k=0.8, and different values of y .

4.2. Local Quadrature Squeezing

e two- light in a given frequency interval. To
this end, we first obtain the spectrum of the qua e fluctuations of the superposition of light modes a, and

(& (t).a.(t+7)),, (115)

in which

+7)=a'(t+7)+4a(t+7), (116)

a (thr)=i(a'(t+r)-a(t+r)) (117)
odes a and a,. Inview of Equation (142), we obtain

(a.(t),& (t+7))=(4 ()& (t+7)). (118)

=(a'(t)a(t+7))+(a(t)a’ (t+7))+(a" ()a' (t+7))=(a(t)a(t+7)). (119)
g of (162)-(165) into Equation (119), we arrive at
k

(t+o)={(@' (Da@) +(a)a’ (1) =(a" (1) = (2" (V) {k—_ve"’/z —k—ivek’/z}- (120)

(a,(1).4, (t+7))=(sa,)’ {k K gz ” Y e-kf/z} (121)
and

K g2V ekf/z}. (122)
14
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Now introducing (122) into Equation (115) and on carrying out the integration over 7, we find the spectrum
of the minus quadrature fluctuations for a two-mode cavity light to be

*(o)=(ee ) {{kEv}{(w—w:)/f:(v/z)zHkiv}{(w—w:)/ff(k/z)z }} e

Upon integrating both sides of (123) over @, we get
s (w)do=(sa ). (124)

On the basis of Equation (124), we observe that S_ (a))da) is the steady-state/variance of the minus
quadrature in the interval between @ and w+de . We thus realize that the variariceef the minus guadrature
in the interval between o'=-1 and o' =A isexpressible as

(A ), =["7s (o) da, (125)

in which @' =®—a,. On introducing (123) into Equation (125) and_on carrying eut the integration over o',
employing the relation described by Equation (75), we find

(A2 ), =(da )" 2(%), (126)
where
z(2) = 2/n tan~* (2—2) _| 2m tan™ [Z—AJ (127)
k-v v k—v k
We define the quadrature squeezing of the two-mode cavity light in the A, frequency interval by
A 2
y S (221 (128)
(Aa— )vil

Furthermore, upon setting Q#0 in Equation (126), we see that the local quadrature variance of a two-mode
cavity vacuum state in the same frequency/Is found totbe

(A= (4a.); 2,(2). (129)
in which
z,(A)= {%} tan'l(yczij -~ { ZK(E/C(;CZ);ﬂ tan™ (2%) (130)

and (Aa_ )j is given by (112). Finally, on account of Equations (110), (112), and (129) along with (128), we

readilysget
Y Q% 20y, +7) ;
o= z, (/1){ (2)=2(4) [(7c +7/)3+Q2 (37, +27)} (l)} (131

This shows that the local quadrature squeezing of the two-mode cavity light beams is not equal to that of the
global quadratlire squeezing. Moreover, we found from the plots in Figure 6 that the maximum local quadrature
squeezing for =0 is 71.73% (and occurs at 2 =0.06) and for »=0.1 is found 71.83% (and occurs at
A1=0.06). And for » =0.2, the maximum local quadrature squeezing is observed to be 71.88% ( and occurs at
A =0.06). Furthermore, we note that the local quadrature squeezing approaches the global quadrature squeezing
as A increases.

5. Conclusions

The steady-state analysis of the squeezing and statistical properties of the light produced by coherently pumped
degenerate three-level laser with open cavity and coupled to a two-mode vacuum reservoir is presented. We

()
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Figure 6. Plot of the local quadrature squeezing [Equations (131)] versus A at steady state for y, =0.4,
k=08, y=0 at 2=0.1717, »=0.1 at 2=0.2323,and »=0.2 at Q=0.303.

carry out our analysis byputting the'naise opeérators,associated with the vacuum reservoir in normal order and
by taking into consideratien the interaction of the three-level atoms with the vacuum reservoir outside the cavity.
We observe that a large partof the total mean_ photon number (variance of the photon number) is confined in a
relatively small frequency interval. In addition, we find that the maximum global quadrature squeezing of the
light produced by the system ‘under consideration for y =0 operating at QQ=0.1717 is 43.42% and for
y=0.1 operating at Q=0.2323 "1§947.15%. And for y =0.2, the maximum global quadrature squeezing is
observed to'be 50% below the vacuum-state level and this occurs when the three-level laser is operating at
Q=0:303. Furthérmore, results show that the presence of spontaneous emission leads to a decrease in the mean
photon number andito an increase in the quadrature squeezing.

Moreover, we findythat the maximum local quadrature squeezing for y =0 is 71.73% (and occurs at
A=0.069mand for %=0.1 is 71.83% (and occurs at 2=0.06). And for y=0.2, the maximum local
quadrature squeezing is observed to be 71.88% (and occurs at A =0.06). In addition, we note from the plots in
Figure Githat as A increases, the local quadrature squeezing approaches the global quadrature squeezing. We
observe that the light generated by this laser operating under the condition Q[ p isin a chaotic light. And we
have also éstablished that the local quadrature squeezing of the two-mode light is not equal to the global
quadrature squeezing.

Furthermore, we point out that unlike the mean photon number and the variance of the photon number, the
quadrature squeezing does not depend on the number of atoms. This implies that the quadrature squeezing of the
two-mode cavity light is independent of the number of photons.
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Appendix
1. Solutions of the Expectation Values of the Cavity (Atomic) Mode Operators

In order to determine the mean photon number and the variance of the photon number, and the quadrature
squeezing of the two-mode cavity light in any frequency interval at steady state, we first need to calculate the
solution of the equations of evolution of the expectation values of the atomic operators and cavity mode
operators. To this end, the expectation values of the solution of Equation (66) is expressible as

e g M, M
a(t))=(a(0))e 2 +—=e 2 [dt'e? ((t")), 132
(a(1))=(a(0)) N I; (m(t)) (132)
We next wish to obtain the expectation value of the expression of m(t) that appéa 132). Thus

applying the large-time approximation scheme to Equation (33), we get
R Q ot
m,)=— m, ), (133)
() {n + 7}< )

upon substituting the adjoint of this into Equation (32), we have

S (©) = v {m, o (134

in which

(135)
(136)
(137)
(138)
zero, the solution of Equation (138) turns out at steady state to be
(i, (1)) =o0. (139)
4) and (138), we find
d, . 1 . 1 .
E<m(t)>:—EV<m(t)>—EV<ma (t)> (140)

(m(t))=0. (141)

Now in view of (141) and with the assumption that the cavity light is initially in a vacuum state, Equation
(132) goes over into

(a(t))=o. (142)

On account of (142) together with Equation (66) that 4(t) is a Gaussian variable with zero mean.
We finally seek to determine the solution of the expectation values of the atomic operators at steady state.
Moreover, the steady-state solution of Equations (34)-(36) yields
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M={ L)) o
<Na>=%{ ; }{<m3>+<fﬁc>}, (144)

Vet

() {2 W) @

Solving these equations simultaneously, one can easily obtains

(rﬁc>={ Q(y, +7) }N, (146)

(e + ;/)3 +0? (37, +27)

{ G lerr) (147)
(r.+7) +9Q% (3, 4
(148)
(149)

(150)
(151)
(152)
rewrite Equation (134) as
S (1) = v, (1) + F, 1), (153)

where Ifa( is a noise operator with vanishing mean. Employing the large-time approximation scheme to
Equation (153), we see that
, (t+7)=2F, (t+7), (154)
v
on introducing this into Equation (152), we have
A N —lk‘r —lkr s 1kr’ 1 ~ A
m(t+z)=m(t)e 2 +e? j'odr'e2 —EFa(t+r’)+ F,(t+7) . (155)
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Now combination of Equations (150) and (155) yields

a(tee)=a()e s e {m(y [dret
, . (156)
+ f;d el _f;d r"e"/? [—E F, (t+7")+ F. (t+ T”):|}.

On multiplying both sides on the left by & (t) and taking the expectation value of the resulting equation, we
get

(8 (a(er o)) =(@ a@)e + e (& (O (1) [jare" "

L (157)
Ty _1a(k=v)e'/2 LS vr'/ A = " A
+Iodre Iodre 2[—§<af(t)Fa(t+r)>+<a* (t+7
Moreover, applying the large-time approximation scheme to Equation e obt
m(t) (158)
With this substituting into Equation (157), there follows
. k
At A | at A —kz/2 —kz/2 At
(& (V)a(t+ o) =(a (Da(t)e ™ +e {§<a
(159)

'

e flace )

(160)
(161)

hesintegration of Equation (159) over ', we readily get

k e—vr/Z _ v e_kT/Z } . (162)
k—v k—v
K gz __V ekr/z}' (163)
k—v k—v
K g2V e—kr/z}, (164)
—y k—v
(8 8 ()= (@ O) e - e o



	Retraction Notification-JQIS6.2 1300185
	5-1300185(水印）

