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Abstract

In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two
new viscosity approximation methods, and then we prove the iterative sequences defined by
above viscosity approximation methods which converge strongly to the fixed points of nonexpan-
sive nonself-mappings. The results presented in this paper extend and improve the results of
Song-Chen [1] and Song-Li [2].
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1. Introduction

Let C be a closed convex subset of a Hilbert space H and T:C — C a nonexpansive mapping (i.e.,
[Tx-Ty|<|x-y| forany x,yeC).Let ueC be afixed point of T. Then for any initial x, eC and real
sequence {4} <(0,1), we define a sequence {x,} by

Xn+1 = n+1u + (1_ /1n+1)TXn (n > O) (1)

Helpern [3] was the first to study the strong convergence of the iteration process (1). In 1992, Albert [4] stu-
died the convergence of the Ishikawa iteration process in Banach space, which was extended the results of Mann
iteration process [5]. But the mappings in these results must be self-mapping and continuous. It is more useful to
get some results for nonself-mappings.

In 2006, Yisheng Song and Rudong Chen [1] studied viscosity approximation methods for nonexpansive
nonself-mappings by the following iterative sequence {Xn} .
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X1 = P(@, f (%) +(1-2,)Tx,) (0<a,<1)

where X is a real reflexive Banach space, and C is a closed subset of X which is also a sunny nonexpansive re-
tract of X. T:C — X isanonexpansive mapping, f:C — C isa fixed contractive mapping and P is a sunny
nonexpansive retraction of X onto C.

In 2007, Yisheng Song and Qingchun Li [2] found a new viscosity approximation method for nonexpansive
nonself-mappings as follows

Xna1 :(an (Xn)+(1_an)PTXn (0< a, <l)

where X is a real reflexive Banach space, and C is a closed subset of X which is also a sunny nonexpansive re-
tract of X. T:C — X isanonexpansive mapping, f:C — C isa fixed contractive mapping and P is a sunny
nonexpansive retraction of X onto C.

In this paper, we will study two new viscosity approximation methods for nonexpansive nonself-mappings
in reflexive Banach space X, which can extend the results of Song-Chen [1] and Song-Li [2] on the two-
dimensional space.

Let us start by making some basic definitions.

2. Preliminary Notes

Let X be a real Banach space with the norm |||, and X" be its dual space. When {x,} is a sequence in X, the

x, — X (respectively x,—— X, x,—%—x) will denote the strong (respectively the weak, the weak star)
convergence of the sequence x, tox. X

Definition 2.1. Let X be a real Banach space and J denote the normalized duality mapping from X into 2%
given by

3(X)= {1 <€ s )=l LI =]} fora xex,

where X" denotes the dual space of X and ( > denotes the generalized duality pairing.

Let F (T) denotes set of the fixed point of T.

Definition 2.2. Let X ba a real Banach space and T a mapping with domain D(T) and range R(T) inT.T
is called nonexpansive if for any x,y e D(T), such that [Tx=Ty|<[x—y| (respectively T is called contrac-
tive if forany X,y e D(T), suchthat [Tx-Ty|< B|x-y|), where 0< g <1.

Definition 2.3. Let X be a Banach space, C and D be nonempty subsets of X, DcC. A mapping
P:C — D s called a retraction from C to D, if P is continuous with F (P) =D. A mapping P:C—>D is
called a sunny, if P(Px+t(x—Px))=Px, forall xeC, t>0, whenever Px+t(x—Px)eC. And a subset
D of Cis said to be a sunny nonexpansive retract of C, if there exists a sunny nonexpansive retraction of C onto D.

Definition 2.4. Let X be a real reflexive Banach space, which admits a weakly sequentially continuous duality
mapping from X to X", and C be a closed convex subset of X, which is also a sunny nonexpansive retract of
X, and T:C — X be nonexpansive mapping satisfying the weakly inward condition and F(T)¢¢, and

f:C —C is called contractive mapping. For a given x, eC and neN, letus define {x,} and {y,} by
the following iterative scheme:

Xpr = P(a, f (%) +(1-,)Ty,) 2
Yo = BoXo + (1= 5,)TX,

where «,,f, €(0,1), lima, =0, limj, =1.
Xo =, F (%) +(1-a,)PTy, @)
Yn :ﬁnxn +(1_ﬂn)TXn

where «,,f,€(0,1), lime, =0, limg, =1.
We call (2) the first typé viscosity ‘approximation method for nonexpansive nonself-mapping and call (3) the
second type viscosity approximation method for nonexpansive nonself-mapping.
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Let us introduce some lemmas, which play important roles in our results.
Lemma 2.1. ([6]) Let X be a real Banachspace, then for each x,y e X , the following inequality holds:

x -+ y||2 £||x||2 +2<y, j(x+ y)) for j(x+y)ed(x+y)

Lemma 2.2. ([7]) Let {a,},{b,}.{c,} be three nonnegative real sequences satisfying

a,, <(1-t,)a, +b,+c, with {t,} =[0.1], D c, <.
n=0

Then a, >0 as n— oo

Lemma 2.3. ([1]) Let X be a real smooth Banach space, and C be nonempty closed convex subset of X, which
is also a sunny nonexpansive retract of X and T :C — X be mapping satisfying the weakly inward condition,
and P be a sunny nonexpansive retraction of X onto C, then F(T)=F(PT).

Lemma 2.4. ([1]) Let C be nonempty closed convex subset of a reflexive Banach space X which satisfies
Opial’s condition, and suppose T :C — X is nonexpansive. Then the mapping I-T is demiclosed at zero, i.e.,
X,——>X, X,—Tx, >0 implies x=Tx.

3. Main Results

First of all, let us study the first type viscosity approximation for nonexpansive nonself-mappings.

Lemma 3.1. ([1]) Let X be a reflexive Banach space which admits a weakly sequentially continuous duality
mapping J from X to X ". Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract
of X, and T:C — X is a nonexpansive mapping satisfying the weakly inward condition and F(T)¢¢, let

f:C —C be afixed contractive mapping from Cto C. Let x, € C be the unique fixed point of T, that is,

X = P(tf (x1)+(1—t)Tx1) ,forany te(0,1),

where P is a sunny nonexpansive retract of X onto C. Thenas t — 0, {xt} converges strongly to some fixed
point p of T. And p is the unique solution in F (T) to the following variational inequality

((I—f)p,j(p—u))so

Forall ueF(T).

Lemma 3.2. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-
ping J from X to X" Suppose C is a nonexpansive retract of X, which is also a sunny nonexpansive retract of X
and T:C — X is a nonexpansive mapping satisfying the weakly inward condition and F (T) ¢, let

f:C —C be afixed contractive mapping from C to C. And {xn}:’:0 is a sequence by definition 2.4 (2), then
the sequence {Xn} is bounded.

Proof. Let peF(T), sowe have

||xn+1—p||=||P(anf(xn) (1-a,)Ty,)- p”
(%) +(1-a,) Tyn—p”
(%)~
(%)= £ (P + (W= lya = P+, | £ (p) -~
<a,fl%, - pl+(-a,)ly, ~ ol +[f (p)- 7]

=a, p)|+(1—an)||Tyn—p||+an ”f(p)—p"

<a,

while,

Boxo +(1=B,)T%, — 1|

L (% = P)+ (1= 5,)(T%, — p)|
< By % = [+ (@-5,)[T - o]
<[x,—pl

v =Pl =
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therefore,
[0 = Pl < @, = P+ (2=, )x, = pl +] £ (P) |
= (1-a + )~ pl+]f (p)- P
=(1-ay (1= 8)) %, ~ ol [ f (p) - ]
since (1-a, (1-))€(0.1),
therefore [x,., — p| < max {[%, — p|.| f (p)— p[} . then {x,} is bounded.

Lemma 3.3. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-
ping J from X to X ". Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract of X,
and T:C — X is a nonexpansive mapping satisfying the weakly inward condition and F (T) ¢, let

f:C—C be a fixed contractive mapping from C to C. And {x }°° is a sequence by definition 2.4 (2). Let

n —

us assume that there are two sequences {e,}, {f,} in [0,1] satisfying the following conditions:
Z(|an - an—1| + |ﬂn - ﬂn—1|> <o
n=1

then
1) !]IJ;Q "Xn - Xn+1|| =0

2) rI]T;l”xn - PTx,||=0

Proof by lemma 3.2, we know that the sequence {X,} is bounded. So the sequences {f(x,)}, {¥,}. Tx,
are also bounded. Therefore, we have

BoXy + (1= B)Tx, = BoaXoy —(1= By TXo

B (X0 = Xoa )+ (1= 8,) (T% =Ty )+ (B = Bt ) (X = T )||
< Balx = Xoual + (0= BT =T [ = Bl [Xas = T
<%0 =X+ 1B = Bl ¥as =T

%0 = %] = ”P (@ f (%) +(1=a,)Ty, )= P(a, f (%) +((1- an_l)Tyn_l)”

o, F (%) + (1= Ty, — s f (%) — (1= a0 y) Yo

(105 106.0) (e 1 (5) =T ) -, )T, T, )

- a1l ] (5 )T 1) 3.

1¥s = Yaul =

(4)

<

by (4), we have

%1 = %l < @B %0 = Xpoa]| + |t — @4 | f (%)= TYos

(L= ) (% = %1 +18, = Bl = Txos])
|f (X01) = TYos
+ (L= )0 = X0 s +18, = Bral X1 =T

}

||Xn+1 - Xn" < (1_ a, + anﬂ)"Xn - Xn—l" + (|an—1 - an| + |ﬂn—l - ﬂn|) Ml

<(1-a, (4 A)) %]+ s 16, - A)M,

Set an+1:||xn+l_xn"’ tnzl_an(l_ﬂ)' bn:O' Cn:(|an—l_an|+|ﬂn—1_ﬁn|)Ml

< 6{nﬂ"Xn - Xn—l" + |an - an—l|

Set M, = max{[x, s =T, s[| f (%2) = T¥os




C. Liu, M. M. Song

by the lemma 2.2 we have
i, -, o
Now we will proof |x, —PTx,[[ >0 as n—w.

[ =P = [0 =X+ [P = PT |

<l gl [P 52 ) P

®)
< "Xn N Xn+1||+ anf (Xn)+(l_an)TXn _TXn
<%y = X+ @ || F (X)) =T,
as n—o, o, —>0 therefore
lim |x, — PTx,[=0. (6)

n—oo

Remark 3.1. From the lemma 3.1 we know that p is the unique solution in F (T) to the following variation-
al inequality:

(1=F)p,j(p-u))<0 for all ueF(T). ()
Now, we can take a subsequence {xnk} of {x,} suchthat
|imsup<f (p)— p, j(Xn - p)>= |iTSUp<f (p)— P, j(Xnk - p)>

we may assume that x, — X" by X is reflexive and {xn} is bounded. It follows from Lemma 2.3, Lemma 2.4,
and (3.3), we have X e F(T)=F(PT), by (7) we have

IirILsotjp<f (p)-p i(x,— p)>= Iir:]_)s:p<f (p)-p j(xnk - p)>£0.

Theorem 3.4. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-
ping J from X to X". Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract of X,
and T:C— X is a nonexpansive mapping satisfying the weakly inward condition and F (T) ¢, let

f:C —> C be a fixed contractive mapping from C to C. And {xn}:;0 is the sequence by definition 2.4 (2). Let
us assume there are two sequences{c, }, {B,} in [0,1] satisfying the following conditions:

Z(|an - aH| + |ﬂn - ﬁn4|) <o

n=1
then the sequence {Xn} converges strongly to the unique solution p of the variational inequality:
peF(T) and ((1-f)p,j(p-u))<0 forall ueF(T).

Proof. Since C is closed, by lemma 3.2, {x,} is bounded, so {f(x,)}, {¥,}, {TX,} are also bounded.
Let {x} be the sequence defined by

X = P(tf (x)+(1-t)Tx,)

by the lemma 3.1 as t — 0 we have {xt} converges strongly to a fixed point p of T and p is also the unique
solutionin F (T) to the following variational inequality

(1=f)p,j(p-u))<0 forall ueF(T)

using the remark 3.1, we have

Iimsup(f (P)-p.j(x,— p)>$0.

n—o0
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By the definition 2.4 (2), we have
oo = Pl = [P (et F (%) + (2=, Ty,) - [

(%) +(1-a,) Tyn—p”

@ (1(4) =)+ (1=, )(1y, - p)f

an)zllyn pll +20, <f( SEMOBICYEL)
+2an<f Xy — p)>

<(l-a,) ||yn - p|| +2a, 8%, = px... = Pl
+2a,(f(p)=p. 1 (X~ P))

=, 3o = plf + @B ([~ oI + [0 = o)

+20, (f(p)= P, § (X0~ P))

While
o = PlI=[8x,+ (1= ) 7%, = ]| < B, [, = Pl + (2= ) [T, =
< Aol ol 0 )5, ~ =,
therefore,
l1-«, 2+an/5' N .
||Xn+1 - p"z S%”Xn - p"2 +m<f (p)_ P, J(Xn+l - p)>
1- 2a,3 —an)z e 2a
<1l o g o 2
where ., = max{(f (P)= P i(Xps— p)>,0}.
Setting a, =|x,—p[. t, =1 af b, 1 a,B || -, c, T ap r., and applying Lemma

2.1, we conclude that x, — p.
Let us prove p is the unique fixed point of T.

We assume that p~ is another solution of (7) in F(T), then <f (p)-p, j(p* -~ p)> <0 and

<f (p*)— P j(p— P*)>S 0, so we have (l—a)"p— p*||£0,which implies the equality p=p’.

Remark 3.2. when g =1 for all neN. The first type viscosity approximation methods for nonexpansive
nonself-mappings (see definition 2.4) become the following iteration sequence:

Xp1 = P, f (%) +(1-,)Tx, ).

So the theorem 3.4 improves the theorem 2.4 of Song-Chen [1].

Now let us study the second type viscosity approximation for nonexpansive nonself-mappings.

Lemma 3.5. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-
ping J from X to X ". Suppose C is a nonexpansive retract of X, which is also a sunny nonexpansive retract of X
and T:C— X is a nonexpansive mapping satisfying the weakly inward condition and F (T) ¢, let

f:C —C be afixed contractive mapping from C to C. And {xn}:’:0 is a sequence by definition 2.4 (3), then
the sequence {x,} is bounded.

Proof. Let peF(T), sowe have
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) (1- an)PTyn—p"

( —1(p))+ e, (f(p)=p)+(L-a)(PTy, - p)|

||Xn+1 p|
<

f(p)+(1-a,) ||vn— -pf
Sanﬂllxn—pll +(1=a, )y, - o
while,
"yn p"_ anXn+(1 ﬂn TX p"

<[}, (%, = p) +(1=,) (T, ~ p)|

< Bulxs = pll+ (1= 8T, = o

<[~
therefore,

[ = Pl < (1=, + @, B)[x%, = p[+|f (P)-p|
= (1-a, (1=B)) % — p|+]f (p)- b

since (1-a, (1-))€(0.1),
therefore [|x,., — p||< max {|x, - p|.|  (p)~ p|} . then {x,} is bounded.

Lemma 3.6. ([2]) Let X be a reflexive Banach space which admits a weakly sequentially continuous duality
mapping J from X to X ". Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract
of X, and T:C — X is a nonexpansive mapping satisfying the weakly inward condition and F(T)¢¢, let

f:C —>C be afixed contractive mapping from Cto C. Let x, € C be the unique fixed point of T, that is,

X, =tf (x)+(1-t)PTx, forany te(0,1),

where P is a sunny nonexpansive retract of X onto C. Thenas t — 0, {xt} converges strongly to some fixed
point p of T. And p is the unique solution in F (T) to the following variational inequality:

((I—f)p,j(p—u))so

forall ueF(T).

Lemma 3.7. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-
ping J from X to X" Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract of X,
and T:C— X is a nonexpansive mapping satisfying the weakly inward condition and F( ) @, let

f:C —C be a fixed contractive mapping from C to C. And {xn}“’ , s asequence by definition 2.4 (3). Let
us assume that there are two sequences {c,}, {B,} in [0,1] satisfying the following conditions:

Eqan _an—1| + |ﬂn - ﬂn—1|> <o

then
1) lim|x, —=x,,|=0

n—o

2) limx, —PTx, | =0.

Proof by lemma 3.5, we know that the sequence {X,} is bounded. So the sequences {f (x,)}, {¥,}. Tx
are also bounded. Therefore, we have:

I¥n = Youll = [18% + (1= B)T% = BuaXos — (1= Bra) Xy
=18, (X, =Xy )+ (1= B)(Tx, = Tx )+ (B, = Brs) (X = TXo s )||
< Bl = Xoall + (2= BT, = Txosa| +18, = Bl %o =T
<%0 =X + B s = Bl ¥0 s =T

n

(®)
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I

nel — Mn

(%) + (1=, )PTy, — s f (%0a)— (L—ans) PTy,
=y (£ (62) = £ (%02))+ (@ =) (F (X02) = PTY 0 ) + (L= ) (PTY, = PTy, )|

= anﬁ”Xn - Xn—1||—’—|0!n n 1|||f Xn 1) PTyn 1" 1 a "yn yn 1"

by (8), we have

%002 = %a [l < @0 B]|%0 = X+ |t = an71||| f(X1)—PTY,y
+ (2= ) (%0 = Xocall+ 18 = Brcal X = x4

<, B|%, =X, 1|+t = | (%, 1)~ PTY, 4

+ (1= ay )% = %o+ 18 = Brall o = Toa |

|

1~ %o " < (l_an + anﬁ)"Xn - Xn—1||+<|an—l _an|+|ﬂn—l _ﬂn|) M
<(1=a, (1= B)) %y =%l + (et s = | [ Brs = Bl )M

Set M, =max{|x, ; = Tx, .| f (x,1) = PTy,,

I

Set an+1 :||Xn+l - Xn"’ tn :l_an (1_ﬂ) ' bn = O ' Cn = (|an—l _an|+|ﬂn—l _:Bn|)M
by the lemma 2.2 we have

lim||x, —X,.,]|=0.

n—o

Now we will proof |x, —=PTx,[[>0 as n—w.

%, = PTX, [ = %, = Xoua ||+ [ X = PTX, |
<%, —x (%) +(1-a,)PTy, -
<%0 = X+ || F (%) - +(1-a,)|PTy, - PTx, || ©)
<[ =Xl + @ [ 1 () = PTx, [+ (1= ) [y = %,
I¥e = %o = (8% + (1= B,) T, = %, | = )% =T, |
as n—ow, a,—0, g, —1 therefore
lim |x, —PTx,[=0. (10)

Remark 3.3. From the lemma 3.6 we know that p is the unique solution in F (T) to the following variation-
al inequality:

(1=F)p, j(p-u))<0 for all ueF(T). (11)
Now, we can take a subsequence {xnk} of {x,} suchthat
Iimsup(f (p)-p (% -p))= Iir:15up<f (p)—p.i(%, - p)>

we may assume that x, — x" by X is reflexive and {xn} is bounded. It follows from Lemma 2.3, Lemma 2.4,
and (10), we have X e F (T)=F(PT), by (11) we have

“T_,S:jp“ (p)-p.i(% - p)>=|irkn_)s:p<f (p)-p. J'(Xnk - p)>£0

Theorem 3.8. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality map-

()
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ping J from X to X". Suppose C is a nonexpansive retract of X which is also a sunny nonexpansive retract of X,
and T:C— X is a nonexpansive mapping satisfying the weakly inward condition and F (T) ¢, let
f :C — C be afixed contractive mapping from C to C. And {xn}w is the sequence by definition 2.4 (3). Let

us assume there are two sequences {a,}, {B,} in [0,1] satisfying the following conditions:

Z(|an _an—l| + |ﬂn - ﬁn—1|> <o

n=1
then the sequence {Xn} converges strongly to the unique solution p of the variational inequality:
peF(T) and ((1-f)p, j(p-u))<0 forall ueF(T).

Proof. Since C is closed, by lemma 3.5, {x,} is bounded, so {f(x,)}, {¥,}. {Tx,} are also bounded.
Let {x} be the sequence defined by

X = P(tf (x)+(1-t)Tx,)

by the lemma 3.6 as t — 0 we have {Xt} converges strongly to a fixed point p of T and p is also the unique
solutionin F (T) to the following variational inequality

{(1=f)p,j(p-u))<0 forall ueF(T)
using the remark 3.3, we have

limsup(f (p)-p,j(% —p))<0

nN—0

By the definition 2.4 (3), we have
(%) +(1-a,)PTy, - p[
ay (1 (%)= p) +(1-a,) (PTy, ~ p)f
<(1-a, ) [PTY, = bl + 2, (F (%)= £ (P), i (%2~ P))
+2a, (T (p)= P, j (%1 - P))
=) [vo = Pl + 20,8, ~ .2~
+2an<f (p)= P i(Xps— p))
<(1-a,)’ [0 = P + @B ([~ pIf +%. ~ P
+20, (T (p)=p. j (X1 - D))

I

nl

While
Ivs = Pl =[5+ (1= 8.)Tx, = B[ < B[, = [+ (1= 5,)[Tx, - p]
< By % = pll+@= 4 = ol =[x, = pl
therefore,

(1—0:n)2 +a,B

%= Pl Swn —p + nﬂ< (P)- P, i (X~ P))

Az, 2a
e e L e & S Rt

where ., =max{(f(p)-p, (¥~ p)).0}

()
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24, r , and applying Lemma

n 1_anﬂ n+l

Setting a, =[x, - p|, t, =1 1ap " 1-ap

% el < =

2.1, we conclude that x, —» p.
Let us prove p is the unique fixed point of T.
We assume that p~ is another solution of (12) in F(T), then <f (p)-p. j(p*— p)>go and

<f (p*)— P j(p— P*)>§0, so we have (l—a)"p— p*||£0,which implies the equality p=p’.

Remark 3.4. When g =1 forall neN. The second type viscosity approximation methods for nonexpan-
sive nonself-mappings (see definition 2.4) become the following iteration sequence:

o =, f (Xn)+(l_an) PTx, .
So the theorem 3.8 improves the theorem 4.3 theorem 4.4 of Song-Li [2].

4. Conclusion

In this paper, we studied two new viscosity approximation methods for nonexpansive nonself-mappings, which
were defined by definition 2.4. And then we proved that the sequences {xn} which were defined by definition
2.4 converged strongly to the fixed point of T, which were the nonexpansive nonself mappings in Banach space.
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