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Abstract 
We present an efficient and elementary method to find the partial fraction decomposition of a ra-
tional function when the denominator is a product of two highly powered linear factors. 

 
Keywords 
Partial Fraction Decomposition, Synthetic Division, Heaviside Coverup 

 
 

1. Introduction 
Partial fraction decomposition is a classic topic with applications in calculus, differential equations, control 
theory, and other fields of mathematics. Theoretically, it is well-known that every rational function has a unique 
partial fraction decomposition as it is an easy exercise in abstract algebra. However, actually decomposing a 
rational function into partial fractions is computationally intensive. From the aspect of computation, there has 
been recent developments in this topic for general rational functions [1] as well as special cases [2]-[7]. In this 
article, we present a method for the special case when the denominator is given as a product of two highly 
powered linear factors. 

( )
( ) ( )m n

f x
x xα β− −

 

The case when the denominator is a power of a single linear factor has been treated in [2] and [5]. 

( )
( )m

f x
x α−

 

Our method is built on top of their methods with the observation that when the denominator is of the form nx  
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the partial fraction decomposition is trivial. The method does not use any derivatives and the computation 
involves only simple algebraic operations associated with repeated synthetic division. So the method is 
applicable to both hand and machine calculuations. 

2. Partial Fraction Decomposition 
We separate the case when 0α =  from the case when 0α ≠ . We will assume the factors in the denominator 
are monic since we can always factor out leading coefficients if necessary. We also assume that the degree of 
the numerator is less than the degree of the denominator for simplicity of presentation. However the method 
works in such a case with a little modification (by adding an extra step of back substitution in the end). 

Case 1: The denominator is a product of mx  and ( )nx β− . 

( )
( ) ( ) ( )

1 2 1 2
2 2 .m n

n m nm

f x A BA A B B
x xx xx x x xββ β β

= + + + + + + +
−− − −

                  (1) 

In this case, we find the constants backward from nB  down to 1B  recursively using Heaviside cover-up 
method and synthetic division. By the Heaviside cover-up method, we get 

( ) .n m

f
B

β
β

=  

Then we subtract the last term from Equation (1) to get 

( )
( ) ( )

( )
( )

( )
( )

1
1

m
n nn

n n n nm m m

f x f x x B f xB
x x x x x x xβ β β β

−
−

−
− = =

− − − −
 

where ( )1nf x−  is the quotient when ( ) m
nf x x B−  is divided by x β− , which is obtained by synthetic 

division with zero remainder. We repeat the process recursively to get all Bi’s. 

( ) , 1, 2, , .i
i m

f
B i n

β
β

= =   

where fi's are successive quotients from synthetic division. In the end, a function of the form ( )0
m

f x
x

 is left. The  

coefficient of ( )0f x  are exactly 1 2, , , mA A A . 
Example 1. We demonstrate how to decompose the following function. 

( )
( )

6 5 4 3 2

43

3 5 5 14 13 6 1
1

x x x x x xp x
x x

− − + − + −
=

−
 

By the Heaviside cover-up method, 

( )4 3
3 5 5 14 13 6 1 1 1

11
B − − + − + − −

= = = −  

and subtract 
( )4

1
1x

−

−
 from ( )p x , then we have 

( )
( )

( )
( ) ( )

3 6 5 4 3 2

4 4 43 3

1 3 5 5 15 13 6 1
1 1 1

x x x x x x xp x p x
x x x x x
− − − − + − + −

− = − =
− − −

 

The numerator is divisible by 1x − , so we apply synthetic division to simplify the function and get 

( )

5 4 3 2

33

3 2 7 8 5 1
1

x x x x x
x x

− − + − +

−
 

Repeat the process to get 3 2B = −  and 2 3B = , 1 2B =  and we are left with 
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2

3 2 3
2 1 1 2 1 .x x

xx x x
+ −

= + −  

Then 1 2 31, 2, 1A A A= = = − , and the answer is 

( ) ( ) ( )2 3 2 3 4
1 2 1 2 3 2 1

1 1 1 1x xx x x x x
− − −

+ + + + + +
− − − −

 

The whole process can be done as shown in Table 1. 
Remark 1. The remainder theorem says that the evaluation of ( )if β  can be done by synthetic division as it 

is equal to the remainder when ( )if x  is divided by x β− . The method is also known as Horner's rule. For 
example, 4B  in Example 1 can be evaluated as follows. 

 
( )

4 3 3

1 1 1
1 1

f
B −

= = = −
 

Case 2: The denominator is a product of ( )mx α−  and ( )nx β−  with m n≥ . 

( )
( ) ( ) ( ) ( )

1 1= m n
m n m n

f x A BA B
x xx x x xα βα β α β

+ + + + +
− −− − − −

                     (2) 

In this case, we take two steps. The first step is to make a substitution u x α= −  and expand ( )f x  in 
x α− . Then the problem is reduced to Case 1. The second step is to solve the reduced problem. 

( )
( ) ( )

( )
( )

( ) ( ),m n nm

f x g u
g u f u

x x u u
α

α β α β
= = +

− − + −
 

We substitute the linear factor with a higher degree because it would reduce the amount of work in the second 
step. 

We can get the coefficients of ( )f x  expanded in x α−  through repeated synthetic division [2] as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )

1 2
1 2 1 0

1 2
1 2 1 0

2
2 1 0

k k
k k

k k
k k

k
k

f x c x c x c x c x c

x c x c x c x c c

x x c x c c c

α α α α

α α α α

α α α

−
−

− −
−

−

= − + − + + − + − +

= − − + − + + − + +

= − − − + + + +

=









 

Note that 0c  is the remainder when ( )f x  is divided by x α− , and 1c  is the remainder when the quotient 
is divided by x α− , and so on. 

The algorithm for this case is presented below for implementation in a computer. 
 

Table 1. Synthetic Division for Example 1.                                                    

 

( ) 3
4 1 1 1,B f= = −  14 − (−1) = 15 

( ) 3
3 3 1 1 2,B f= = −  −7 − (−2) = −5 

( ) 3
2 2 1 1 3,B f= =  1 − 3 = −2 

( ) 3
1 1 1 1 2,B f= =  3 − 2 = 1 
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Algorithm 
Input: numerator ( ) 0

k i
iif x c x

=
= ∑ , denominator ( ) ( )m nx xα β− −  with k m n< +  

Output: partial fraction constants 1 1, , , , ,m nA A B B   as in Equation (2) 
Procedure: Step 1. Substitution 
for 0i =  to k 
for 1j k= −  to i 

1j j jc c cα +← +  
end for 
end for 
Step 2. Partial Fraction Decomposition 
for 0i =  to 1n −  

( )
n i m

f
B

β
β− ←  

m i m i n ic c B+ + −← −  
for 1j k= −  to i 

1j j jc c cβ +← +  
end for 
end for 

1i k iA c − +←  for 1, ,i n=   
Example 2. We show how the method works for the following function. 

( )
( ) ( ) ( ) ( )

6 5 4 3 2

3 4 3 4
2 7 11 9 16 6

1 1 1 1
f x x x x x x x

x x x x
+ + − − − −

=
− + − +

 

Let 1u x= + . We expand the numerator in 1x +  to convert the problem to 

( )
( ) ( )

6 5 4 3 2

3 34 4

2 5 4 15 10 12 8 .
2 2

g u u u u u u u
u u u u

− − + − − +
=

− −
 

Then apply the method in Case 1 to get the answer 

( ) ( ) ( )2 4 2 3
1 2 1 1 3 2 .

1 1( 1)1 1 1x xxx x x
− −

+ + + + +
+ −++ − −

 

The whole process is described in Table 2. 
 

Table 2. Synthetic Division for Example 2.                                              

Substitution Partial Fraction Decomposition 

 

 

 

( ) 4
3 2 2 2B g= = −  

( ) 4
2 2 2 2 3B g= =  

( ) 4
1 1 2 2 1B g= =  

1 2 3 41, 2, 0, 1A A A A= = = = −  
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Case 3. The denominator is a product of ( )mx α−  and ( )2 n
x bx c+ +  with 2 4 0b c− < . 

( )
( ) ( ) ( ) ( )

1 1 1
22 2

m n n
n m nm

f x A B x CA B x C
x x bx cxx x bx c x bx cα αα

++
= + + + + +

− + +−− + + + +
             (3) 

The method presented above also works when one of the factors in the denominator is a power of an 
irreducible quadratic function even though the computation could be challenging when it is done by hand. 

The first step is to make a substitution u x α= − . The next step is to find the constants Bi’s and Ci’s 
backward. It can be done using the quadratic divisor version of synthetic division. Once all constants are found, 
we get the solution by back substitution. 

Let us elaborate on how to find nB  and nC  assuming 0α = . Multiplying both sides of Equation (3) by the 
denominator, we get 

( ) ( ) ( ) ( ) ( ) ( )
11 2 2

1 1 1

n nn m m
m n nf x A x A x bx c B x C x x bx c B x C x

−−= + + + + + + + + + + +   

We reduce the right hand side modulo 2x bx c+ +  by sending it to the field  
[ ] ( ) { }2 2/ | , , 0x x bx c px q p q x bx c+ + = + ∈ + + =  . Modulo 2x bx c+ + , 

( ) ( ) ( )or .m m
n n n nf x B x C x B x C f x x−≡ + + ≡  

We reduce ( )f x  to a linear form using the quadratic version of synthetic division. The inverse of x is  

1 1 bx x
c c

− = − −  and mx−  can be reduced to a linear form by expanding ( )1 1m m
mbx x b

c c c
   − − = − +   
   

 using  

the repeated squaring method. Then we multiply two linear forms and reduce it again to finally get nB  and nC . 
The same technique is described in examples in [4] when the denominator has factors of exponents 1 or 2. 

Example 3. We demonstrate how the method works for the following function. 
( )

( ) ( ) ( ) ( )
6 5 4 3 2

2 23 32 2

2 7 16 24 18 5 1

1 1 1 1

f x x x x x x x

x x x x x x

− + − + − −
=

− − + − − +
 

Let 1u x= −  and ( ) ( )1g u f u= + . Then 
( )

( ) ( )
6 5 4 3 2

2 23 2 3 2

2 5 11 20 22 10 1

1 1

g u u u u u u u

u u u u u u

+ + + + + −
=

+ + + +
 

The inverse of 3u  in [ ] ( )2/ 1u u u+ +  is computed as follows. 

( ) ( ) ( )3 22

1 1 1 1 1 1 1
1 1 1u u u uu u uu u

= = = = = =
− − − − − −− −

 

Then the constants of the partial fractions are obtained as in Table 3 and give us 

( )2 3 2 22

1 2 1 4 4 .
1 1

u u
u u u u u u u

+
+ − + +

+ + + +
 

We get the final answer when we replace 1x −  for u. 

( ) ( ) ( )2 3 2 22

1 2 1 1 4
1 11 1 1

x x
x x xx x x x

−
+ − + +

− − +− − − +
 

3. Computational Complexity 
We count the number of operations required for the method described in this article as follows. The synthetic 
division requires n multiplications and n additions where n is the degree of the polynomial. In the substitution 
step, we perform 

( ) ( )1
1 1

2
n n

n n
+

+ − + + =  
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Table 3. Synthetic Division for Example 3.                                                      

Reductions Modulo u2 + u + 1 Partial Fraction Decomposition 

 

 

 
multiplications and additions. In the second step of partial fraction decomposition, we use less number of 
synthetic divisions. For the evaluation of functions through synthetic division, the cost is the same. Therefore, 
the total computational cost is ( )2O n . 

This method is not the best algorithm in terms of asymptotic speed as the algorithm in [8] is performed in 
( )2logO n n  steps. However, this method is still intersting because it uses only one technique (synthetic division) 

in the whole process and hand calculation is straightforward. 
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