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Abstract 
In the present study, an analytical solution is presented to solve the problem of combined seepage, 
under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a 
confined seepage followed by an unconfined seepage in the same field, which presents a combined 
seepage problem. Two equations were developed to analyze the combined seepage underneath a 
sheet piling wall. Using such equations, both the maximum height of the free surface just behind 
the sheet piling cofferdam (Ho) and the quantity of seepage discharge to be pumped out from the 
construction site (q) can be determined. The main parameters affecting the combined seepage 
characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), 
the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site 
(D), the embedded depth of sheet pile (S), the retained water head (H1), the accumulated seepage 
water depth (H2), and the side slope factor of excavation line (M). Study showed that, the above 
parameters have a great effect on the combined seepage, but with different extents. 
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1. Introduction 
Excavation and preparation of the construction sites for both hydraulic and marine structures are accompanied 
by some problems concerned with seepage of groundwater towards the excavated area. Site drainage is con-
ducted by lowering the groundwater table, to be below the foundation surface, using different techniques called 
dewatering systems. Seepage in zones of hydraulic structures may either be confined or unconfined. Practically 
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confined or unconfined seepage often occurs with an individual form. Combination of both types may also take 
place in the same field beneath hydraulic structures. Seepage flow underneath a sheet piling cofferdam, surround-
ing an excavated area prepared for constructing a hydraulic structure, is a typical example for the combined 
seepage flow. 

In the present study a sheet piling wall is used as a cofferdam not only to retain water head but also utilizing 
its penetration depth to lower the seepage line below the foundation level in the construction site. In this case, 
the sheet piling wall divides the flow pattern into two zones: (I) and (II). Zone (I) is equipped with confined 
seepage while in zone (II) unconfined seepage takes place. Existence of such two types of seepage in the same 
field under the same head presents a combined seepage problem, as shown in Figure 1. 

Pavlovsky (1933) [1] presented a mathematical solution for some idealized problems of confined seepage be-
neath gravity hydraulic structures using the stream and potential functions. Khosla (1954) [2] derived formula to 
calculate both the uplift pressure along the subsurface contour of the floor and the exit gradient at the down-
stream bed. Harr (1962) [3] explained the use of transformations and mapping to transfer the geometry of a see-
page problem from one complex plane to another. Chawla and Garg (1969) [4] derived an exact solution to cal-
culate the uplift pressures and the exit gradients for a hydraulic structure founded on an infinite pervious stratum 
with finite and infinite pervious reaches on the upstream and downstream sides. Chawla (1972) [5] resolved the 
same problem for the case when the structure is founded on finite pervious stratum. Kimura and Ohne (1983) [6] 
studied the three dimensional seepage around the abutment foundation of a dam with a cut off wall using both 
model tests and numerical computations by finite element method. Elganainy (1985) [7] studied the seepage be-
neath a horizontal flat floor, without cutoff, based on pervious foundation bounded by an impermeable layer. He  
 

 
Figure 1. Parameters affecting the combined seepage underneath a sheet piling wall, (a) plan for the construction site, 
and (b) vertical section a-a.                                                                                               
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presented formulae to calculate the uplift pressure distribution along the floor, the exit gradient along the down-
stream bed and the seepage discharge per unit width. Hathoot (1986) [8] studied the problem of confined see-
page beneath a concrete dam with flat horizontal floor and a downstream filter, based on a homogeneous iso-
tropic soil. He investigated the optimum length of the filter so that the most of seepage quantity can be drained. 
Later, Hathoot et al. (1992) [9] used the same procedure, but for a floor with an end sheet pile. They recommend-
ed that, the length of filter is in the range of 2.24 to 2.52 of the permeable foundation soil depth. Nasr (1992) [10] 
developed an analytical solution using the conformal mapping technique for the problem of seepage beneath a 
hydraulic structure having two unequal cutoffs founded on two pervious strata. The lower stratum has higher 
permeability than the upper one. El-Fitiany and Nasr (1992) [11] presented a numerical model using the finite 
element model to study the effect of the flow domain dimensions on the seepage characteristics beneath a floor 
having upstream or downstream sheet pile. They concluded that, the inlet and exit surfaces have 1.5 to 2.0 times 
the floor length is sufficient to keep the resulting deviations within 3%. Sherif (2004) [12] applied the finite 
element method to develop the numerical solution for case of unconfined seepage between two parallel and un-
equal water level open streams. The analysis indicated that, increase each of the pervious layer thickness, the 
lower stream side slopes, and the water head difference cause an increase in the quantity of seepage. Albehbah 
(2006) [13] studied the combined seepage flow underneath a sheet piling coffer dam using the finite element 
method, considering only one specific value for the excavation depth to be one third the depth of foundation 
layer. Results of such solution cannot be used for other values of the excavation depth. Therefore, the analytical 
solution, developed in the present study, may be applied for different values of the relative excavation depth. 

The objective of this research is to propose an analytical solution to solve the problem of combined seepage 
under a sheet piling cofferdam. Two equations including the factors influenced the combined seepage are de-
veloped to determine the maximum height of the free surface just behind the sheet piling cofferdam and the 
quantity of seepage discharge. 

2. Analytical Study 
The analytical solution aims at predicting theoretical equations including the main parameters involving in the 
current problem. These equations may give estimation for the quantity of seepage water to be drained outside the 
construction site as well as the maximum depth and shape of the free surface. The combined seepage presents a 
combination of the two basic types of seepage; confined and unconfined. Therefore, the analytical solution for 
both types will be individually discussed; hence a combination of the two solutions is then developed. 

2.1. Confined Seepage Flow 
Confined seepage problem is characterized in that all boundaries of the flow domain are initially known and 
completely defined. As given by Harr (1962) [3], the case of a confined seepage under impervious structure with 
sheet pile based on layer of finite depth was studied by Pavlovsky (1956) [14] and Muskat (1936) [15], as shown 
in Figure 2, using the Schwarz-Christoffel transformation. As a result, the seepage discharge due to confined 
seepage per unit width can be determined as follows: 

con s
Kq K H
K
′

=                                      (1) 

where Ks is the hydraulic conductivity coefficient for the pervious foundation soil, H is the total effective head 
on the structure, and K', K are the constants of complete elliptic integral of the first kind with respect to modulus 
(m), which may be found as follows: 

2 2π π πcos tan tan
2 2 2

S b Sm
T T T

= +                               (2) 

where S is the depth of sheet pile, T is the depth of pervious foundation soil, and b is length of the left and right 
parts of the structure base width with respect to sheet pile (b1 = b2 = b). 

It should be noticed that, the values of the constants k, k' can be determined from specific tables according to 
the value of the modulus (m), as given by Milton, et al. (1970) [16]. 

2.2. Unconfined Seepage Flow 
The unconfined seepage problem is characterized by one boundary of the flow domain, free surface. Considering  
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Figure 2. Case of a confined seepage under impervious structure with sheet pile based on layer of finite depth.                        

 
a two dimensional flow on a horizontal impervious boundary, the Dupuit’s formula for the unconfined seepage 
discharge per unit width is: 

( )2 2
1 22

sKq h h
L

 = − 
 

                                 (3) 

where h1 and h2 are the elevation of the two points on the free surface, with distance (L) in between. 

2.3. Combined Seepage Flow 
Considering the confined seepage problem shown in Figure 2 and eliminating the width of structure, the prob-
lem is transformed to a seepage flow beneath a single sheet pile. This case is typically found in zone (I) con-
cerning confined seepage. Therefore, the seepage discharge due to confined seepage in zone (I) may be found 
using Equation (1). 

Substituting for the effective head (H), where H = T + H1 – Ho, the confined seepage discharge equation per 
unit width may be written as follows: 

( )1con s oq K T H KH
K
′

−  = +  
 

                             (4) 

where H1 is the depth of retained water by the sheet pile, and Ho is the maximum height of free surface just be-
hind sheet piling cofferdam. 

Considering the base width (b) = 0 in Equation (2), the modulus (m) becomes: 
πsin
2

Sm
T

 = ⋅ 
 

                                  (5) 

Substituting for h1 = Ho and h2 = T – D +H2 in Equation (3), the unconfined seepage discharge equation per 
unit width is given as follows: 

( )22
22

s
oun

K
q H T D H

L
   = − − +    

                           (6) 

where D is the depth of excavation in the site, H2 is the depth of seepage water above the foundation layer, and L 
is the horizontal projection of the free surface length. 

For the steady flow condition, the discharge of both confined and unconfined seepage should be the same. 
Then, equating Equations (4) and (6), one can obtain the following equation: 

( ) ( )22
2 12 2o o

K KH LH T D H L T H
K K
′ ′

+ = − + + +                      (7) 
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Adding the term 
2KL

K
′ 

 
 

 to each side of the above equation and rearranging, the maximum relative height 

of free surface oH
T

 
 
 

 may be given as follows: 

2 2
2 11 2 1oH H HD L K L K L K

T T T T T K T K T K
′ ′ ′     = − + + + + −         

                   (8) 

The relative horizontal projection of the free surface length L
T
 
 
 

 can be determined as follows: 

2HL X DM
T T T T

 = + − 
 

                                 (9) 

where X is the horizontal distance between the sheet piling cofferdam and the excavated area, M is the side slope 
factor (M = cotθ), and θ is the inclination angle of excavation slope. 

Once the maximum height of free surface (Ho) is found from Equation (8), quantity of the relative seepage  

discharge 
s

q
K T

 
 
 

 is then calculated, using Equation (4),by: 

11 o

s

HHq K
K T T T K

′  = + −     
                              (10) 

3. Analysis and Discussion 
The depth of foundation layer (T) is kept constant as a reference parameter to which the other parameters are re-
lated. Using the dimensional analysis technique, the maximum relative height of the free surface (Ho/T) and the 
relative quantity of seepage discharge (q/(KsT)) could be written in the following forms: 

1 2
1

oH H HD S Xf M
T T T T T T

 = + + + + + 
 

,and                     (11) 

1 2
2

s

H Hq D S Xf M
K T T T T T T

 = + + + + + 
 

                       (12) 

The following analysis deals with the effect of specific values of the considered parameters on the values of 
(Ho/T) and (q/(KsT)). 

3.1. Effect of the Seepage Water Depth (H2) 
Considering specific values of the relative parameters (H1/T) = 0.0, 0.2, (X/T) = 0.0, 0.5, 1.0, (D/T) = 0.2, 0.6, 
1.0, M = 1.0, and (S/T) = 0.2, 0.4, 0.6, 0.8, values of (Ho/T) are plotted against (H2/T) values. Figure 3 is an ex-
ample to illustrate the effect of variation of (H2/T) values on (Ho/T) values for specific values of (H1/T) = 0.0, 
(X/T) = 0.0, M = 1.0, (D/T) = 0.6, and (S/T) = 0.2, 0.4, 0.6, 0.8. It is found that, values of (Ho/T) increase with 
increasing values of (H2/T) for values of (D/T) = 0.2 to about 0.8. For values of (D/T) > 0.8, values of (Ho/T) 
slightly decrease with increasing values of (H2/T), as shown in Figure 4. 

Also, values of (q/(KsT)) corresponding to values of (Ho/T) are plotted against (H2/T) values. Figure 5 illu-
strates the effect of variation of (H2/T) values on (q/(KsT)) values for specific values of (H1/T) = 0.2, (X/T) = 0.0, 
M = 1.0, (D/T) = 0.2, and (S/T) = 0.2, 0.4, 0.6, 0.8. It is seen that, values of (q/(KsT)) linearly decrease with in-
creasing values of (H2/T). Such decrease in (q/(KsT)) values gradually disappears with increasing values of (D/T), 
as shown in Figure 6. 

From results of the analysis in this case, it is noticed that, when value of (H2/T) = (D/T) = 0.2, and (H1/T) = 
0.0, the value of (Ho/T) = 1.0 and in turn value of (q/(KsT)) = 0.0. For all values of (Ho/T) > 1.0, the correspond-
ing values of (q/(KsT)) are deleted since combined seepage is only existed for values of (Ho/T) < 1.0. 
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Figure 3. Effect of (H2/T) on (Ho/T) for (D/T) = 0.6, (X/T) = 0.0, and (H1/T) = 0.0.                                          

 

 
Figure 4. Effect of (H2/T) on (Ho/T) for (D/T) = 1.0, (X/T) = 0.0, and (H1/T) = 0.0.                                 

3.2. Effect of the Retained Head (H1) 
Considering specific values of the relative parameters (H2/T) = 0.0, 0.2, (X/T) = 0.0, 0.5, 1.0, (D/T) = 0.2, 0.6, 1.0, 
M = 1.0, and (S/T) = 0.2, 0.4, 0.6, 0.8, the effect of the relative retained water head (H1/T) on values of (Ho/T) and 
(q/(KsT)) is analyzed. Figure 7 shows the relation between (Ho/T) and (H1/T) for specific values of (X/T) = 0.5, 
(H2/T) = 0.0, M = 1.0, (D/T) = 0.2, and (S/T) = 0.2, 0.4, 0.6, 0.8. It is shown that, (Ho/T) linearly increases as 
(H1/T) increases for all values of (D/T). Also, it is shown that, when (H2/T) = (D/T) = 0.20, and (H1/T) = 0.05, 
0.10, 0.15, 0.20, the values of (Ho/T) > 1.0. In this case, the theory of combined seepage is not valid and the 
seepage flow becomes confined seepage. 
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Figure 5. Effect of (H2/T) on (q/(KsT)) for (D/T) = 0.2, (X/T) = 0.0, and (H1/T) = 0.2.                                              

 

 
Figure 6. Effect of (H2/T) on (q/(KsT)) for (D/T) = 0.6, (X/T) = 0.0, and (H1/T) = 0.2.                            

 
Figure 8 illustrates the effect of variation of (H1/T) values on (q/(KsT)) values for specific values of (H2/T) = 

0.0, (D/T) = 0.2, M = 1.0, and (S/T) = 0.2, 0.4, 0.6, 0.8. It is obvious that, (q/(KsT)) increases as (H1/T) increases. 
Also, it is noticed that, when value of (H2/T) = (D/T) = 0.2, the values of (q/(KsT)) = 0.0 for any value of (H1/T). 

3.3. Effect of the Sheet Pile Depth (S) 
Applying specific values of the relative parameters (H1/T) = (H2/T) = 0.0, 0.2, (D/T) = 0.2, 0.6, 1.0, M = 1.0, 
and (X/T) = 0.0, 0.5, 1.0, the effect of variation of (S/T) values on both (Ho/T) and (q/(KsT)) values is checked as  
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Figure 7. Effect of (H1/T) on (Ho/T) for (D/T) = 0.2, (X/T) = 0.5, and (H2/T) = 0.0.                                                 

 

 
Figure 8. Effect of (H1/T) on (q/(KsT)) for (D/T) = 0.2, (X/T) = 0.0, and (H2/T) = 0.0.                                         

 
illustrated in Figure 9 and Figure 10. Figure 9 shows the effect of variation of (S/T) values on (Ho/T) values for 
specific values of (H1/T) = (H2/T) = 0.0, M = 1.0, (D/T) = 0.6, and (X/T) = 0.0, 0.5, 1.0. It is clear that, values of 
(Ho/T) strongly decrease as values of (S/T) increase up to (S/T) = 0.20, after which a slight decrease is obtained. 
Also, it is seen that, when (H2/T) = (D/T) = 0.20, (X/T) = 0.0, 0.5, 1.0, values of (Ho/T) ≥ 1.0. 

On the other hand, Figure 10 illustrates the effect of variation of (S/T) values on (q/(KsT)) values for specific 
values of (H1/T) = (H2/T) = 0.0, M = 1.0, (D/T) = 0.6, and (X/T) = 0.0, 1.0. It is found that, values of (q/(KsT)) 
have the same trend as values of (Ho/T), where decrease as (S/T) values increase. Also, it is shown that, for val-
ues of (H2/T) = (D/T) = 0.2, (H1/T) = 0.0, the obtained values of (q/(KsT)) = 0.0 for values of (X/T) = 0.0, 1.0 at 
which (Ho/T) ≥ 1.0. 

3.4. Effect of the Sheet Pile Location (X) 
Using specific values of the relative parameters (H1/T) = 0.0, 0.2, (H2/T) = 0.0, 0.2, (D/T) = 0.2, 0.6, 1.0, M = 1.0,  
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Figure 9. Effect of (S/T) on (Ho/T) for (D/T) = 0.6, (H1/T) = 0.0, and (H2/T) = 0.0.                                                 

 

 
Figure 10. Effect of (S/T) on (q/(KsT)) for (D/T) = 0.6, (H1/T) = 0.0, and (H2/T) = 0.0.                                                                                          

 
and (S/T) = 0.2, 0.4, 0.6, 0.8, the effect of variation of (X/T) values on values of (Ho/T) and (q/(KsT)) is investi-
gated. Figure 11 shows the effect of variation of (X/T) values on (Ho/T) values for specific values of (H1/T) = 
0.2, (H2/T) = 0.0, M = 1.0, (D/T) = 0.6, and (S/T) = 0.2, 0.4, 0.6, 0.8. It is clear that, values of (Ho/T) increase 
with increasing of (X/T) values. Also, it is seen that, for values of (H2/T) = (D/T) = 0.2, values of (Ho/T) ≥ 1.0. 

Figure 12 shows the effect of variation of (X/T) values on (q/(KsT)) values for the same specific values of pa-
rameters as shown in Figure 11. It is found that, values of (q/(KsT)) decrease when values of (X/T) increase. Al-
so, it is noticed that, for values of (H2/T) = (D/T) = 0.2, values of (q/(KsT)) = 0.0 at which (Ho/T) ≥ 1.0. 
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1.0, and (S/T) = 0.2, 0.6, 0.8, the effect due to variation of (D/T) values on values of (Ho/T) and (q/(KsT)) is  
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Figure 11. Effect of (X/T) on (Ho/T) for (D/T) = 0.6, (H1/T) = 0.2, and (H2/T) = 0.0.                                             

 

 
Figure 12. Effect of (X/T) on (q/(KsT)) for (D/T) = 0.6, (H1/T) = 0.2, and (H2/T) = 0.0.                                       

 
analyzed. Figure 13 shows the effect of variation of (D/T) values on (Ho/T) values for specific values of (H1/T) = 
(H2/T) = 0.0, M = 1.0, (X/T) = 0.5, and (S/T) = 0.2, 0.6, 0.8. It is seen that, values of (Ho/T) decrease as values of 
(D/T) increase reaching to its minimum value, nearly, at (D/T) = 0.7 after which it slightly increases again. This 
may be referred to that the flow cross section area at the entrance to the excavation area being more contracted 
when (D/T) = 0.7. Such contraction causes backing effect to the flow which slightly raises the free surface and 
then increases value of (Ho/T) again. For values of (D/T) > 0.8, the values of (Ho/T) increase because the flow 
has no way to enter the excavation through its bed surface. Hence, the sloped face of excavation becomes the 
only possible path for seepage flow to the excavated area. 

Values of (q/(KsT)) are also affected by variation of (D/T) values, as shown in Figure 14 for specific values of  
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Figure 13. Effect of (D/T) on (Ho/T) for (X/T) = 0.5, (H1/T) = 0.0, and (H2/T) = 0.0.                                      

 

 
Figure 14. Effect of (D/T) on (q/(KsT)) for (X/T) = 0.5, (H1/T) = 0.2, and (H2/T) = 0.0.                                       

 
(H1/T) = 0.2, (H2/T) = 0.0, M = 1.0, (X/T) = 0.5, and (S/T) = 0.2, 0.6, 0.8. It is noticed that, values of (q/(KsT)) 
slightly increase as (D/T) values increase reaching to its maximum value, nearly, at (D/T) = 0.7, then a slight de-
crease occurred. This may be due to the reverse relation between Ho and q where value of q increases when val-
ue of Ho decreases and vice-versa. 

3.6. Effect of Side Slope Factor (M) 
To investigate the effect of the side slope factor (M) on values of (Ho/T) and (q/(KsT)), some specific values of 
the relative parameters are tested such as; (H1/T) = (H2/T) = 0.0, 0.2, (X/T) = 0.0, 0.5, 1.0, (D/T) = 0.2, 0.6, 1.0, 
and (S/T) = 0.2, 0.8. Thus, various values of the side slope factor are used where M = 0.5, 0.67, 1.0, 1.5, 2.0. 
The effect of M values on values of (Ho/T) and (q/(KsT)) is presented as shown in Figure 15 and Figure 16.  
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Figure 15. Effect of M on (Ho/T) for (D/T) = 0.6, (X/T) = 0.0, and (S/T) = 0.2.                                                   

 

 
Figure 16. Effect of M on (q/(KsT)) for (D/T) = 0.6, (X/T) = 0.0, and (S/T) = 0.2.                                                 

 
Figure 15 illustrates the effect of variation of M values on (Ho/T) values for specific values of (X/T) = 0.0, (S/T) = 
0.2, (D/T) = 0.6, and (H1/T) = (H2/T) = 0.0, 0.2. It is clear that, increasing the side slope factor (M) leads to a 
slight increase in values of (Ho/T) for (D/T) = 0.2. Such increase is being noticeable when (D/T) increases as 
shown in Figure 15 where (D/T) = 0.6. 

Figure 16 illustrates the effect of variation of M values on (q/(KsT)) values for the same specific values of the 
relative parameters used in Figure 15. It is seen that, increasing the side slope factor (M) leads to a slight de-
crease in values of (q/(KsT)) for (D/T) = 0.2. Such decrease of (q/(KsT)) values increases when (D/T) increases as 
shown in Figure 16 where (D/T) = 0.6. 

4. Conclusions 
In the present work, an analytical solution is developed for the problem of combined seepage under a sheet pil-
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ing cofferdam when used in dewatering systems. Two analytical equations including the parameters affecting 
the characteristics of combined seepage are obtained. The first equation is used to determine the maximum 
height of the phreatic surface (Ho) while the second is used to determine the quantity of seepage discharge (q) to 
be pumped out from the construction site. Thus, the capacity and number of pumping units are then determined. 

As a result of the analysis, concerned with the effect of the main parameters on both Ho and q, the main con-
clusions of the present study are arranged as follows: 

1) The main parameters have an obvious effect on characteristics of the combined seepage but with different 
extents. Such seepage characteristics are greatly affected by variation of H2, S, X, and D, and with lower extent 
by variation of H1.The seepage characteristics are slightly affected by variation of M. 

2) Value of Ho increases due to increasing values of H1, H2, X, and M, while it decreases with increasing val-
ues of S and D. 

3) The minimum and maximum values of (Ho/T) are 0.614 and 1.0, respectively, within the range of the tested 
parameters. 

4) Value of q decreases due to increasing values of H2, S, X, and M while it increases with increasing values 
of H1 and D. 

5) The minimum and maximum values of (q/(KsT))are 0.0 and 0.442, respectively, within the range of the 
tested parameters. 

6) The side slope factor of excavation (M) has a slight effect on both q and Ho. 
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