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Abstract 
 
Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 
brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in 
the equal world-sheet time framework on the hyperplanes defined by the world-sheet time 0 = = constant  . 
The light-front quantization (LFQ) of this theory without a scalar dilaton field has also been studied by us 
recently. In the present work we study the LFQ of this theory in the equal light-cone world-sheet time frame- 
work, on the hyperplanes of the light-front defined by the light-cone world-sheet time = ( ) = constant    , 
using the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained 
system in the sense of Dirac. The light-front theory is seen to possess a set of twenty seven primary 
second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are 
studied on the light-front. 
 
Keywords: Light-Front Quantization, Hamiltonian Quantization, Path Integral Quantization, Constrained 

Dynamics, Constraint Quantization, Gauge Symmetry, String Gauge Symmetry, String Theory, 
D-brane Actions, Polyakov Action, Light-Cone Quantization 

1. Introduction 
 

The Polyakov action is almost the starting point in any 
studies on string theories and it is therefore also one of 
the most widely studied and discussed topics in this field 
in the recent times [1-13]. The action possesses three 
well-known local gauge symmetries [14] given by the 
two-dimensional world-sheet (WS) reparametrization in- 
variance (WSRI) and the Weyl invariance (WI) [1-14]. 
When the action is considered under the conformal gauge- 
fixing it looses the above said string gauge symmetries 
[9-14] as expected (owing to the conformal gauge-fixing). 
Recently we have studied instant-form (IF) quantization 
(IFQ) [12] of the conformally gauge-fixed Polyakov D1 
brane action (CGFPD1BA) with and without a scalar 
dilaton field, using the equal world-sheet (WS)-time 
(EWST) framework, on the hyperplanes defined by the 
WS-time 0 = = constant   [9,12,15-17]. The theory 
without a scalar dilaton field is seen to be an uncon- 

strained system in the sense of Dirac [18], whereas in the 
presence of a scalar dilaton field it is seen to be a con- 
strained system, possessing one primary and one second- 
ary Gauss law constraint [18]. In a recent paper [11] we 
have studied the Hamiltonian and path integral for- 
mulations [18-22] of this theory without the scalar di- 
laton field [11] using the equal light-cone (LC) world- 
sheet time (ELCWST) framework on the hyperplanes of 
the light-front (LF) defined by the LC world-sheet time 

= ( ) = constant    [23-28]. The LF theory becomes 
a constrained system in the sense of Dirac [11,13, 18-22] 
(in contrast to the corresponding case of the IF theory, and 
it is seen to possess a set of 26 primary second-class 
constraints [10]. In Reference [11], we have quantized 
this LF theory using the standard constraint quantization 
techniques in the Hamiltonian and path inte- gral 
formulations [9-17,20-22], It is needless to say that the 
LF quantization (LFQ) has several distinct ad- vantages 
over the usual IFQ [23-28]. For a recent review on LFQ 
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of field theories we refer to the work of Brodsky, Pauli 
and Pinsky [24]. 

In the present work, we study the LF Hamiltonian and 
path integral formulations of this action for the D1 brane 
in the conformal gauge (CG), in the presence of a scalar 
dilation field using the Dirac’s front-form (FF) of dy- 
namics. In the next section we briefly recapitulate some 
basics of this theory and then in Section 3, we study the 
LFQ of this theory in the presence of the scalar dilation 
field. The summary and discussion is finally given in 
Section 4.  
 
2. Recapitulation of Instant-Form Theory  
 
We first recapitulate very briefly the IF theory. The Pol- 
yakov D1 brane action in a d-dimensional curved back- 
ground h  (with d = 10 for the fermionic and d = 26 
for bosonic D1 brane) is defined by [1-14]:  

2S d                    (1a) 

 ; det
2

T
hh G h h



 
      

      (1b) 

 ; 1, 1, 1v
v vG X X diag

                (1c) 

 , 0,1, , 1 ; , 0,1v d             (1d) 

Here ( , )    are the two parameters describing the 
worldsheet (WS). The overdots and primes would denote 
the derivatives with respect to   and  . T  is the 
string tension. G  is the induced metric on the WS and 

 ,X     are the maps of the WS into the d -dimen- 
sional Minkowski space and describe the strings evo- 
lution in space-time [1-14]. h  are the auxiliary fields 
(which turn out to be proportional to the metric tensor 

  of the two-dimensional surface swept out by the 
string). One can think of S  as the action describing d  
massless scalar fields X   in two dimensions moving 
on a background h . Also because the metric com- 
ponents h  are varied in the above equation, the 2- 
dimensional gravitational field h  is treated not as a 
given background field, but rather as an adjustable quan- 
tity coupled to the scalar fields [1-14]. The action S  
possesses the well-known three local gauge symmetries 
given by the two-dimensional WS reparametrization 
invariance (WSRI) and the Weyl invariance (WI) [1-14]: 

=X X X X      
          (2a) 

 =X X  
                (2b) 

=h h h h      
           (2c) 

=h h h h      
                (2d) 

    ; , = exp 2 ,h h             (2e) 

Here  ,    is a gauge parameter corresponding to 
the WSRI and     , = exp 2 ,      is a gauge 
parameter corresponding to the Weyl symmetry. The 
WSRI is defined by the first four equations involving the 
two gauge parameters   and the WI is defined by the 
last equation and is specified by the gauge parameter   
(or equivalently by  ). Also the above theory being a 
gauge-invariant theory (possessing the local gauge sym- 
metries including two WSRI and one WI sym- metries), 
could be studied under approriate gauge-fixing the way 
one likes. However, one could also use the above three 
local gauge symmeties of the theory to choose h  to 
be of a particular form [1-14] e.g., as follows:  

1   0
= =

  0 1
h 

 
  

            (3) 

This is the so-called conformal gauge (CG). In this CG 
we have  

= det( ) = 1h h              (4) 

and the action S  in this CG now becomes: 

2
1 1=S L d                 (5a) 

1 =
2

T
L hh G




             (5b) 

=
2

T
X X  

   
           (5c) 

2 2= ( ) ( )
2

T
X X

    
             (5d) 

and =
X X

X X
 

 

 
 
 

        (5e) 

This is the CGFPD1BA. The IFQ of this action has 
been studied by us recently in Reference. This theory is 
easily seen to be an unconstrained system in the sense of 
Dirac [18]. It may be important to remark here that an 
unconstrained system like this represents a gauge- 
noninvariant theory and is some what akin to a gauge- 
fixed gauge-invariant theory which makes it a gauge- 
noninvariant system. In the presence of a scalar dilaton 
field the theory of course, becomes a constrained system 
in the sense of Dirac as shown in our earlier work [12]. 
The above theory in the presence of a scalar dilation field 
  in a d -dimensional flat background h  reads as 
[13]: 

2
2 2=S L d               (6a) 

2 1=L e L                 (6b) 
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1
=

2
Te hh G 


    

           (6c) 

1
=

2
Te X X  

 
         

         (6d) 

This theory is easily seen to possess two constraints 
[1]: 

1 = 0                   (7a) 

 22
2

1 1
= e e 0

2 2
P T X

T
      

      (7b) 

where 1  is a primary constraint and 2  is a 
secondary Gauss law constraint and P  and   here 
are the momenta conjugate canonically respectively to 
X   and  . The matrix of the Poisson brackets of the 

constraints 1  and 2  is seen to be nonsingular im- 
plying that the set of these constraints is second-class and 
that the theory is gauge-noninvariant (which does not 
respect the usual string gauge symmetries WSRI and WI). 
The Hamiltonian and path integral formulations of this 
theory have been studied by us earlier [12]. It may be 
worth mentioning here that the IF theory in the ab- sence 
of a scalar dilaton field [12], is not a constrained system 
in the sence of Dirac (implying that theory is equivalent 
to a gauge-fixed gauge-invariant theory) whereas the 
theory in the presence of a scalar dilaton field represents a 
constrained system in the sence of Dirac possessing a set 
of two second-class constraints where one constraint is 
primary and the other one is the secondary Gauss law 
constraint [12]. A comparasion of the IFQ results of the 
theory with those of the present LFQ results is given in 
the last section. 
 
3. Light-Front Quantization 
 
In LFQ of the theory we use the three local gauge sym- 
metries of the theory for choosing h  to be of a par- 
ticular form as follows: 

    0 1/ 2
:= =

1/ 2     0
h 

 
  

         (8a) 

and  

 0 2
:= =

2   0
h 

 
  

           (8b) 

with  

 = det = 1/ 2h h            (8c) 

This is the so-called conformal gauge (CG) in the LFQ 
of the theory. Also, in the LFQ we use the LC variables 
defined by [23,24]:  

   0 1:= and := 2X X X       (9) 

The action S  in the above CG in the LFQ reads: 

3 3=S L d d                (10a) 

3 =
2

T
L X X  

   
         (10b) 

        =
2

i iT
X X X X X X   

     
              

 

(10c) 

   , = , , 2, , 1 ; = 2,3, 1d i d         (10d) 

This theory is easily seen to possess twenty six 
primary constraints [11]:  

1 = 0
2

T
P X  


    
 

         (11a) 

2 = 0
2

T
P X  


    
 

         (11b) 

= 0
2

i
i i

T
P X 

    
 

          (11c) 

= 2,3, , 25.i               (11d) 

where , P P   and   = 2,3, 25 ,iP i   denote the ca- 
nonical momenta conjugate respectively to , X X   and 

  = 2,3, 25 ,iX i  . Demanding that the primary con- 
s t ra ints  1 2,   and  ,  = 2,3,. , 25 ,i i   be  pre- 
served in the course of time one does not get any 
secondary constraints. The theory is thus seen to possess 
only twenty six constraints 1 2,   and i . Matrix of 
the Poisson brackets of the constrains j  namely,  

 , :=M        
P

, 
B       is seen to be non-  

singular implying that the theory is GNI and it does not 
respect the standard string gauge symmetries defined by 
the WSRI and the WI. The LF Hamiltonian and path 
integral formulations of the theory have been studied by 
us in our recent work [10,11] and the details could be 
found in Ref. [10,11]. In the present work we study this 
theory in the presence of a scalar dilaton field  . 

In the following we now proceed to study the LFQ of 
this theory in the presence of a scalar dilation field   
defined in the LF coordinates by the action [13]:     

4 4= d dS L                 (12a) 

4 3= eL L                   (12b) 

= e
2

T
T X X  

 
         

         (12c) 

  

     

= e
2

i i

T
X X

X X X X

  
 

 
   

        
     

      (12d) 

   , = , , 2, , 1   = 2,3, 1d i d           (12e) 
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where (as before) = 10d  for the fermionic string and 
26 for the bosonic string. In the present work we con- 
sider only the bosonic string. In the following we would 
study the LFQ of the above action 4S  (which describes 
the Polyakov 1D -brane action in the LF coordinates). 
The canonical momenta , ,P P    and iP  conjugate 
respectively to , ,X X    and iX  obtained from (12) 
are [13]: 

 
4= = 0

L





 

            (13a) 

   4= = e
2

L T
P X

X
  





 

 
       (13b) 

   4= = e
2

L T
P X

X
  





 

 
      (13c) 

   4= = e
2

i
i i

L T
P X

X






 

 
      (13d) 

The above equations imply that the theory possesses 
four primary constraints: 

1 = 0                 (14a) 

 2 = e 0
2

T
P X  


     
 

      (14b) 

 3 = e 0
2

T
P X  


     
 

      (14c) 

 4 = e 0
2

i
i

T
P X


     
 

      (14d) 

The canonical Hamiltonian density corresponding to 

4L  is  

       
4

4

=

0

c

i
i

H

P X P X P X L     
   

          
 

(15) 
After including the primary constraints i  in the 

canonical Hamiltonian density 4
cH  with the help of 

Lagrange multiplier fields , ,u v w  and z , the total 
Hamiltonian density 4

TH  could be written as  

4 = e e
2 2

T T T
H u v P X w P X      

 
                 

 

e
2

i
i i

T
z P X


     

          (16) 

We now treat the Lagrange multiplier fields , , ,u v w  
and iz  as dynamical. The Hamiltons equations obtained 
from the total Hamiltonian:  

4 4= dT TH H                 (17) 

e.g., for the closed bosonic strings with periodic 
boundary conditions are now defined as:  

4= =
TH

X v
P


 





 

 4 1
= = e

2

TH
P T w w

X
  

  

         
 

4= =
TH

X w
P


 





 

 4 1
= = e

2

TH
P T v v

X
  

  

         
 

4= =
T

i

i

H
X z

P





 

 4 1
= = e

2

T

i i

H
P T z z

X
 

  
         

 

4= =
TH

u






 

4 1
= = e

2

T
iH

T v X w X z X


  
   

               
 

4= = 0
T

u

H
u

p





 

4= =
T

u

H
p

u


 


 

4= = 0
T

v

H
v

p





 

4= = e
2

T

v

H T
p P X

v
  

 
       

 

4= = 0
T

w

H
w

p





 4 1
= = e

2

T

w

H
p P T X

w
  

 
       

 

4= = 0
T

i
zi

H
z

p





 

4 1
= = e

2

T
i

z ii
i

H
p P T X

z


 
       

  

(18) 

Demanding that the primary constraints i  be pre- 
served in the course of time one does not get any secon- 
dary constraints. The theory is thus seen to possess only 
four constraints 1 2 3, ,     and 4 . The first-order 
Lagrangian density of the theory is  

     
   

I
4 =O

i
i u

L P X P X

P X p u

     
  

 

     

   
 

      4
T

v w z ii
p v p w p z H  

         

     = e ][
2

i
i

T
v X w X z X  

  
        

   (19) 
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The matrix of the Poisson brackets of the constraints 

i  namely,       
P

, := ,
B

R         is then 
conculated. The nonvanishing elements of the matrix 

 ,R     are now obtained as 

   12 21= = e
2

T
R R X    

        (20a) 

   13 31= = e
2

T
R R X    

        (20b) 

   14 41= = e
2

iT
R R X   

        (20c) 

 23 32 44= = = eR R R T    
         (20d) 

Here       is the Dirac distribution function. 
The matrix R  is seen to be nonsingular with the de- 
terminant given by  

 
1/2

2 21
det( ) = e

2
R R T 
   


         

  (21a) 

    22 = 2 iR X X X 
  

      
     (21b) 

and the nonvanishing elements of the inverse of the 
matrix R  (i.e., the elements of the matrix  1R



 ) 
are obtained as:  

     1 2

11
= 4R tR   


      

         1 1 2

12 21
= = 2R R tR X     


        

         1 1 2

13 31
= = 2R R tR X     


        

         1 1 2

14 41
= = 2 iR R tR X    


        

       1 2
522

= 1 2R tR D        

         1 1 2
723 32

= = 1 2R R tR D         

       1 1 2
224 42

= = 1 2R R tR D            

       1 2
433

= 1 2R tR D           

         1 1 2
134 43

= = 1 2R R tR D            

       1 2
344

= 1R tR D          

(22) 
where 

      1 2= ; =i iD X X D X X 
         (23a) 

    2

3 4= ; =D X X D X  
         (23b) 

   2 2

5 6= ; = iD X D X
           (23c) 

   7 3 6= ; = eD D D t T           (23d) 

and  

     1
4 4, , d = 1R R       
       (24) 

Now following the Dirac qunatization procedure in the 
Hamiltonian formulation [18], the nonvanishing ELCWST 
Dirac brackets of the theory described by the Polyakov 

1D  brane action 4S  in the presence of scalar dilation 
field   are formally obtained as [18]: 

       2, = 2
D

X tR X    
         (25a) 

         2
1, = , = 1 2i

i D D
X P X P R D         (25b) 

         2
2, = , = 1 2i

i D D
X P X P R D         (25c) 

      2
3, = 1 (1i

i D
X P R D            (25d) 

       2
4, = 1 2

D
X P R D              (25e) 

       2
5, = 1 2

D
X P R D              (25f) 

        2
7, = , = 1 1 2

D D
X P X P R D             

(25g) 

      2
7, = 1 1

D
R D               (25h) 

       2
1, = 1i

D
X X tR D                (25i) 

       2
2, = 1 2i

D
X X tR D               (25j) 

       2
3, = 2i i

D
X X tR D              (25k) 

       2
4, = 1 2

D
X X tR D               (25l) 

       2
5, = 1 2

D
X X tR D              (25m) 

       2
7, = 1 2

D
X X tR D               (25n) 

     2, = 4
D

tR    
              (25o) 

      2, = 1
D

P R X              (25p) 

       2
1, = 4i D

P P t R D   


          (25q) 

       2
2, = 4

i D
P P T R D   


         (25r) 

       2
3, = 2i i D

P P t R D   
          (25s) 

       2
4, = 4

D
P P t R D    


          (25t) 

       2
5, = 4

D
P P t R D    


         (25u) 

       2
7, = 4

D
P P t R D               (25v) 

where the step function       is defined as  

   
 

1 for > 0
:=

1  for  < 0

 
  

 
    

      (26) 

In the path integral formulation, the transition to quan- 
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tum theory is now made by writing the generating 
fucntional  4 iZ J  for the theory in the presence of the 
external sources iJ  as [20-22]:  

    I
4 4:= d exp d d O i

i iZ J i L J            (27) 

where the phase space variables of the theory defined by 
the action 4S  are  , , , , , , ,i iX X X u v w z     with 
the corresponding respectively canonical conjugate mo- 
menta:  , , , , , , ,i

i u v w zP P P p p p p    . The func- 
tional measure  d  of the generating functional 

 4 iZ J  is obtained as [20-22]:  

 

      

2 21
d = e (

2

d d d d d d d di

RT

X X X u v w z

   






 

    
          

 

       d d d d d d d di u v w zP P P p p p p          

   e 0 e 0
2 2

T T
P X P X       

 
              

 

 e 0
2

i
i

T
P X 


     

             (28) 

The LF Hamiltonian and path integral quantization of 
the Polyakov D1 brane action 4S  in the presence of the 
scalar dilaton field   is now complete. 

Now in the canonical quantization of the theory while 
going from equal WS-LC time (ELCWST) Dirac brackets 
of the theory to the corresponding ELCWST commu- 
tation relations one would encounter here the problem of 
operator ordering [29] because the product of canonical 
variables of the theory are involved in the classical de- 
scription of the theory (like in the expressions for the 
constraints of the theory) as well as in the calculation of 
the Dirac brackets. These variables are envisaged as non- 
commuting operators in the quantized theory leading to 
the problem of so-called operator ordering [29]. This 
problem could, however, be resolved [29] by demanding 
that all the string fields and momenta of the theory are 
Hermitian operators and that all the canonical com- 
mutation relations be consistent with the hermiticity of 
these operators [29]. 

It is important to mention here in our work we have not 
imposed any boundary conditions (BC’s) for the open and 
closed strings separately. There are two ways to take these 
BC's into account: a) one way is to impose them directly 
in the usual way for the open and closed strings separately 
in an appropriate manner [1,2], b) an alternative second 
way is to treat these BC's as the Dirac primary constraints 
[30] and study the theory accordingly [30]. 
 
4. Summary and Discussion 
 
In this work we have studied the LF Hamiltonian and 

path integral quantization of the CGFPD1BA in the 
presence of the scalar dilation field under the conformal 
gauge in the absence of boundary conditions (BC’s). The 
action under this gauge-fixing becomes GNI as expected. 
Also because this is a (conformally) gauge-fixed action, 
the theory is therefore gauge noninvariant as expected 
and the associated constraints of the theory form a set of 
second-class constraints. It is important to recap here that 
the original Polyakov D1 brane is defined by the action 
S  in a curved background and it is gauge-invaraint po- 
ssessing the three well known local gauge symmetries 
defined by the 2-dimensional WSRI and the WI. On the 
other hand, the theory under our present investigation 
defined by the action 4S  is a conformally gauge-fixed 
theory and consequently gauge-anomalous and gauge- 
noninvariant as it should be. We have studied this con- 
formally gauge-fixed gauge anomalous (and GNI) theory 
in the presence of a scalar dilation field in the LF for- 
mulation using the ELCWST framework on the hyper- 
planes of the world-sheet defined by: LC world-sheet 
time  =     = const. 

The problem of operator ordering occurring here while 
making a transition from the Dirac brackets to the corres- 
ponding commutation relations can be resolved as ex- 
plained in the foregoing by demanding that all the string 
fields and momenta of the theory are Hermitian operators 
and that all the canonical commutation relations be con- 
sistent with the hermiticity of these operators [29]. 

Polyakov D1 brane action action possesses three well- 
known local gauge symmetries given by the two-di- 
mensional world-sheet reparametrization invariance and 
the Weyl invariance. When the action is considered 
under the conformal gauge-fixing it looses the above said 
string gauge symmetries as expected. In a very recent 
paper [12], we have studied the CGFPD1BA with and 
without a scalar dilaton field in the usual instant-form (IF) 
of dynamics, using the equal world-sheet-time frame- 
work, on the hyperplanes defined by the WS-time 

0 = = constant  . The LFQ of the theory without the 
scalar dilaton field has also been studied by us recently 
[10,11]. In the present work, the CGFPD1BA in the pre- 
sence of scalar dilaton field is studied on the LF (using 
the front-form of dynamics) in the equal light-cone world- 
sheet time (ELCWST) framework on the hyperplanes of 
the LF defined by the light-cone world-sheet time 

 = = constant     [13,23,24]. The LF theory is 
seen to become a constrained system in the sense of 
Dirac [9-21], and it is seen to possess a set of 26 primary 
second-class constraints when considered without the 
scalar dilaton field [11], and possessing a set of 27 pri- 
mary second-class constraints when it is considered in 
the presence of the scalar dilaton field as is seen in the 
present work. For a comparative study, it may be im- 
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portant to mention here that the present theory when 
considered in the IFQ without the scalar dilaton field is 
seen [12] to be an unconstrained system in the sence of 
Dirac (implying that it is equivalent to a gauge-fixed 
gauge-invariant theory) and the same theory when con- 
sidered in the presence of the scalar dilaton field in IFQ 
implies that the theory becomes a constrained system in 
the sence of Dirac possessing a set of two second-class 
constraints [12] where one constraint is primary and the 
other one is a secondary Gauss law constraint [12]. The 
LF theory with or without the scalar dilaton field could 
now in principle, also be used to construct the corres- 
ponding equivalent gauge-invariant theory using the 
techniques of constrained dynamics (albeit constraint 
quantization) which is however, outside the scope of the 
present work. 

The LF theory is quantized using the standard con- 
straint quantization techniques in the Hamiltonian and 
path integral formulations. It is needless to say that the 
LF quantization (LFQ) has undisputedly several distinct 
advantages [23,24] over the usual IF quantization (IFQ). 
One of the most important advantages of the LF frame- 
work e.g., is that the LF theory provides the largest 
number of kinematical generators of the Poincare trans- 
formations in Hamiltonian dynamics. For a recent review 
on LFQ of field theories we refer to the work of Brodsky, 
Pauli and Pinsky [24]. 

Also, we like to make a few comments about further 
solving the LF theory. It is possible to write down the 
solutions of the LF theory on the reduced hypersurface of 
the constraints of the theory where one implements the 
constraints of the theory strongly and this could be 
achieved in the Hamiltonian as well as in the path integral 
formulation of the theory. This is however, outside the 
scope of the present work. One well known example of 
this concerns the Batalin-Fradkin-Vilkovisky quanization 
of a gauge-noninvariant theory where one en- larges the 
phase space of a classical theory or the Hilbert space of 
the corresponding quantum theory by introducing some 
additional fields in to the theory by modifying the 
second-class constraints of the theory in such a manner 
that each of the second-class constraint of the theory 
becomes a first-class constraint. This in principle, could 
be done with the present LF theory because its constraint 
structure is known. 
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