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Abstract 
Mathematical models based on advanced differential equations are utilized to analyze the glu-
cose-insulin regulatory system, and how it affects the detection of Type I and Type II diabetes. In 
this paper, we have incorporated several models of prominent mathematicians in this field of 
work. Three of these models are single time delays, where either there is a time delay of how long 
it takes insulin produced by the pancreas to take effect, or a delay in the glucose production after 
the insulin has taken effect on the body. Three other models are two-time delay models, and based 
on the specific models, the time delay takes place in some sort of insulin production delay or glu-
cose production delay. The intent of this paper is to use these multiple delays to analyze the glu-
cose-insulin regulatory system, and how if it is not properly working at any point, the high risk of 
diabetes becomes a reality. 
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1. Introduction 
The human body needs to maintain a level of glucose concentration that is not too high in order for it to function 
properly. In order for glucose to be produced and utilized, insulin production and utilization must occur. If insulin 
is not produced, or not enough of it is produced, then proper glucose levels cannot be maintained, which leads to 
the disease of diabetes. Diabetes mellitus is a condition in which there is too much glucose in our blood. The 
pancreatic endocrine hormones insulin and glucagon are responsible for regulating and maintaining your body’s 
glucose concentration level. Insulin is produced in the pancreas, and is released from β  cells. These β  cells 
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stimulate the cells to absorb enough glucose from the blood for the fuel or energy that they need. Insulin also 
stimulates the liver to absorb and store any left-over glucose. Glucagon is released when the glucose concentration 
level is too low. This stimulates the liver cells to release the left-over glucose into the blood, so cells will have 
enough energy to carry out their functions. If a person’s blood glucose concentration level is constantly above the 
normal range for humans, they suffer from the chronic condition, known as diabetes. 

There are two type of diabetes. Type I diabetes, or insulin-dependent diabetes, is an autoimmune disease that 
occurs when the insulin-producing β  cells in the pancreas are attacked and destroyed by other cells in the body, 
causing the pancreas to produce little or no insulin at all. The cure for Type I diabetes is to have insulin re-
placement treatment for the rest of their life. This type of diabetes is known as juvenile diabetes, because it nor-
mally develops before the age of 40, often times before then. It is the least common of the two (10%). 

Type II, or non-insulin dependent diabetes, is a metabolic disorder which develops when the body can still 
produce insulin, but not enough, or when the insulin that is produced does not work properly, or better known as 
insulin resistance. Type II diabetes, is more likely to occur if there is a history of it in your family, and is often 
associated with obesity. Symptoms for Type II diabetes develop slowly over time, if at all, and occur mostly in 
people over the age of 40. Life expectancy for the Type I diabetes is reduced by about 15 years, and 10 years for 
Type II diabetes. If diabetes is left untreated or improperly managed, it can lead to heart disease, blindness, kidney 
disease, and non-traumatic limb amputations. 

Due to these factors and harmful effects of diabetes, many researchers have been motivated to study the glu-
cose-insulin endocrine metabolic regulatory system with hopes to better understand the mechanistic functions and 
causes of the dysfunction of the metabolic system. Many types of models have been made to better understand the 
role of the insulin-glucose regulatory system, including ordinary differential equations, and delay differential 
equation, both of which are included in this paper. 

In the glucose-insulin endocrine metabolic regulatory system, the two pancreatic endocrine hormones, insulin 
and glucagon, are the primary regulatory factors. Numerous in-vivo and in-vitro experiments indicate that insulin 
secretion consists of two oscillations occurring with different time scales. One is rapid oscillations (5 - 15 min) 
and the second is ultradian oscillations (50 - 150 min). The mechanisms underlying both types of oscillations are 
still not fully understood. The rapid oscillations may arise from an intra-pancreatic pacemaker mechanism re-
sulting in periodic secretary bursting of insulin from pancreatic β  cells. This rapid oscillation is usually super 
imposed on the slow ultradian oscillation. The ultradian oscillations of insulin secretion are assumed to result from 
instability in the glucose-insulin endocrine hormones of the metabolic regulatory system. 

In this paper, we propose a number of delay differential equation (DDE) models by introducing two and three 
explicit time delays in order to model the glucose-insulin levels in the metabolic regulatory system. The two and 
three time delay models not only confirm many experimental observations, but also demonstrate robustness, and 
produce simulation profiles in better agreement with physiological data. As a result, we suspect that one of the 
possible causes of ultradian insulin secretion oscillations is the time delay of the insulin secretion simulated by the 
elevated glucose concentration. Our analysis shows that three time delay model is more accurate than two time 
delay. 

In this paper we use several proposed Delay Differential Equation models (DDE) to show the delays of the 
metabolic system. We use single delay models in addition of multiple delay models to form a new proposed model 
combining the theories of the previous models used. 

2. Delay Differential Equations 
A delay differential equation (DDE) is an equation where the evolution of the system at a certain time, solution t, 
depends on the state of the system at an earlier time; say ( )t τ− . This is distinct from the ordinary differential 
equation (ODE) where the derivatives depend only on the current value of the independent variable. The solution 
of the ODEs therefore requires knowledge of not only the current state, but also of the state of a certain time 
previously. 

2.1. Differential Delay Equation Methods 
Many approaches of DDE solutions start from the problem in the formulations 

( ) ( ) ( )( )
( ) ( )

,  , ;  

;  
o f

o

y t f t y t y t t t t

y t t t t

τ

φ

′ = − ≤ ≤

= ≤
                               (2.1) 
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The function ( )y t  represents the same physical quantity that evolves overtime. The derivative ( )y t′  de-
pends on past values of ( )y t , ( )tφ  represents the initial function, and τ  is the delay term. 

The theory of DDEs has become an important area of investigation stimulated by their numerous applications to 
problem in mechanics, electric, and electronic engineering, medicines, biology, ecology, etc. Since many systems 
arising from realistic models heavily depend on history (which is characterized by the effect of finite (or infinite) 
delay on all equations), so there is a need to study partial functional delay differential system with the delay ar-
gument; and many evolution process characterized the fact that at certain moments of time they experience a 
change of state abruptly, this process is subject to short time perturbation whose duration is negligible in com-
parison with the duration of the process. 

There are several approaches to finding numerical solutions to (2.1). These include the direct application of 
linear multiple step method and Runge-Kutta (4th order mainly) method for ODEs. If the delay is non-constant, the 
methods are combined with interpolation. 

The first approaches to the numerical solution of DDEs of the above form were characterized by the direct 
application of formulas for ODEs, called linear multi-step methods. For example, Euler’s forward method, which 
is 

( ) ( ) ( )1 0 , , ,n n n qn ny y h f t y y+ += +                              (2.2) 

for the same integer q n< . 
Beuman’s method ([1], Beuman et al., 2003) avoids the need for interpolation in solving the numerical solution 

of (2.1). To simplify first we consider the case of the constant delay τ . Then the discontinuity points are 
k o rt kε = + . In the first interval [ ],o ot t τ+ , (2.1) has the form 

( ) ( ) ( )( )
( ) ( )

1, , ,

o o

y t f t y t t

y t t

τ φ τ

φ

′ = − −

=
 

In the second interval [ ] ( ) ( )1, 2 ,o ot t y t y tτ τ τ+ + = −  and ( ) ( )2y t y t=  can be defined, so the DDE (2.1) 
can be written as the two dimensional system of ODEs. 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )
( ) ( )

1 1

2 1 2

1

2

,  , ,

, ,

.
o o

o o

y t f t y t t

y t f t y t y t

y t t

y t y t

τ φ τ

τ φ

τ τ

′ = − −

′ =

+ =

+ = +

 

Hence in general, over the interval ( )1 ,o ot k t kτ τ+ + +    the DDE (2.1) can be written as the k-dimensional 
system of ODEs 

( ) ( ) ( ) ( )( )
( ) ( )( )

1

1

, , ;  1, 2, ,

–1 ; 1, 2, ,
i p i

o o

y t f t k i y t y t i k

y t k y t i i k

τ

τ τ

−′ = − − =

+ = + =





                      (2.3) 

where, 

( ) ( ) ( ) ( )( ) ; 1,; 2, ,o iy t t k y t y t k i i kφ τ τ= − = − − =   

passing from k to k + 1 means shifting the interval of integration from ( )1 ,o ot k t kτ τ+ + +    to  
( ), 1o ot k t kτ τ+ + +   , and extending the solution from [ ],o ot t kτ+  to ( ), 1o ot k t kτ τ+ + +    by adding the 

component ( ) ( )ky t y t=  in the current interval. Therefore, a standard numerical method for solving ODE can be 
used to solve (2.2), for increasing k, larger system, for each step k, the numerical solution of the k-dimensional 
system (2.2) is intended to provide an approximate value of ( ) ( )k o oy t k y t kτ τ+ = +  to be used as the initial 
value of the new component ( ) ( )1ky t y t+ =  in the next step. The process ends when o ft k tτ< < , for some k. So 
it is necessary to solve a system of ever-increasing dimension and to calculate repeatedly the same pieces of the 
solution related to the previous intervals. However, due to the presence of the delay argument that is storing and 
interpolating the computed solution throughout the interval ,o ft t τ−   , reducing to a system of ODEs avoids 
standard complications ([1], Beuman et al., 2003). 
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2.2. An Example of a Delay Differential Equation 

( ) ( )
( )

5 3

2;  3 0

x t x t

x t t

′ = −

= − ≤ ≤
 

Since 0 3t≤ ≤  implies 3 3 0t− ≤ − ≤ , we have ( )3 2x t − =  and the differential equation becomes 

( ) ( )
( )

5 3

5 2 10

x t x t

x t

′ = −

′ = × =
 

Therefore, 

( ) ( )
( ) 1 1

d

10d 10

x t x t t

x t t C t C

′=

= + = +

∫
∫

 

Using ( )0 2x = , 

( ) ( ) 1

1

0 10 0 2
2

x C
C

= + =

=
 

Therefore, 

( ) 10 2;  0 3x t t t= + ≤ ≤  

In the next subinterval, 3 6t≤ ≤  or 0 3 3t≤ − ≤ , we have 

( ) ( )3 10 3 2x t t− = − +  

The differential equation becomes 

( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )
( ) ( )2 2

2 2

5 3

5 10 3 2 50 150 10

50 140

d

50 140 d

50 2 140 25 140

x t x t

x t t t

x t t

x t x t t

x t t t

x t t t C t t C

′ = −

′ = − + = − +

′ = −

′=

= −

= − +

  

= − +

∫
∫

 

Since ( )3 32x = , 

( ) ( ) ( )2
23 32 25 3 140 3x C= = − +  

232 225 420 C= − +  

232 195 C= − +  

2 227C =  
Therefore, 

( ) 225 140 22x t t t= − +  

2.3. Solving Differential Delay Equations in MATLAB 
Using the routine dde23 ([2], Thompson et al., 2001) in MATLAB, it is easier to solve a large class of delay 
differential equations (DDE). The problem is restricted to solving systems of equations of the form 

( ) ( ) ( ) ( ) ( )( )1 2, , , , , ky x f t y x y x y x y xτ τ τ′ = − − −  

for constant delays jτ  such that ( )1 2min , , , kτ τ τ τ=  . The equations hold on a x b< < , which requires the 
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history ( ) ( )y x S x=  to be given for x a≤ . DDE 23 uses explicit Runge-Kutta triple methods in solving Or-
dinary Differential Equations (ODE), in particular the Runge-Kutta triple BS (2,3), and extends these materials 
to solve DDEs. A triple of s stages involves three formulas. If you have an approximation ny  to ( )y x  at nx  
and wish to compute an approximation at 1x n i nx x c h+ = + . For 1, 2, ,i s=  , the stages ( ),ni ni nif f x y=  are de-
fined in terms of ni n i nx x c h= +  and 

( )
1

1

i

ni n n ij j
j

y y h a f n
−

=

= + ∑  

The first formula used in the triple is an approximation used to advance the integration, written in terms of the 
increment function 

( ) ( )
1

,
s

n n i i
i

x y b f nϕ
=

= ∑                                  (2.4) 

The second formula is used only for selection the step size 

( ) ( )4
1  

1
,

s

n n n i i n n n n
i

y y h b f n y h x y+ Φ
=

= + = +∑                        (2.5) 

The third formula is often described as a continuous extension of the first formula, and has the form 

( ) ( )
1

s

n n n i i
i

y y h b f nσ σ+
=

= + ∑                               (2.6) 

The coefficients, ( )ib σ , are polynomials in σ, so this represents a polynomial approximation to ( )n ny x hσ+  
for 0 1σ≤ ≤ . It is assumed that this formula yields the value ny  when 0σ =  and 1ny s+  when 1σ = . 

When the delay term is greater than the step size and we have an available approximation ( )S x  to ( )y x   
for all nx x≤ . All the ni j nx xτ− ≤  and ( ) ( )( )1 , , , ,ni ni ni ni ni kf f x y S x xτ τ= − −  is an explicit recipe for the  

stage and the formulas are explicit, the function ( )S x  is the initial history for x a≤ . After taking the step to 
1nx +  then use (2.6) to define ( )S x  on [ ]1,n nx x +  as ( )n n nS x h y σσ ++ = . 

When the step size is greater than the smallest delay, the “history” term ( )S n  is evaluated in the span of the 
current step and the formulas are defined implicitly. In this situation the formulas are evaluated with simple ite-
ration. On reading nx , ( )S x  is defined for nx x≤ . Its definition is extended to [ ],n n nx x h+  and the resulting 
function is called ( ) ( )oS x . A typical stage of simple iteration begins with the approximate solution ( )mS x . The 
next iteration is computed with the explicit formula 

( ) ( ) ( ) ( )( )1 ,  , ;  m m
n n n n n nS x h y h x y S xσ ϕ σ+ + = +  

DDE 23 predicts ( ) ( )oS x  to be the constant oy  for the first step ([3], Thompson et al., 2001). 
A typical introduction of DDE 23 has the form 

sol = DDE23(ddefile, lags, history, tspan); 

where ddefile is the name of the function for evaluation the DDE, lags is the constant delays, supplied as an 
array. history can be specified as the name of a function that evaluates the solution and returns it as a column 
vector, and tspan is the interval of integration. See ([4], Wang et al., 2007) chapter Numerical Results for some 
examples of using DDE 23 to solve some simple delay differential equation models.  

3. Mathematical Models for Diabetes 

3.1. Modeling through Ordinary Differential Equations 

The insulin-glucose model that is used in this paper was originally developed by Sturis. The purpose of the model 
was to show the slow oscillations that take place inside of the pancreas and liver, and could give some insight on 
how they can lead to diabetes if not functioning properly ([5], Tolic et al., 2000). 

The secretion of insulin in the glucose-insulin endocrine metabolic system occurs in an oscillatory manner over 
a range of 50 - 150 minutes. Two time delays exist in the time. One is due to the electric action inside of the β  
cells upon glucose stimulation to release insulin. The second time delay represents the delayed effect of insulin on 
hepatic glucose ([6], Li et al., 2006). 
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The two time delay model of the glucose-insulin regulatory system can be seen in Figure 1. 
There are three feedback loops in this model: glucose stimulates pancreatic insulin secretion, insulin stimulates 

glucose uptake and inhibits hepatic glucose production, and glucose enhances its own uptake. The system also 
includes two significant time delays: the first is the fact that the physiological action of insulin after the utilization 
of glucose is correlated with the concentration of insulin. The second is associated with the time lag between the 
appearance of insulin in the plasma and its inhibitory effect on the hepatic glucose production ([5], Tolic et al., 
2000). 

The model has three main variables: the amount of glucose in the plasma and intercellular space, G, the amount 
of insulin in the plasma, pI , and the amount of insulin in the intercellular space, iI . In addition to the three main 
variables, there are three others, 1 2 3, ,x x x  that represent the above-mentioned delay between insulin in plasma 
and its effect on the hepatic glucose production ([5], Tolic et al., 2000). 

The equations describing the dynamics of the model are 

( ) ( ) ( ) ( )2 3 4 5
d
d in
G G f G f G f I f I
t

= − − +                          (3.1) 

( )1

d
 

d
p p pi

p i p

I I IIf G E
t V V t

 
  


−


= − −                                (3.2) 

d
d

p pi i

p i p

I II IE
t V V t

 
   −


−


=                                        (3.3) 

 

 
Figure 1. Two time delay glucose-insulin regulatory system model. The dash-dot-dot lines indicate that insulin inhibits 
hepatic glucose production with a time delay; the dash-dot lines indicate insulin secretion from the β cells simulated by 
elevated glucose concentration levels and the short dashed line indicates the insulin induced glucose utilization in cells with 
time delay; the dashed lines indicate low glucose concentration levels triggering α cells in the pancreas to release glucagon.  



D. Chalishajar et al. 
 

 
1093 

( )1
1

d 3
d p

d

x I x
t t

= −                                            (3.4) 

( )2
1 2

d 3
d d

x x x
t t

= −                                            (3.5) 

( )3
2 3

d 3
d d

x x x
t t

= −                                            (3.6) 

Insulin production: Insulin can only be produced by β  cells in the pancreas. The β  cell secretion is in in 
response to the elevated glucose concentration. There are other functions of the β  cell, however glucose this the 
most common and important provocation for insulin release. The formula to show the pancreatic insulin produc-
tion of β  cells is given as 

( ) ( )( )( )1 1 11 expm gf G R C G V a= + −                           (3.7) 

( ) ( ) ( )( )( ) ( )( )( ) 2

1 1 1 1 1exp 1 expm g g gf G R V a C G V a C G V a 


 ′ = − +


−   

Insulin degradation and clearance: The liver and the kidney are the primary sites of insulin degradation and 
clearance. Insulin that is not cleared by the liver or the kidney is eventually removed from other tissues (i.e. 
muscles). Insulin degradation is process of the kidney and liver that controls insulin action by inactivating and 
removing the excess of the hormone. Insulin degradation is directly proportional to the insulin concentration. 
Insulin clearance is the process of regulating the cellular response to the hormone by decreasing insulin availa-
bility. 

Glucose production: The formation of glucose in the body is caused by two sources. The first is the con-
sumption of carbohydrates, or compounds of carbon, oxygen and hydrogen, that form sugars, starches and fibers. 
These carbohydrates are absorbed into the bloodstream through hydrolysis. The consumption of carbohydrates 
takes place through meal ingestion, oral intake (coffee with sugar), etc. The second source of glucose production is 
the liver. When level of glucose concentration in the bloodstream drops, the β  cells stop releasing insulin. 
However, α  cells, also released by the pancreas begin to release another hormone, glucagon. When glucagon is 
released it takes control of metabolic pathways (or a sequence of chemical reactions undergone by a compound or 
class of compounds in a living organism—definition off internet) in the liver, and forces the liver to release glu-
cose. 

Glucose Utilization: Glucose utilization, like glucose production consists of two parts, insulin-independent 
utilization, and insulin-dependent utilization. Insulin-independent glucose consumers are the brain and nerve cells. 
This glucose intake of the brain and nerve cells is given as 

( ) ( )( )( )2 21 expb gf G U G C V= − − −                            (3.8) 

( ) ( ) ( )2 2 2expb g gf G U C V G C V′ = −    

This function represents the dependency on the glucose concentration alone ([6], Li et al., 2006). Glucose uti-
lization for muscles and fat tissues depend not only on glucose concentrations levels, but also insulin concentra-
tion levels. The ( )3f G  shows the glucose dependent term describing glucose utilization 

( ) ( )3 3 gf G G C V=                                   (3.9) 

( ) ( )3 31 gf G C V′ =  

The insulin dependent term is given as 

( ) ( ) ( )( )( )( )4 0 0 41 exp ln 1 1m i if I U U U I C V Etβ= + − + − +                (3.10) 

( )
( )( ) ( )( )( )

( )( )( )
0 4

4

4

2

ln 1 1

1 ex 1

xp

p l

e

n 1

m i i

i i

U U I C V Et
f I

I V t

I

C E

β β

β

−  
 − +

′ 


=
+ + 

 −
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Production of glucose controlled by insulin concentration (I) is stated as hepatic glucose production. In healthy 
people the pancreas has the ability to constantly measure levels of glucose in the bloodstream. The pancreas then 
responds to the glucose levels and releases a certain amount of insulin to counteract the glucose intake. The 
formula to show the above reaction is 

( ) ( )( )( )5 51 expg pf G R I V Cα= + −                                      (3.11) 

( ) ( ) ( )( )( ) ( )( )( )5 5 51 expexpg p p pf I R V I V C I V Cα α α′ = − − + −  

3.2. Analysis of Insulin Glucose Feedback Model 
In order to fully understand certain feature of the model, the insulin-glucose feedback model has been simplified. 
The simplified model has two important properties: it is analytically tractable, and it shows the same main cha-
racteristics as the original model (i.e. self-sustained oscillations and values of the state variables in the same range 
as the original model) ([5], Tolic et al., 2000). 

The function ( )2f G  is approximated with a constant and the function ( )1f G  by a first-order polynomial. 
The function ( )4f I  is also well approximated by a first-order polynomial in the range of obtained values of 
intercellular insulin. The function ( )5f I  shows significantly greater variation in its second derivative than all 
the other functions, in the range of glucose and insulin concentration. For values of I in the range 65 - 115 mU in 

( )5f I  changes from concave to convex, and is well approximated by a third-order polynomial. 
The function ( )1f G  is replaced with the first-order Taylor expansion around the mean value of G, ( )2f G  

with a constant, ( )4f I  with the first-order expansion around the mean value of I, and ( )5f I  with the third- 
order expansion around the mean value of I. Note that the mean values were obtained by a simulation of glucose 
infusion at the rate of 216 mg∙min−1 using the original model ([5], Tolic et al., 2000) and Table 1 and Table 2. The  
 
Table 1. Parameters of the functions in Equations (7)-(11). Values (data) are obtained experimentally in laboratory.              

Parameter Value Parameter Value 

gV  (l) 10 0U  (mg/min) 40 

mR  (mU/min) 210 mU  (mg/min) 940 

1a  (mg/1) 300 β  1.77 

1C  (mg/1) 2000 4C  (mU/1) 80 

bU  (mg/min) 72 gR  (mU/1) 180 

2C  (mg/1) 144 α  (1/mU) 0.29 

3C  (mg/1) 1000 5C  (mU/1) 26 

pV  (1) 3 pt  (min) 6 

iV  (1) 11 it  (min) 100 

E  (1/min) 0.2 dt  (min) 36 

 
Table 2. Commonly accepted experimental values used in these models.                                              

Parameter Value Parameter Value 

a (min−1) −0.233 h (min−1) 2.64 × 10−3 

b (min−1) 0.0182 k (mg∙mU−1∙min−1) 17.5 

c (mg∙mU−1∙min−1) 4.79 × 10−3 l (mg∙mU−2∙min−1) −0.315 

d (mU∙min−1) −43.9 n (mg∙mU−3∙min−1) 1.48 × 10−3 

e (min−1) 0.0667 p (mg∙min−1) 80.5 

f (min−1) −0.0282 r (min−1) 0.0833 

g (mU−1∙min−1) −9.44 × 10−5   
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standard model to for the detection of diabetes without delay is studied and analyzed. It is well accepted, rea-
sonable and reliable model, refer [7]. 

The simplified model is 

d dp p iI t aI bI cG d= + + +                                  (3.12) 

d di p iI t eI fI= +                                         (3.13) 

2 3d d iG t gI G hG kI lI mI p= + + + + +                        (3.14) 

1 1d d px t rI rx= −                                          (3.15) 

2 1 2d dx t rx rx= −                                          (3.16) 

3 2 3d dx t rx rx= −                                         (3.17) 

The time evolution of plasma glucose and insulin concentration that result from the simplified model does not 
differ significantly from the results of the original model. 
In the simulation of an exogenous insulin infusion, equation, d dpI t , was replaced by 

( )( )d d 1 sin 2πp p iI t m A t T aI bI= + + +                       (3.18) 

where m = 21 mU/min. A was set to zero for the constant infusion and to 0.3 for the oscillatory infusion. The pe-
riod T = 120 min. Since the glucose infusion rate in the experiments equals 420 mg/min, using Table 1 and Table 
2 (experimental data). The parameter p in Equation (3.14) was set to 285 mg/min to compensate for the difference 
between the rate of the glucose infusion of 420 and 216 mg/min ([5], Tolic et al., 2000). 

From an exact solution of the two first order differential equations (3.13) and (3.18), the numerical solutions to 
(3.15)-(3.17) were computed. For large t, the solutions are periodic functions with period T and may be expressed 
in the form 

( )( )sin 2π ,  1, ,5j j j jy Y A t T jϕ= + + =                       (3.19) 

The only equation in the simplified model with non-linear terms is Equation (3.14). It can be expressed in the 
form 

( ) ( ) ( ) ( )d dG t t P t G t Q t+ =                                (3.20) 

where 

( ) ( )  iP t gI t h= − −                                         (3.21) 

and 

( ) ( ) ( ) ( )2 3Q t kI t l I n I p= + + +                             (3.22) 

Equation (20) has the general solution 

( ) ( ) ( ) ( ) ( ) ( )
0

1 d
t

o o
t

G t t t G Qµ µ µ ζ ζ ζ
 

= +    
 

∫                 (3.23) 

where 

( ) ( ) ( )( )( ) ( )exp 2πcos exp– cosi it H t T Jtµ ϕ ϕ= + −             (3.24) 

iJ g I h= +                                             (3.25) 

and 

( )2πiH gA T=                                          (3.26) 

3.3. Modeling through Delay Differential Equations 

In section 3.1 we have discussed the dynamics of the insulin-glucose feedback system through Equations (1)-(6). 



D. Chalishajar et al. 
 

 
1096 

The hepatic glucose production time delay is stimulated by introducing three auxiliary variables, 1 2 3, ,x x x , which 
is caused the third order delay. We demonstrate how the auxiliary variables stimulate the time delay as follows: 
For the sake of convenience we would like to assume the first order delay (i.e. 1x ). 

( ) ( ) ( ) ( )( )1 13 ;  0d p dx t t I t x t t′ = − >  

Then 

( ) ( ) ( )1 1– – – –d d p d dx t t t I t t x t t′ =  

( ) ( ) ( )1 1– – –p d d d dI t t x t t x t t t′= +  

When ( ) ( )1–p dI t t x t≈  

( ) ( ) ( )1 1 1
2– – dd d dx t x t t x t t tOt′= + +  

Using Taylor’s Series Expansion for the function of one variable, we get 

( ) ( ) ( ) ( ) ( )( )2– – –p d p d d p d d dI t t I t t t I t t t O t′= + +  

I: Explicit Single Time Delay Differential Equation Model 
In [8], Engleborghs et al. (2001) replaced the auxiliary variables , 1, 2,3ix i = , and introduced a single time 

delay in the Negative Loop Model and proposed the flowing DDE Model 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 5d d  in iG t t G f G t f G t f I t f I t τ= − − + −  

( ) ( )( ) ( ) ( )1d d  d dp i i iI t t f G t I t I t t= −  

( )( )1 1d d 3 d px t t I x= −  

( )( )2 1 2d d 3 dx t t x x−=  

( )( )3 2 3d d 3 dx t t x x= −  

where the functions if , and their parameters are assumed to be the same as those in the model (Section 3.1.1). G(t) 
is the amount of glucose, ( )pI t  and ( )iI t  are the amounts of insulin in the plasma and the intercellular space, 
respectively. pV  is the plasma insulin distribution volume, iV  is the effective volume of the intercellular space, 
E is the diffusion transfer rate, pt  and it  are the insulin degradation time constants in the plasma and inter-
cellular space, respectively. inG  indicates the (exogenous)glucose supply rate to the plasma, and ( ) ( )1 2, ,x t x t  

( )3x t  are three auxiliary variables associated with certain delays of the insulin on the hepatic glucose production 
in time dt . The positive constant delay τ  mimics the hepatic glucose production delay. 

This model consists of two negative feedback loops, describing the effects of insulin on glucose utilization and 
glucose production, respectively. Both loops include the stimulatory effect of glucose on insulin secretion. The 
model mimics the delayed insulin-dependent glucose uptake by splitting the insulin into two separate compart-
ments, plasma and interstitial space. The hepatic glucose production time delay is simulated by introducing three 
variables 1 2 3, ,x x x  (third order delay). 

Unfortunately, this model overlooked the time delay from glucose stimulated insulin release to the delayed 
insulin-dependent glucose uptake. Due to the complex chemical reactions of the β  cells, it takes a few minutes 
(5 - 15 mins) for the insulin being ready to help cells utilizing glucose after the plasma glucose concentration level 
is elevate. As confirmed by, Sturis et al. (1995) [9], Tolic (2000) [5], the effects of time delay are significant (Li et 
al., 2006) [6]. 

II. Single Time Delay Proposed by Drozdov and Khanina (1995) [10] 
The rate of insulin secretion 1f  is assumed to depend only on the glucose concentration zc . ( )1 zf c  is as 

follows 

( ) ( )( )1 210 1 exp .z zf c a bc= + +  

The numerator in the right-hand side of the numerator in ( )1 zf c  characterizes the rate of insulin secretion for 
very large concentrations of glucose. Parameters a and b are determined using experimental data (let a = 5.21 and 
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b = −0.03). 
The function 2f  is suggested as 

( )( )( )( )2 9 1 exp 7.76 1.772ln 0.4xf c= + − +  

The rate of glucose production 3f  is assumed to depend only on the insulin concentration xc , but at the 
moment t τ− , where τ  is a delay in glucose production. The parameter τ  lies in the interval from a few 
minutes to an hour. The function 3f  is proposed as 

( )( )3 160 1 exp 0.29 7.5xf c= + −  

The delay in this proposed model is a delay in the ( )d dz t t  term ( 3d dx t  term in other models). The rate of 
glucose production in the ( )d dz t t  term is assumed to only depend on the insulin concentration, at the moment 
t τ− , where τ  is a delay in glucose production, which affects the amount of glucose produced by the liver. ([10], 
Drozdov et al., 1995). 

The model is as follows 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 3 1 1 2d d  0.1 1x t t f z t V E V T x t E V y t= − + +  

( ) ( ) ( ) ( ) ( )( ) ( )1 2 2d d 1y t t E V x t E V T y t= − +  

( ) ( )( ) ( )( ) ( )( ) ( )3 1 3 2 2 0d d 0.1z t t f x t V z t V f y t V L pτ= − + −−  

where 1V  (Volume of plasma) = 3, 2V  (Volume of interstitial liquid) = 11, 3V  (Volume of the glucose com-
partment) = 10 

III: Explicit Two Time Delay Differential Equation Model 
This is a single delay DDE model used for insulin therapies for both Type I and Type II diabetes mellitus and 

insulin degregation rate assumes Michaelis-Menten kinetics. The model equations proposed by Wang, Li, and 
Kuang (2009) [11], is as follows 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 5d d  in iG t t G f G t f G t f I t f I t τ= − − + −  

( ) ( )( ) ( ) ( )1 1d d d dp iI t t bf G t t I tτ= − −  

( )( )11d d 3 d px t t I x= −  

( )( )1 22d d 3 dx t t x x= −  

( )( )2 33d d 3 dx t t x x−=  

The major analytical results of this model were to obtain a sufficient condition for global asymptotical stability 
induced by a Liapunov function with the hepatic glucose production time delay satisfying the cases when 0t =  
and 0t > . This result has the following consequences: 1) If the hepatic glucose production time delay, τ , and 
the insulin transfer time between the plasma and interstitial compartments, it  and pt , are sufficiently small, then 
the solution converges to a steady state. 2) If the hepatic glucose production value, gR , is very small, the oscil-
lation will not be sustained. 

For Type I diabetes, b = 0, (means no insulin is secreted from the pancreas). For Type IIdiabetes, 0 1t< ≤ . In 
this approach, we keep one explicit time delay 1τ  as that in the two time delay model ( )G t′  and ( )I t′ , but 
mimic the hepatic glucose production time delay by variable chain as in the model in Section 3.1.1. ([11], Wang et 
al., 2009). 

IV: Alternative Explicit Two Time Delay Differential Equation Model (Insulin Therapies Related Model) 
The idea of insulin therapy is to mimic the normal reaction of the beta cells in the pancreas when they are 

stimulated by an increase in glucose concentration of the blood, for example after meal ingestion. Numerous 
experiences have demonstrated that insulin is released from beta cells in two oscillatory models: pulsatile oscil-
lations and ultradin oscillations. Insulin therapies must mimic the insulin secretion at these two time scales and are 
normally introduced based on clinical experiences, although mathematical models have been proposed for some 
specific situations ([4], Wang et al., 2007). 
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In the paper by Wang, the following generic model is put forward to simulate the pancreatic insulin secretion 
with insulin infusion after blood glucose concentration increases for Type I diabetes. We model the effect of time 
delay τ2 in glucose utilization by ( )( )3f G t  and ( )( )4 0f I t t− . This results in the following alternative model 
with two explicit delays. 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 2 5 0d d  inG t t G f G t f G t f I t f I tτ τ= − − − + −  

( ) ( )( ) ( )( )1d d  d dp iI t t f G t I t t= −  

( )( )11d d 3 d px t t I x= −  

( )( )1 22d d 3 dx t t x x= −  

( )( )2 33d d 3 dx t t x x−=  

The notations in models (III) and (IV) are the same as the models discussed previously. Data are used from 
Table 1 and Table 2 to set up the MATLAB codes. 

 
function res = CGC_2TD_Eqns_IV(t,SOL,DSOL) 
global Vp Vi tpti td E Gin di Vg 
 
I  = SOL(1); % Insulin variable from SOL vector 
G  = SOL(2); % Glucose variable from SOL vector 
T2 = DSOL(1,1); %tau2 
T0 = DSOL(1,2); %tau0 
 
dIdt = f1(G)-di*I; 
dGdt = Gin-f2(G)-f3(G)*f4(T2)+f5(T0); 
 
res = [dIdt; dGdt]; % return solution vector 
end 

 
V: Alternative Explicit Two Time Delay Differential Equation Model (Two-Time Delay Model proposed 

by Li, Kuang, Mason (2006)) [6]. 
Li, Kuang, and Mason consider two time delays: 1τ  and 2τ . The first, 1τ , is to denote the total time delay 

form the time that the glucose concentration level is elevated to the moment that the insulin has been transported to 
the interstitial space and becomes “remote insulin”. Therefore insulin secretion can be approximated by 

( )( )1 1f G t τ−  with time delay 1 0τ < . 
The second time delay, 0τ , has to do with the delay of effect of hepatic glucose production measured from the 

time that the insulin has become “remote insulin” to the moment that a significant change of hepatic glucose 
production occurs. 0τ  in the model represents glucose utilization delay. The model is as follows ([6], Li et al., 
2006) 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 5 0d d inG t t G f G t f G t f I t f I t τ= − − + −  

( ) ( ) ( )1 1d d d dp iI t t f G t I t tτ −= −  

( )( )11d d 3 d px t t I x= −  

( )( )1 22d d 3 dx t t x x= −  

( )( )2 33d d 3 dx t t x x−=  

This model suggests that the time delay from insulin secretion stimulated by glucose to the insulin becoming 
“remote insulin” is not negligible; especially the delay of insulin secretion triggered by elevated glucose. There-
fore, we suspect that one of the possible causes of ultradian insulin secretion oscillations is the time delay of the 
insulin secretion stimulated by the elevated glucose concentration. 

In this two time delay model, 1τ  denotes the total delay from the time that the glucose concentration level is 
elevated to the moment that the insulin has been transferred to the interstitial space, thus becoming ‘remote insu-
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lin’. 0τ  has to do with the delay of hepatic glucose production measured from the time that insulin has become 
‘remote insulin’ to the moment that a significant change of hepatic glucose production occurs. iG  is the glucose 
infusion rate; 0id >  is the insulin clearance rate. Functions 1 5f f−  are defined previously. 

Based on our numerical simulations and analysis, we suspect that time total time delay, 1τ , is critically re-
sponsible for the oscillation. The total time delay is measured from the moment that the glucose concentration 
level starts to increase to the moment that the insulin has been transported to the interstitial space. 

 
function res = CGC_2TD_Eqns_V(t,SOL,DSOL) 
global Vp Vi tpti td E Gin di Vg 
 
I  = SOL(1); % Insulin variable from SOL vector 
G  = SOL(2); % Glucose variable from SOL vector 
T1 = DSOL(2,1); %tau1 
T0 = DSOL(1,2); %tau0 
 
dIdt = f1(T1)-di*I; 
dGdt = Gin-f2(G)-f3(G)*f4(I)+f5(T0); 
 
res = [dIdt; dGdt]; % return solution vector 
end 

 
VI: Another Alternative Two Time Delay Differential Equation Model, (Palumbo, Panunzi, DeGaetano 

[2004]) [12] 
To our knowledge, there are no mathematical models considering β  cell activity in the form of DDEs. Our 

aim is to describe the activity of β  cell through the flowing two time delay DDE model. 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 5d d in gG t t G f G t f G t f I t f I tτ= − − +−  

( ) ( )( ) ( )( )1d d d dp i iI t t bf G t t I tτ= − −  

( )( )11d d 3 d px t t I x= −  

( )( )1 22d d 3 dx t t x x= −  

( )( )2 33d d 3 dx t t x x−=  

where gτ  is the apparent delay with which the pancreas varies secondary insulin release in response to varying 
plasma glucose concentration. iτ  is the delay with which insulin acts in stimulating glucose uptake by peripheral 
tissues ([12], Palumbo et al., 2004). This model is very similar to the one given in (V). 

There are two possibilities of delay of insulin release by the pancreas gτ  in response to variation of glucose 
concentration in plasma iτ : (1) g iτ τ= = ±∞ , (2) .g iτ τ≠  

This model describes the dynamics of the glucose-insulin feedback system which involves an equation for the 
number of β  cells. Additionally, it provides a description of the mechanisms that link glucose metabolism to 
changes in the electrical activity of β  cell that induces insulin secretion. Codes for the numerical simulations of 
this model are as follows: 

 
function res = CGC_2TD_Eqns_VI(t,SOL,DSOL) 
global Vp Vi tpti td E Gin di Vg 
 
I  = SOL(1); % Insulin variable from SOL vector 
G  = SOL(2); % Glucose variable from SOL vector 
T1 = DSOL(2,1); %tau1 
T2 = DSOL(1,2); %tau2 
 
dIdt = f1(T1)-di*I; 
dGdt  = Gin-f2(G)-f3(G)*f4(T2)+f5(I); 
 
res = [dIdt; dGdt]; % return solution vector 
end 
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VII: Multiple Time Delay Model 
The final model, which has not been considered, is a multiple delay differential equation, made from combi-

nations of the previous four models given. The model is as follows: 

( ) ( )( ) ( )( ) ( )( ) ( )( )2 3 4 2 5 0d d inG t t G f G t f G t f I t f I tτ τ= − − − + −  

( ) ( )( ) ( )( )1 1d d d dp iI t t f G t t I tτ= − −  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 3 1 1 2d d 0.1 1x t t f z t V E V T x t E V y t= − + +  

( ) ( ) ( ) ( ) ( )( ) ( )1 2 2d d 1y t t E V x t E V T y t= − +  

( ) ( )( ) ( )( ) ( )( ) ( )3 1 3 2 2 0d d 0.1z t t f x t V z t V f y t V L pτ= − − + −  

This model is made up from all of the previous sections, taking common delays from each and making one 
model out of the previous five, and adding one additional delay in 3d dx t . The two time delays in ( )d dG t t  
come from the model proposed by Wang, Li, and Kuang in 2007 (Section IV) [4]. Similarly in 2006, Li, Kuang 
and Mason [6], made an earlier model (Section V) that proposed the time delay in ( )d dG t t  in 5f  and the time 
delay in ( )d dpI t t . We connected the two proposed models to form the basis for our final model. The time de-
lays in ( )d dG t t  and ( )d dpI t t  are also related form the model proposed by Palumbo, Panunzi, and De-
Gaetano in 2004 (Section VI) [12]. The last three equations ( ) ( ) ( )( )d d ,d d ,d dx t t y t t z t t  with the time delay 
in the ( )d dz t t  equation, were taken from the model proposed by Drozdov and Khanina ([10], Drozdov et al., 
1995). 

This function represents all the delays we have presented so far in this paper. The time delays in the ( )d dG t t  
function 0τ  and 2τ . In this equation the 0τ  is seen in the ( )5f I , or the glucose production controlled by insulin 
concentration, and represents the hepatic glucose production delay. The 2τ  seen in the ( )4f I , or the insulin- 
dependent glucose uptake (dependent upon glucose because multiplied by ( )3f G ), is the time delay for the in-
sulin-dependent glucose utilization by the cells ([4], Wang et al., 2007). 

The delay in the ( )d dpI t t  term is represented by 1τ , which is the total time delay form the time that the 
glucose concentration level is elevated to the moment that the insulin has been transported to the interstitial space 
and becomes “remote insulin” as stated in Section V. This delay can be added to our model, because the time delay

0t τ−  is shared between the model in Section IV and Section V. The last delay in our system is the delay in the 
( )d dz t t  term, given by Drozdov and Khanina ([10], Drozdov et al., 1995). This delay represents the delay in 

glucose production, which affects the amount of glucose produced by the liver. 
 

function res = CGC_3TD_Eqns(t,SOL,DSOL) 
global Vp Vi tpti td E Gin di Vg 
I  = SOL(1); % Insulin variable from SOL vector 
G  = SOL(2); % Glucose variable from SOL vector 
T1 = DSOL(2,1); %tau1 
T2 = DSOL(1,2); %tau2 
T0 = DSOL(1,3); %tau0 
dIdt = f1(T1)-di*I; 
dGdt  = Gin-f2(G)-f3(G)*f4(T2)+f5(T0); 
res = [dIdt; dGdt]; % return solution vector 

 
Remark: The parameter values assumed in Figures 1-3 are experimental values. Such values may have sig-

nificant effects on the results studied in this paper. 
Summary: In this paper, we studied delay differential equation (DDE) models by introducing two and three 

explicit time delays and model the glucose-insulin endocrine metabolic regulatory system. The three-time delay 
model not only confirms many exciting experimental observations, but also demonstrates robustness, and pro-
duces simulation profiles in better agreement with observed data. As a result, we suspect that one of the possible 
causes of ultradian insulin secretion oscillations is the time delay of the insulin secretion simulated by the elevated 
glucose concentration. Like the two-time delay models, three-time delay models can also be generalized to get 
more accuracy in the detection of diabetes. 
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Figure 2. Glucose profiles [models (IV)-(VII)]. 1 2 04, 7, 12, 1.08, 0.06in iG dτ τ τ= = = = = .                                     
 

 
Figure 3. Insulin profiles [models (IV)-(VII)]. 1 2 04, 7, 12, 1.08, 0.06in iG dτ τ τ= = = = = .                                      
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