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Abstract 
This paper reports the findings of an empirical study on the low-cost airline market. A lot of lite-
ratures on low-cost carriers’ business model agree that low-cost airlines operate with high load 
factors. However, due to variations in the market development life cycle of low-cost carriers from 
one region to another, empirical evidences have shown mixed results of the effect of increasing 
airline capacity on load factor. The paper therefore extends this analysis by examining two air-
lines in Kenya over 72 months period; and explores such impact using panel data to capture both 
time-series and cross-sectional elements over the period. Findings indicate that fleet capacity is a 
significant positive predictor of load factor. The paper finally underlines that increasing capacity 
by 1 seat will result in an increase of 0.03% in load factor. 
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1. Introduction 
Literatures on the low-cost carrier’s business model reveal that low-cost carrier phenomenon has proved to be a 
robust service concept from the financial and operational view point. However, studies have reported mixed re-
sults on the effect of enhanced low-cost carrier’s fleet capacity on load factor that varies from one region and/or 
country to the other. Attempts have attributed these variations and mixed results to the conceptualization and 
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configuration of low-cost carrier business model which have led to the uneven spread of this model around the 
world due to differing catalytic factors such as regulatory framework, degree of entrepreneurship, density of 
population and relative wealth; travelling culture, airport availability, and adherence to internet facilities, and 
thus, a variation in the market development life cycle of low-cost carriers [1]-[3]. Whereas, fleet capacity has a 
significant impact on the number of equipment required [4], the optimal number and size of equipment required 
depends on the: level of travel demand that the carrier will cover [5]-[7], distance [8], economies of scale in air-
craft operation [9] [10], airport characteristics such as runway, and whether hub-spoke or a point-to-point net-
work [11]. Different studies [12]-[18] have investigated load factor variable differently. Reference [16] has em-
ployed descriptive statistics in analyzing the impact of fleet capacity on load factor. Both [15] and [17] have 
modeled load factor as a function of other independent variables. Reference [14] and [18] investigated it as an 
independent variable on the on-time performance while [12] and [13] investigated it as an explanatory variable 
on fare. As a result of the differing catalytic factors, empirical evidences have shown mixed results of the effect 
of enhancing airlines’ fleet capacity on load factor in different countries. It was for this reason that the purpose 
of this study was to ascertain the effect of the rising low-cost airlines capacity on load factor in the Kenyan air-
line market. 

Section 2 briefly outlines the concept of low-cost carrier’s business model and the associated constructs, i.e. 
fleet capacity and load factor. In addition, previous studies are compared, contrasted, critiqued and the gap es-
tablished. Section 3 outlines the methodology. Statistical tests for the assumptions of linear regressions, panel 
unit root tests, panel cointegration tests are performed in Section 3. Results and discussions are outlined in Sec-
tion 4. Section 5 summarizes, concludes and provides recommendations. 

2. Literature Review 
This section reviews the concepts of low-cost carrier’s business model with an extension to specific constructs 
such as fleet capacity and load factor. Previous empirical studies are highlighted. Comparisons, contrasting, cri-
tiquing and acknowledgement of the gap from the reviewed literature is also established in this section. 

2.1. Low-Cost Carrier Business Model 
The chief difference between low-cost carriers and traditional airlines, or full service carriers (FSCs), fall into 
three groups: service savings, operational savings and overhead savings [19]. The low-cost model is characte-
rized by specific product and operating features. Product features include: low, simple, and unrestricted fares; 
high frequencies; point-to-point flights; no interlining; ticketless travel utilizing travel agents and call centers; 
single-class, high density seating; no seat assignments; and no meals or free alcoholic drinks. Operating features 
include: single type aircraft with high utilization, secondary or uncongested airports served with short aircraft 
turns, short sector length, and competitive wages with profit sharing and high productivity [20]-[24]. However, 
[25] cited that there is no standard business model or definition for a low-cost carrier since the term itself incor-
porates a wide range of airlines with significant differences in the type of routes and the level of passenger ser-
vice offered. 

2.1.1. Fleet Capacity 
The planning of demand-responsive transport services requires addressing two fleet-related decision problems: 
what types of equipment to use and how many to use [6]. Fleet size and mix (FSM) is of critical importance for 
a transport agency because it has an effect on both the costs of delivering the service (capital and operating costs) 
and the level of service (LOS) that can be provided to the clients in regard to comfort, convenience, and enjoy-
ment [7]. Equipment capacity has a significant impact on the number of equipment required; the larger the 
equipment, the higher the average equipment productivity and the smaller the required number of fleet. Larger 
equipment should be used in high-demand cases [4]. The optimal number of equipment required depends on the 
level of travel demand that the carrier will cover [5]. The use of a mix of different fleet types, from small to me-
dium and large that has more seats, have an advantage of the cost-effectiveness in dealing with variation in 
seating requirements as well as spatial and temporal clustering of requests. Larger fleet can accommodate, on a 
single trip, more passengers with different seating needs, which, in turn, can lead to higher productivity and 
fewer units required to deliver the service. The use of larger fleets however means higher capital and operating 
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costs, higher emissions, and lower maneuverability. In situations of low demand, smaller fleets are often suffi-
cient to handle the trips without any loss of efficiency. The use of a particular aircraft type on a route largely 
depends on the distance. As the distance between the two endpoints increases, longer-range (and thus larger) 
aircraft are needed. An airline may opt to use larger aircraft on a route due to economies of scale in aircraft op-
eration [8] [10] [11]. With respect to airport characteristics, an increase in runway length results in higher fre-
quency and larger plane sizes. Aircraft sizes are larger in a hub-spoke network than in a point-to-point network. 
Low cost carriers generally do not offer business class seating, which takes up a lot of valuable space, and in-
stead offer a dense, single class seating configuration asother space consuming items, such as catering galleys 
and convection ovens, are eliminated. 

2.1.2. Load Factor 
Load factor is the percentage of seats filled with passengers or the ratio of unit costs to unit yields [9] [12] [21] 
[22]. A good load factor assures the necessary utilization and productivity of critical low cost carrier resources. 
Low load factors reflect delivery of larger-capacity equipment, while capacity reductions leads to significant in-
creases in carriers’ load factor in the markets [26]. It indicates that an airplane is more efficiently utilized when 
the load factor is high, lowering the operating costs and, as a result, the airfares. A high load factor lowers cost 
per customer, but also lowers quality and demand [13]. The per passenger cost of a flight decreases as the load 
factor rises, which suggests that load factor has a negative coefficient on fare. Low cost carriers tend to have 
higher load factors than their competitors and thus, may result in prices falling on routes with a higher load fac-
tor [12]. High load factors are a major factor in low-cost carriers’ business model [27] who base the low-fare on 
the high occupancy rate of the aircraft (80% load factor) [28]. Low cost airlines’ load factors are usually higher 
than that of the traditional air transport companies, which means that each low cost company’s aircraft transport 
more passengers than network carriers [1]. 

2.2. Empirical Studies 
Studies by [12]-[18] had investigated load factor variable with respect to other aviation market parameters dif-
ferently. Reference [12] treated it as an explanatory variable on fare and results show that the effect of load fac-
tor variable on pricing is negative and significant at the 1 percent level in the 80th percentile baseline equation; 
while for the median fare, it is negative and significant at the 2 percent level and is not significant for the lowest 
fares. On the other hand, [13] examined the impact of load factor on the mean fare paid among passenger-trips 
and his findings indicate that 10% decrease in average load factor would explain a price decline of about 15 
percent. Reference [14] and [18] investigated load factor as an independent variable on the on-time performance 
while [13] investigated it as an independent variable on price. According to [14]’s findings, results show that 
economic factors (seating capacity and load factor) and logistical factors (departure time and distance) have sig-
nificant effects on flight delays. Reference [18] examined how load factor affects on-time performance. Their 
analyses show that the interaction of utilization and load factor is positive and significant for twelve out of thir-
teen carriers, meaning increasing load factor leads to greater delays when utilization is high, than when utiliza-
tion is low. Reference [16] employed descriptive statistics in analyzing the impact of fleet capacity on load fac-
tor. Their report show mixed results on the impact of fleet capacity on load factor from one region, or continent 
to the other. For example, in the US, capacity grew at 1.9%, but load factor remained flat at 83.8 per cent. In 
China, capacity rose 12.2%, but load factor declined 0.6 percentage points to 80.3 per cent. In Japan, capacity 
expanded by 5.1% and load factor was little changed at 64.3 per cent. In Brazil, capacity reductions by airlines 
of 3.3% pushed load factor to 76.3 per cent. In India, capacity climbed 3.5% in 2013, and load factor was 74.6%, 
up 1.7 percentage points. In Russia, there was 9.1% rise in capacity and load factor remained at 74%. In Aus-
tralia, capacity rose 3.8%, depressing load factor 1.0 percentage point to 76.5 per cent. While in Africa, there 
was capacity expansion of 5.2% and load factor rose 1.9 percentage points to 69%, the lowest among the regions. 
Both [15] and [17] modeled load factor as a function of other independent variables. Reference [15]’s paper 
aimed at identifying serial and periodic autocorrelation on the load factors of the Europe-Mid East and Europe- 
Far East airline flights so as to develop a forecasting model of the load factors and their econometric estimation 
results also confirm that the load factors of the Europe-Mid East and Europe-Far East flights are both seasonal 
and differ between flights i.e. the load factor is still far from stable. Reference [17] results show that the number 
of seats is not significant in explaining the variation in load factors. 
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Due to variations in the market development life cycle of low-cost carriers from region and/or country to the 
other, empirical evidences have shown mixed results of the effect of enhancing airlines’ fleet capacity on load 
factor in different countries. It is for this reason that the purpose of this study was to ascertain the effect of the 
rising low-cost airlines capacity on load factor in the Kenyan airline market. 

3. Research Methodology 
This section addresses the research design, target population, type of data, statistical tests, and model specifica-
tion. 

3.1. Research Design, Target Population and Type of Data 
The study adapted longitudinal design, which is a time series correlational research design that describes pat-
terns of change and helps establish the direction and magnitude of causal relationships [29]-[31]. Their data 
from two low-cost carriers’ (Fly540, that formally operates as a low-cost carrier and Jetlink Aviation, which met 
the ICAO definition of a low-cost carrier in terms of operations but never used the term in marketing itself) over 
a period of 72 months for the year 2007 - 2012 were used in the analysis. Sources of data were airlines statistics 
as maintained by the Kenya Civil Aviation Authority (KCAA). 

3.2. Statistical Tests 
Testing the Assumptions of Linear Regression 
Before linear regression models are used for purposes of inference or prediction, there are four principal as-
sumptions which must be tested to justify its use. If any of these assumptions is violated, then the forecasts, con-
fidence intervals, and scientific insights yielded by a regression model may be (at best) inefficient or (at worst) 
seriously biased or misleading [32] [33]. These assumptions are: (1) normality of the error distribution; (2) li-
nearity and additivity of the relationship between dependent and independent variables; (3) statistical indepen-
dence of the errors; (4) homoscedasticity (constant variance) of the errors. 

1) Test for Normality of the error distribution 
Violations of normality create problems for determining whether model coefficients are significantly different 

from zero and for calculating confidence intervals for forecasts. Since parameter estimation is based on the mi-
nimization of squared error, a few extreme observations can exert a disproportionate influence on parameter es-
timates [33] [34]. Calculation of confidence intervals and various significance tests for coefficients are all based 
on the assumptions of normally distributed errors [35] [36]. If the error distribution is significantly non-normal, 
confidence intervals may be too wide or too narrow. In this study, the researcher used Jarque-Bera statistical 
tests for normality. Jarque-Bera test statistic measures the difference of the skewness and kurtosis of the series 
with those from the normal distribution [37]; the Jarque-Bera statistic should not be significant in cases of nor-
mal distribution. The statistic is computed as: 

( )22N 6 s K 3 4Jarque Bera  − = + −                                   (1) 

where S is the skewness, and K is the kurtosis. 
Results in Table 1 show that FLTC series rejected the null hypothesis of normal distribution while LDFC se-

ries failed to reject the null hypothesis of normal distribution at the 5% significance level. However, real data, 
especially time series data, rarely has errors that are perfectly normally distributed, and it may not be possible to 
fit your data with a model whose errors do not violate the normality assumption at the 0.05 level of significance 
[33] [38]. The researcher then settled on the [32]’s and [33]’s conclusion that it is usually better to focus more 
on the violations of the other assumptions since normality is a very minor concern.  

2) Tests for Linearity or Addivity 
Violations of linearity or additivity are extremely serious. If one fits a linear model to data which are nonli-

nearly or non-additively related, your predictions are likely to be seriously in error. In order to test for linearity, 
the researcher adopted Ramsey RESET (Regression Specification Error Test) to detect any incorrect functional 
form as proposed by [39]. The RESET Stability tests statistics indicated no evidence of non-linearity as shown 
in Table 2. 

Results in Table 2 show that the t-statistics strongly rejected any evidence of non-linearity. 
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Table 1. Results of normality test using Jarque-Bera.                                                            

Date: 04/08/16 Time: 21:31   

 FLTC LDFC 

Jarque-Bera 10.44967 2.315542 

Probability 0.005381 0.314186 

Observations 144 144 

 
Table 2. Ramsey RESET Linearity Test Results on the association between LDFC and FLTC.                                      

Ramsey RESET Test  

Equation: UNTITLED  

Specification: LDFC FLTC  

Omitted Variables: squares of fitted values 

 Value df Probability 

t-statistic 14.60024 142 0.0000 

F-statistic 213.1670 (1, 142) 0.0000 

Likelihood ratio 213.1670 1 0.0000 

F-test summary:  

 Sum of Sq. df Mean Squares 

Test Deviance 84516.03 1 84516.03 

Restricted Deviance 140815.9 143 984.7267 

Unrestricted Deviance 56299.88 142 396.4780 

Dispersion SSR 56299.88 142 396.4780 

LR test summary:  

 Value df  

Restricted Deviance 140815.9 143  

Unrestricted Deviance 56299.88 142  

Dispersion 396.4780   

Unrestricted Test Equation:  

Dependent Variable: LDFC  

 
3) Statistical independence of the errors  
When data are ordered—for example, when sequential observations represent Monday, Tuesday, and Wed- 

nesday—then the neighboring error terms may turn out to be correlated. This phenomenon is called serial corre-
lation [37] [38]. If left untreated, serial correlation can do two bad things: reported standard errors and t-statistics 
can be quite far off, and under certain circumstances, the estimated regression coefficients can be quite badly 
biased. While using the Durbin-Watson statistical test for serial correlation, under the null hypothesis (no serial 
correlation) the Durbin-Watson centers around 2.0 rather than 0. If the serial correlation coefficient is zero, the 
Durbin-Watson is about 2. As the serial correlation coefficient heads toward 1.0, the Durbin-Watson heads to-
ward 0. 

4) Homoscedasticity (constant variance) of the errors 
OLS makes the assumption that the variance of the error term is constant (Homoscedasticity). If the error 
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terms do not have constant variance, they are said to be heteroscedastic. Heteroscedasticity does not cause ordi-
nary least squares coefficient estimates to be biased, although it can cause ordinary least squares estimates of the 
variance (and, thus, standard errors) of the coefficients to be biased, possibly above or below the true or popula-
tion variance [40] [41]. Thus, regression analysis using heteroscedastic data will still provide an unbiased esti-
mate for the relationship between the predictor variable and the outcome, but standard errors and therefore infe-
rences obtained from data analysis are suspect. Biased standard errors lead to biased inference, so results of hy-
pothesis tests are possibly wrong. If OLS is performed on a heteroscedastic data set, yielding biased standard 
error estimation, a researcher might fail to reject a null hypothesis at a given significance level, when that null 
hypothesis was actually uncharacteristic of the actual population (making a type II error). 

Heterokedasticity, serial correlations and presence of outliers were never perceived by the researcher to be 
problems at all due to the fact that Fully Modified Ordinary Least Squares (FMOLS) had been adopted in the 
panel cointegrating equations as outlined by [42]-[45]. This method modifies least squares to account for serial 
correlation effects and for the endogeneity in the regressors that results from the existence of a cointegrating re-
lationship, as well robustic in dealing with the outliers. 

5) Panel Unit Root Tests 
While dealing with panel data, which is usually time series in nature, researcher may have to find out if the 

data is stationary [46]. Stationarity of data is when the mean, variance and covariance are time invariant (they do 
not change over time). This was done by use of panel unit root tests; Yt is regressed on its lagged value Yt–1 and 
then checked if the estimated slope coefficient is statistically equal to 1. If not, then Yt is nonstationary. This 
then requires first differencing of Yt which is then regressed on Yt–1, if the slope coefficient is 0, then Yt is non-
stationary, and if it negative, then Yt is stationary [41] [46]. Any series that is not stationary is said to be nonsta-
tionary. 

PP Fisher Panel unit root testing was performed on the two variables. The results showed that LDFC was sta-
tionary at order 0, while the FLTC was stationary at order 1. The following 3 tables (Tables 3-5) show the re-
sults of the panel unit root analysis for the series: 

The results in Table 3 failed to reject the null hypothesis of the presence of a unit root. Thus, it was necessary 
to difference the series. 
 
Table 3. Panel Unit Root Test Results for the zero-order FLTC series.                                                  

Null Hypothesis: unit root (individual unit root process) 

Series: FLTC   

Date: 03/28/16    Time: 09:35  

Sample: 1 144   

Exogenous variables: individual effects 

Newey-West automatic bandwidth selection and Bartlett kernel 

Total (balanced) observations: 142 

Cross-sections included: 2  

Method Statistic Prob.** 

PP-Fisher Chi-square 1.17204 0.8827 

PP-Choi Z-stat 1.21574 0.8880 
**Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality. 

Intermediate Phillips-Perron test results FLTC 

Cross    

Section Prob. Bandwidth Obs 

FFV 0.9290 1.0 71 

JLX 0.5991 4.0 71 

http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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Table 4. Panel Unit Root Test Results for the first-order FLTC series.                                                   

Null Hypothesis: unit root (individual unit root process) 

Series:  D(FLTC)  

Date: 03/28/16   Time: 09:36  

Sample: 1 144   

Exogenous variables: individual effects 

Newey-West automatic bandwidth selection and Bartlett kernel 

Total (balanced) observations: 140 

Cross-sections included: 2  

Method Statistic Prob.** 

PP-Fisher Chi-square 57.3674 0.0000 

PP-Choi Z-stat −6.86787 0.0000 

**Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality. 

Intermediate Phillips-Perron test results D(FLTC) 

Cross    

Section Prob. Bandwidth Obs 

FFV 0.0000 1.0 70 

JLX 0.0000 6.0 70 

 
Table 5. Panel Unit Root Test Results for the zero-order LDFC series.                                                    

Null Hypothesis: unit root (individual unit root process) 

Series: LDFC   

Date: 04/12/16   Time: 22:37  

Sample: 1 72   

Exogenous variables: individual effects 

Newey-West automatic bandwidth selection and Bartlett kernel 

Total (balanced) observations: 142 

Cross-sections included: 2  

Method Statistic Prob.** 

PP-Fisher Chi-square 28.9699 0.0000 

PP-Choi Z-stat −4.48546 0.0000 

**Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality. 

Intermediate Phillips-Perron test results LDFC 

Cross    

Section Prob. Bandwidth Obs 

FFV 0.0024 2.0 71 

JLX 0.0002 3.0 71 
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The results in Table 4 now shows that the first order FLTC series is now stationary given that the null hypo-
thesis of the presence of a unit root is now rejected. 

The results in Table 5 indicate that the null hypothesis of the presence of a unit root is rejected. 
6) Panel Cointegration Tests 
The finding that many macro time series may contain a unit root has spurred the development of the theory of 

non-stationary time series analysis [37]. Reference [47] pointed out that a linear combination of two or more 
non-stationary series may be stationary. If such a stationary linear combination exists, the non-stationary time 
series are said to be cointegrated. The stationary linear combination is interpreted as a long-run equilibrium rela-
tionship among the variables. Given that most of variables were not stationary at order zero, it was necessary to 
carry out cointegration tests before deploying the more favorable panel cointegrating regression due to its more 
accuracy in estimations. The panel cointegration tests were carried out by use of Pedroni Residual Cointegration 
Tests that evaluate the null hypothesis of no cointegration at the conventional size of p < 0.05against both the 
homogeneous and the heterogeneous alternatives. Table 6 shows that nine of the eleven statistics rejected the 
null hypothesis of no cointegration at the conventional size of 0.05. 
 
Table 6. Panel Cointegration (Pedroni Residual) Test for the combined LDFC and FLTC series.                                   

Pedroni Residual Cointegration Test   

Series: LDFC FLTC    

Date: 04/12/16   Time: 22:45   

Sample: 1 72    

Included observations: 144   

Cross-sections included: 2   

Null Hypothesis: no cointegration   

Trend assumption: no deterministic trend  

User-specified lag length: 1   

Newey-West automatic bandwidth selection and Bartlett kernel 

Alternative hypothesis: common AR coefs (within-dimension) 

    Weighted  

  Statistic Prob. Statistic Prob. 

Panel v-Statistic 0.665149 0.2530 0.005479 0.4978 

Panel rho-Statistic −7.921038 0.0000 −7.947623 0.0000 

Panel PP-Statistic −5.302679 0.0000 −5.239487 0.0000 

Panel ADF-Statistic −4.865236 0.0000 −5.038563 0.0000 

Alternative hypothesis: individual AR coefs. (between-dimension) 

  Statistic Prob.   

Group rho-Statistic −6.643452 0.0000   

Group PP-Statistic −5.869738 0.0000   

Group ADF-Statistic −4.994443 0.0000   

Cross section specific results   

Phillips-Peron results (non-parametric)  

Cross ID AR (1) Variance HAC Bandwidth Obs 

FFV 0.439 26.91137 23.28485 3.00 71 

JLX 0.421 64.96408 55.87042 4.00 71 

Augmented Dickey-Fuller results (parametric)  

Cross ID AR (1) Variance Lag Max lag Obs 

FFV 0.465 25.82550 1 -- 70 

JLX 0.334 64.21142 1 -- 70 
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3.3. Correlational Analysis 
Results in Table 7 indicate that fleet capacity has a significant positive correlation with load factor (r = 0.47, 
p-value = 0.000) respectively. This means that if fleet capacity increases, load factor will increase too. 

3.4. Panel Regression Equation 
By combining time series of cross-section observations, panel data give more informative, more variability, less 
collinearity among variables, more degrees of freedom and more efficiency [41] [47]. Panel data presents two 
big advantages over ordinary time series or cross section data. The not always obvious advantage is that in cer-
tain circumstances panel data allows you to control for un-observables that would otherwise mess up the regres-
sion estimation. A key assumption in most applications of least squares regression is that there aren’t any omit-
ted variables which are correlated with the included explanatory variables (Omitted variables cause least squares 
estimates to be biased). Panel data allows for the use of fixed effects to make up for the omitted variable. Thus, 
to examine the influence of the fleet capacity on load factor, the following panel regression equations will be 
used: 

To test if FLTC predicts LDFC → it 0 it itY cX uβ= + +                                         (2) 
where: 
𝔦𝔦 = 1, 2 and is the individual airline dimension (cross-section identifier);  
t = time period (1 to 72); 
C is the overall effect of the independent variable X on Y; 
β0 is the intercept (cross-section fixed effects) for the equation;  
u is the error terms(both person-specific and idiosyncratic) in the equation. 

4. Results and Discussions 
4.1. Descriptive Statistics 
From Table 8, fleet capacity has a mean of 295.35 seats while the mean of load factor is 65.38%, this is consis-
tent with the finding of [16] which reported a mean of 65.3% for African airlines during the year 2012 but far 
much lower than [3]’s finding of 80% in Croatia. Median is the middle value (or average of the two middle val-
ues) of the series when the values are ordered from the smallest to the largest. The median of fleet capacity is 
284 seats, while the median of load factor is 65 percent. 

Std. Dev. (standard deviation) is a measure of dispersion or spread in the series. The standard deviation is 
given by: 

( ) ( )
N 2

i 1
s y y N 1

=

 = − −  
∑                                  (3) 

where N is the number of observations in the current sample and y  is the mean of the series. The standard 
 

Table 7. Correlational analysis between fleet capacity and load factor.                    

Observations FLTC LDFC 

FLTC 1.000000  

 -  

 -  

 144  

LDFC 0.474066 1.000000 

 6.415926 - 

 0.0000 - 

 144 144 
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Table 8. Summary of the descriptive statistics.                                              

 FLTC LDFC 

Mean 295.3542 65.37500 

Median 284.0000 65.00000 

Maximum 563.0000 89.00000 

Minimum 48.00000 39.00000 

Std. Dev. 179.7084 9.010386 

Skewness 0.156009 0.107684 

Kurtosis 1.717714 3.582701 

   
Jarque-Bera 10.44967 2.315542 

Probability 0.005381 0.314186 
   

Sum 42531.00 9414.000 

Sum Sq. Dev. 4618203. 11609.75 
   

Observations 144 144 

 
deviation of fleet capacity is 179.7 seats, and that of load factor is 9.01 percent. Skewness is a measure of 
asymmetry of the distribution of the series around its mean. Skewness is computed as: 

( )
N 3

i 1
S 1 N y y σ

=

= −  ∑                                     (4) 

where σ is an estimator for the standard deviation that is based on the biased estimator, for the Variance (σ = s 
( )N 1 N− ). The skewness of a symmetric distribution, such as the normal distribution, is zero. Positive 

skewness means that the distribution has a long right tail and negative skewness implies that the distribution has 
a long left tail [35] [49]. Both fleet capacity and load factor are positively skewed as indicated by the values 0.16 
and 0.11 respectively, this means that the mass of the distribution is concentrated on the right. Kurtosis measures 
the peakedness or flatness of the distribution of the series. Kurtosis is computed as: 

( )
N 4

i 1
K 1 N y y σ

=

= −  ∑                                    (5) 

where σ is again based on the biased estimator for the variance. The kurtosis of the normal distribution is 3 [35]. 
If the kurtosis exceeds 3, the distribution is peaked (leptokurtic) relative to the normal; if the kurtosis is less than 
3, the distribution is flat (platykurtic) relative to the normal. FLTC is platykurtic as indicated by 1.72, implying 
that its standard deviation from the mean is large; while load factor is leptokurtic as indicated by the value 3.58 
implying that its standard deviation from the mean is small. 

4.2. The Nature of Relationships between FLTC and LDFC 
This section sought to determine the nature of relationships that existed, as shown by the following scatter dia-
gram, between fleet capacity and load factor. 

Figure 1 suggests that fleet capacity and load factor are positively, though weakly, related as indicated by a 
relatively flatter slope. This implies that as fleet capacity increases, load factor increases but in smaller amounts 
compared to the increases in fleet capacity. This is supported by [16]’s finding that reported that in Africa, there 
was fleet capacity expansion of 5.2% and load factor rose 1.9 percentage for the same year 2013. 

4.3. Inferential Analysis 
It is well known that many economic time series are difference stationary which produce misleading results,  
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Figure 1. Scatter diagram depicting the relationship between fleet 
capacity and load factor.                                        

 
with conventional Wald tests for coefficient significance spuriously showing a significant relationship between 
unrelated series [50]. Reference [47] note that a linear combination of two or more I(1) series may be cointe-
grated, and such linear combination yields a long-run relationship between the variables. References [42]-[44] 
[50] suggested the use Fully Modified OLS (FMOLS) to provide optimal estimates of cointegrating regressions. 
The method modifies least squares to account for serial correlation effects and for the endogeneity in the re-
gressors that result from the existence of a cointegrating relationship. Thus, in the following analyses, the re-
searcher adopted FMOLS in the panel cointegrating regressions to overcome the problems of heterokedasticity, 
serial correlations and the outliers which are common with ordinary least squares (OLS). By combining time se-
ries of cross-section observations, panel data give more informative data, more variability, less collinearity 
among variables, more degrees of freedom and more efficiency [41]. Panel data presents two big advantages 
over ordinary time series or cross section data. The obvious advantage is that panel data frequently has lots and 
lots of observations. The not always obvious advantage is that in certain circumstances panel data allows you to 
control for unobservable that would otherwise mess up your regression estimation. A key assumption in most 
applications of least squares regression is that there aren’t any omitted variables which are correlated with the 
included explanatory variables (Omitted variables cause least squares estimates to be biased). The usual problem 
is that if you don’t observe a variable, you don’t have much choice but to omit it from the regression. Panel data 
allows for the use of fixed effects to make up for the omitted variable.  

Table 9 shows that fleet capacity has an off-the-scale significant positive effect on load factor as indicated by 
the β = 0.0268 against t-statistic of 4.9837 and a p-value of 0.0000. This implies that any additional 1 seat will 
result in 0.0268 percentage increase in load factor. The R2 is 0.2276 and the adjusted R2 is 0.2165. The differ-
ence between R2 and the adjusted R2 is 0.0112.; and according to [51], it implies that the model is valid, and has 
stability for prediction. Thus, the regression accounts for 22.76% of the variance in load factor. This is supported 
by the fact that the standard deviation of the dependent variable is slightly larger than the standard error of the 
regression (i.e. 8.6972 is slightly larger than 7.6986%). From these results, the analytic model was developed as 
follows: 

( )ldfc 0.0268*fltc eqn _ 01_ efct 4.22= +                              (6) 

where: C represents the individual cross-section fixed effect, and is as follows: 
 

 C 

FFV 59.15 

JLX 56.13 



M. O. Aomo et al. 
 

 
728 

Table 9. Regression results of the effect of fleet capacity on load factor.                                                  

Dependent Variable: LDFC   

Method: Panel Fully Modified Least Squares (FMOLS) 

Date: 04/12/16   Time: 23:01   

Sample (adjusted): 2 72   

Periods included: 71   

Cross-sections included: 2   

Total panel (balanced) observations: 142  

Panel method: pooled estimation  

Cointegrating equation deterministics: C  

Coefficient covariance computed using default method 

Long-run covariance estimates (Bartlett kernel, Newey-West fixed bandwidth) 

Variable Coefficient Std. Error t-Statistic Prob. 

FLTC 0.026781 0.005374 4.983714 0.0000 

R-squared 0.227566 Mean dependent var 65.66901 

Adjusted R-squared 0.216452 S.D. dependent var 8.697209 

S.E. of regression 7.698617 Sum squared resid 8238.349 

Long-run variance 100.1477    

 
The results imply that, should the low-cost carriers add to its fleet 2 more fifty-seater airplanes, such as a Ca-

nadian Royal Jet (CRJ) which form a majority of their fleet, load factor will improve by 3%. This finding sup-
ports that of [16] though contradicts [17]. Reference [16] reported that in India, fleet capacity climbed 3.5% in 
2013, and load factor was 74.6%, up 1.7 percentage points, while in Africa, there was capacity expansion of 5.2% 
and load factor rose 1.9 percentage points to 69 percent, indicating that an increase in fleet capacity will result in 
an increase in load factor. However, [17] found out that fleet capacity is an insignificant negative predictor in 
explaining the variation in load factor, with a negative coefficient of −1.511. This finding reiterates that when 
more seats are availed (and this is achieved through increasing the number of airplanes), the availability comes 
with flexibility in fleet scheduling and management. This ensures more reliability that wins the confidence of the 
travelling public. Increasing the number of equipment, and consequently the available seats, raises the value of 
the product to the passenger and increased value leads to higher demand and finally higher load factors. Passen-
gers value the convenience increased capacity provides them. In the end, more bookings are realized which is 
seen in the form of rising load factor. The finding also implies that unlike in the North America and better part 
of Europe, Kenya, and to a large extent Africa, still has a segment in her population whose propensity to travel 
by air can be stimulated through aggressive fare reductions and commercial successes in product designing, 
promotions, marketing communications, distributions, and service delivery, hence the need to avail more seats. 

5. Summary, Conclusions and Recommendations 
Correlational analyses indicate that fleet capacity is significantly and positively correlated with load factor; and 
the study has also established that fleet capacity is a significant positive predictor of load factor. Since airline 
fleet management and planning requires determining the size of service fleet that is most cost-effective, the 
study recommends that there is, therefore, a need to identify and adjust accordingly, from time to time, the op-
timal fleet capacity for their specific operating conditions and environments without under or over supplying the 
available seats. Airlines management also needs to work on the two key drivers, i.e. pricing and commercial 
success. This is because fare reductions will generally stimulate demand and commercial success in product de-
sign, promotions, marketing communications, distributions, and service delivery will influence load factors. 
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Studies should be designed with a view to replicating the results of this research within the wider setting of the 
entire Kenyan aviation market to include even the full service carriers. 
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List of Abbreviations and Acronyms 
FFV—Fly540 Aviation Limited 
FMOLS—Fully Modified Ordinary Least Squares 
LDFC—Load Factor 
IATA—International Airlines Transport Association 
ICAO—International Civil Aviation Organization  
JLX—Jetlink Aviation Limited 
FLTC—Fleet Capacity 
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