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Abstract 
We proposed a higher-order accurate explicit finite-difference scheme for solving the two-dimen- 
sional heat equation. It has a fourth-order approximation in the space variables, and a second- 
order approximation in the time variable. As an application, we developed the proposed numeri-
cal scheme for solving a numerical solution of the two-dimensional coupled Burgers’ equations. 
The main advantages of our scheme are higher accurate accuracy and facility to implement. The 
good accuracy of the proposed numerical scheme is tested by comparing the approximate numer-
ical and the exact solutions for several two-dimensional coupled Burgers’ equations. 
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1. Introduction 
The Burgers’ equation is an important non-linear parabolic partial differential equation widely used to model 
several physical flow phenomena in fluid dynamics teaching and in engineering such as turbulence, boundary 
layer behaviour, shock wave formation and mass transport [1]. Due to its wide range of applicability, several 
researchers, both scientists and engineers, have been interested in studying the properties of the two-dimensional 
coupled Burgers’ equation (TDCBE) using various numerical techniques. 

There exist many different explicit and implicit numerical schemes with second-order approximation in the 
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space variables, and a first or second-order approximation in the time variable. For example in [2]-[5], the 
Crank-Nicolson scheme using the different fully/semi implicit finite-difference methods for the numerical 
solution of the TDCBE was applied. The implicit logarithmic and local discontinuous Galerkin finite-difference 
methods for the numerical solution of the TDCBE are proposed in [6] [7]. Also in [4] an explicit scheme using 
the finite-difference method was applied. 

The implicit finite-difference methods with forth-order approximation in the space variables, and a second- 
order approximation in the time variable are proposed in [8] [9]. These methods based on the Crank-Nicolson 
scheme with Padé approximation of the finite-difference operator, and hybrid Crank-Nicolson Du Fort and 
Frankel scheme, respectively. However, the implicit methods on each time layer required to solve an algebraic 
system. In multidimensional case of the TDHE, it requires large calculation time for solving the algebraic 
systems till final time layer t T= , even taking into account the band structure of the matrices [10]. 

The aim of the present paper is to construct a new stable and explicit finite-difference scheme to solve the 
two-dimensional heat equation (TDHE) with Robin boundary conditions. The proposed scheme has a fourth- 
order approximation in the space variables, and a second-order approximation in the time variable. We deve- 
loped the proposed scheme for solving a numerical solution of the TDCBE, which comes into the TDHE by the 
application of the Hopf-Cole transformation. 

It is known that the time step of the explicit time-marching schemes must satisfy the so-called Courant- 
Friedrichs-Lewy condition, which usually enforces a limiting constraint on the time step. However, the main 
advantages of our explicit scheme considered are saving computing time and memory, and making paralle- 
lization easier compared to the other numerical methods applied to the TDHE. 

The accuracy of the proposed numerical scheme is examined by comparing the numerical and exact solutions 
of the several TDCBE. The numerical results are found in good agreement with exact solutions for a wide rang 
of the Reynolds number and confirm the approximation orders of the proposed scheme. We also compared the 
efficiency of the proposed scheme and implicit fourth-order finite-difference method [8]. Both methods are 
comparable by the convergence of the solutions and total calculation times. 

The structure of the paper is as follows. In Section 2, we present reductions of the TDCBE to a TDHE. The 
explicit fourth-order accurate finite-difference scheme for solving the TDHE and the fourth-order accurate 
finite-difference schemes for solving the TDCBE are given in Section 3. Numerical results are discussed in 
Section 4. 

2. The Statement of the Problem 
The TDCBE is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

2 2

, , , , , , , , , ,
, , , , ,

u x y t u x y t u x y t u x y t u x y t
u x y t v x y t

t x y x y
ν
 ∂ ∂ ∂ ∂ ∂

+ + = +  ∂ ∂ ∂ ∂ ∂ 
         (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

2 2

, , , , , , , , , ,
, , , , ,

v x y t v x y t v x y t v x y t v x y t
u x y t v x y t

t x y x y
ν
 ∂ ∂ ∂ ∂ ∂

+ + = +  ∂ ∂ ∂ ∂ ∂ 
         (2) 

subject to the initial conditions  

( ) ( ) ( )1, , 0 , , , ,u x y x y x yϕ= ∈Ω                                    (3) 

( ) ( ) ( )2, , 0 , , , ,v x y x y x yϕ= ∈Ω                                    (4) 

and Dirichlet boundary conditions 

( ) ( ) ( ), , , , , , , 0 ,u x y t x y t x y t Tζ= ∈∂Ω < ≤                              (5) 

( ) ( ) ( ), , , , , , , 0 ,v x y t x y t x y t Tξ= ∈∂Ω < ≤                              (6) 

and the potential symmetry condition  

( ) ( ) ( ), , , ,
, , , 0 .

u x y t v x y t
x y t T

y x
∂ ∂

= ∈Ω ≤ ≤
∂ ∂

                            (7) 
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Here ( ){ }, : ,x y a x b c y dΩ = ≤ ≤ ≤ ≤  is the computational domain, and ∂Ω  is its boundary; ( ), ,u x y t  
and ( ), ,v x y t  are the velocity components to be determined; ( )1 ,x yϕ , ( )2 ,x yϕ , ( ), ,x y tζ  and ( ), ,x y tξ  
are known functions; 1ν −  is the Reynolds number. 

Using the Hopf-Cole transformations [7] [8] 

( ) ( )
( ), ,1, , 2 ,

, ,
x y t

u x y t
x y t x

θ
ν
θ

∂
= −

∂
                            (8) 

( ) ( )
( ), ,1, , 2 ,

, ,
x y t

v x y t
x y t y

θ
ν
θ

∂
= −

∂
                            (9) 

Equations (1) (2) are reduced to the TDHE 

( ) ( ) ( ) ( ) ( )
2 2

2 2

, , , , , ,
, , 0,

x y t x y t x y t
C t x y t

t x y
θ θ θ

ν θ
 ∂ ∂ ∂

− + − =  ∂ ∂ ∂ 
                  (10) 

where ( )C t  is an arbitrary function depending on t only. 
Theorem 1 [7]. Let ( ), ,x y tθ  be the solution of Equation (10), the functions ( ), ,u x y t  and ( ), ,v x y t  are 

defined in Equations (8) and (9). Then ( ), ,u x y t  and ( ), ,v x y t  are independent of the function ( )C t . 
By the above theorem, we can choose ( ) 0C t = , and Equation (10) is simplified to 

( ) ( ) ( )2 2

2 2

, , , , , ,
.

x y t x y t x y t
t x y

θ θ θ
ν
 ∂ ∂ ∂

= +  ∂ ∂ ∂ 
                      (11) 

The initial conditions (3), (4) and boundary conditions (5), (6) lead to 

( ) ( ), , 0 , ,x y x yθ = Φ                                         (12) 

( ) ( ) ( ), , , ,
, , 0,

2
x a

x y t a y t
a y t

x
θ ζ

θ
ν

=

∂
+ =

∂
                        (13) 

( ) ( ) ( ), , , ,
, , 0,

2
x b

x y t b y t
b y t

x
θ ζ

θ
ν

=

∂
+ =

∂
                         (14) 

( ) ( ) ( ), , , ,
, , 0,

2
y c

x y t x c t
x c t

y
θ ξ

θ
ν

=

∂
+ =

∂
                         (15) 

( ) ( ) ( ), , , ,
, , 0,

2
y d

x y t x d t
x d t

y
θ ξ

θ
ν

=

∂
+ =

∂
                        (16) 

respectively. Here the initial-condition function ( ),x yΦ  has the form [7] [8] 

( ) ( ) ( )1 2
1 1, exp , d , d .

2 2
x y

a c
x y s y s a s sϕ ϕ

ν ν
 Φ = − − 
 ∫ ∫                     (17) 

Thus, the TDCBE (1)-(6) are fully reduced to TDHE (11) with the initial and boundary conditions (12)-(16). 

3. The Fourth-Order Accurate Explicit Finite-Difference Scheme 
For the TDHE (11)-(16), we consider the following eleven-points explicit finite-difference scheme: 

( ) ( )

( )

1 1
, , , 1, , 1, , 1 , , 1

2 2

1, 1 1, 1 1, 1 1, 1 ,2 2

2 2

1 1 4

1, , 1, 1, , 1, , , 1, 2,

n n n n n n n n n
i j i j i j i j i j i j i j i j i j

x y

n n n n n
i j i j i j i j i j

x y

x y

A A B B
F C C

h h

D
h h

i N j M Nh b a Mh d c n

τ

+ −
− + − +

− − − + + − + +

Θ − + Θ + Θ Θ − Θ −Θ Θ − Θ +Θ
Θ ≡ − −

 
− + Θ + Θ +Θ +Θ − Θ  

 
= − = − = − = − =� � �

     (18) 
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Here and throughout the work, ,
n
i jΘ  is the approximate solution of the ( ), , ,n

i j i j nx y tθ θ=  at the mesh point 
( ix ih= , jy jh= , nt nτ= ), where xh  and yh  are spatial steps by x and y, τ  is a time step, A, B, C and D 
are unknown coefficients. Let , , ,

n n n
i j i j i jz θ= Θ −  be the error function. In this term the scheme (18) has the form 

( ) , ,n
i jF z ψ=                                          (19) 

where ,
n
i jψ  is an approximation error and 

( ), .n
i j Fψ θ=                                          (20) 

We suppose that the solution of Equations (11)-(16) is a sufficiently smooth function with respect to x, y and t. 
Using the Taylor expansions of 1

,
n
i jθ ± , 1,

n
i jθ ± , , 1

n
i jθ ±  and 1, 1

n
i jθ ± ±  at the point ( ), ,i j nx y t , and an identity 

( ) ( )
2 2

2 2

, ,
, , , 0,

mm
m

m

x y t
x y t m

t x x
θ

ν θ
∂  ∂ ∂

= + ≥ ∂ ∂ ∂ 
                      (21) 

we have 

( ) ( ) ( ) ( )

( ) ( ) ( )

22 22

, 2 2 2 2

2 2 442 2 42 2

2 4 2

, , , ,
2 1 2 1

, ,
2 12 6 2 12 66 6

yn x
i j

y x

y y yx x x

y x

hx y t x y thA B C D A B C D
h x h y

h h hx y th h hA B C D A B C D
h x h

θ θ
ψ ν ν

θτν τν

       ∂ ∂
= − − − + + − − − +          ∂ ∂         

      ∂
+ + − − + + + − − +         ∂         

( )

( ) ( ) ( )

4

4

64 6
2 2 2 4 4 2 2

2 2 2 2

, ,

, ,

, ,
.

i j n

yx
x y x y x y

y xx x y y t t

x y t
y

hx y t hA B D h h O h h h h
x y h h

θ

θ
τν

= = =

∂
∂

 ∂ + + − + + + + + +    ∂ ∂   

  (22) 

Equating the coefficients of the partial derivatives to zero in (22), we obtain following system of equations  

( )

( )

( ) ( )

22

2 2

2 2 42 2 4
2

2 2

2 2 2

2 1 2 1 ,

,
6 3 6 33 3

.

yx

y x

y y yx x x

y x

x y

hhA B C D C D
h h

h h hh h hA B C D C D
h h

A B D h h

ν

τν

τν

    
− = + + = + +           

     + = + + = + +       
   

 + = +

                  (23) 

The above system has a unique solution if x yh h h= = : 
4 1 38 , ,
1 3 1 3

AC D B Aαν α
α α

−
= = =

+ +
                             (24) 

where 2
2
h
τνα = . Using (24) and the higher-order Taylor expansions of the ( ), ,x y tθ  at the point ( ), ,i j nx y t  

we obtain  

( ) ( )

( ) ( ) ( )

6 64
2

, 6 6

6 6
2 3 6

4 2 2 4

, ,

, , , ,1
2 15

, , , ,13 .
9

i j n

n
i j

x x y y t t

x y t x y thD
x y

x y t x y t
O h

x y x y

θ θ
ψ α

θ θ
α τ

= = =

  ∂ ∂ = − +     ∂ ∂  

 ∂ ∂ + − + + +   ∂ ∂ ∂ ∂  

         (25) 

One can see that, the condition [11] 

2
2 1

15h
τνα = =                                      (26) 

does not improve the order of the scheme (18), i.e., the truncation error of the scheme (18) is of the order of 
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( )2 4
,
n
i j O hψ τ= +  for any α . If 1A = , the scheme (18) is simplified to the canonical form:  

( )

2
1 1

, , ,

2

1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1

1 3 2 10
1 3 1 3

2 1 ,
1 3 4

n n n
i j i j i j

n n n n n n n n
i j i j i j i j i j i j i j i j

α α
α α

α
α

+ −

− + − + − − − + + − + +

− −
Θ = − Θ + Θ

+ +
 + Θ + Θ +Θ +Θ + Θ +Θ +Θ +Θ +  

          (27) 

To find the stability condition of the scheme (27), we seek the partial solution in the form: 

( ) ( ), exp exp .n n
i j q ih jhψ φΘ =                                    (28) 

From (27) we have 

( ) 21 3 2 1 3 0,q bqα α+ − + − =                                   (29) 

( ) 21 9 ,b A α= − −  

( )( ) ( )( )1 cos 2 cos 2 9.A h hψ φ≤ = + + ≤  

We have following theorem: 
Theorem 2 [10] Let 0a > , b and c are real numbers. Then roots of a quadratic equation 2 2 0aq bq c+ + =  

satisfy the condition 1,2 1q ≤  if and only if 

1, 2 .c b a c
a
≤ ≤ +                                      (30) 

Using the conditions (30), we obtain 

( )( )
( )( )

2

2

1 3 1,
1 3 0 ,

1 3 1 3 2 2 1 9 , 9,

21 3 1 3 2 2 9 1 , .
9

c
a
a c b A A

a c b A
A

α
α α

α α α

α α α α

−  = ≤  + ≤ + = + + − ≥ = − − ⇒ ≤ 
 

+ = + + − ≥ − = − −  ≤
  − 

             (31) 

The last inequality is true for any A under condition 1
2

α ≤  or 

2

.
4
hτ
ν

≤                                          (32) 

The scheme (27) at 1
3

α =  (or 0B = ) is a two-layer scheme in time, while at 1
3

α ≠  (or 0B ≠ ) is a three- 

layer one. Hence, if 1
3

α ≠  in order to find 2
,i jΘ  at level two, two values 0

,i jΘ  and 1
,i jΘ  are required. Using  

the Taylor expansion of ( ), ,x y tθ  at point ( ), , 0x y  and Equation (11) we obtain 

( ) ( ) ( ) ( ) ( )
2 2

2
2 2

, , 0 , , 0
, , , , 0 .

x y x y
x y t x y O

x y
θ θ

θ θ τν τ
 ∂ ∂

= + + +  ∂ ∂ 
                  (33) 

From the initial condition (12) and Taylor expansion (33), we find 1
,i jΘ  with the accuracy ( )3O τ  

( ) ( ) ( )2 2
1
, 2 2

,

, ,
, , 0, , , 0, , .

i j

i j i j

x x y y

x y x y
x y i N j M

x y
τν

= =

 ∂ Φ ∂ Φ
Θ = Φ + + = =  ∂ ∂ 

� �        (34) 

From the Robin boundary conditions (13)-(16) using the asymmetric fourth-order finite-difference approxi- 
mations of the first spatial derivative [12], we find 1

0,
n

j
+Θ , 1

,
n
N j
+Θ , 1

,0
n
i
+Θ  and 1

,
n
i M
+Θ  
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( )

( )

1 1 1 1
1, 2, 3, 4,1

0,

1

1 1 1 1
4, 3, 2, 1,1

,

1

1 1 1 1
,1 ,2 ,3 ,41

,0

48 36 16 3
, 1, , 1,1225 , ,

2
3 16 36 48

,1225 , ,
2

48 36 16 3
1225

n n n n
j j j jn

j

j n

n n n n
N j N j N j N jn

N j

j n

n n n n
i i i in

i

j Mh a y t

h b y t

ζ
ν

ζ
ν

+ + + +
+

+

+ + + +
− − − −+

+

+ + + +
+

Θ − Θ + Θ − Θ
Θ = = −

−

Θ − Θ + Θ − Θ
Θ = −

+

Θ − Θ + Θ − Θ
Θ =

−

�

( )

( )

1

1 1 1 1
, 4 , 3 , 2 , 11

,

1

, 1, , 1
, ,

2
3 16 36 48

.1225 , ,
2

i n

n n n n
i M i M i M i Mn

i M

i n

i Nh x c t

h x d t

ξ
ν

ξ
ν

+

+ + + +
− − − −+

+

= −

Θ − Θ + Θ − Θ
Θ = −

+

�

                    (35) 

Now we need to calculate values of the vertex points 1
0,0
n+Θ , 1

,0
n
N
+Θ , 1

0,
n

M
+Θ  and 1

,
n
N M
+Θ . Each value of these 

points can be calculated using the boundary conditions (13)-(16) and a similar formula to (35) by direction x or y 
or a middle value of the values by the both directions. Below we presented formulas which used only the boun- 
dary conditions (13), (14): 

( )

( )

( )

1 1 1 1
1,0 2,0 3,0 4,01

0,0

1

1 1 1 1
4,0 3,0 2,0 1,01

,0

1

1 1 1 1
1, 2, 3, 4,1

0,

1

48 36 16 3
,1225 , ,

2
3 16 36 48

,1225 , ,
2

48 36 16 3
1225 , ,
2

n n n n
n

n

n n n n
N N N Nn

N

n

n n n n
M M M Mn

M

n

h a c t

h b c t

h a d t

ζ
ν

ζ
ν

ζ
ν

+ + + +
+

+

+ + + +
− − − −+

+

+ + + +
+

+

Θ − Θ + Θ − Θ
Θ =

−

Θ − Θ + Θ − Θ
Θ = −

+

Θ − Θ + Θ − Θ
Θ =

−

( )

1 1 1 1
4, 3, 2, 1,1

,

1

,

3 16 36 48
.1225 , ,

2

n n n n
N M N M N M N Mn

N M

n
h b d tζ
ν

+ + + +
− − − −+

+

Θ − Θ + Θ − Θ
Θ = −

+

                       (36) 

Thus, we find ,
n
i jΘ  for 0, ,i N= �  and 0, ,j M= �  by Formulas (27), (35) and (36). 

The higher-order finite-difference schemes presented in our previous papers [13]-[15] are applied for finding 
solutions ( ), ,u x y t , ( ), ,v x y t  of Equations (1)-(6). We used the following fourth-order finite-difference 
scheme [13]: 

( )1, 1, , , 1, 1, 1, 1,
64 , 1, , 1, 0, , ,n n n n n n n n

i j i j i j i j i j i j i j i jU U U i N j M
h
ν

− − + + + −Θ + Θ + Θ = − Θ −Θ = − =� �        (37) 

with boundary conditions 

( ) ( )0, ,, , , , , , 0, , .n n
j j n N j j nU a y t U b y t j Mζ ζ= = = �                        (38) 

Here ,
n
i jU  is an approximate solution of ( ), ,i j nu x y t . In a similar way we obtain  

( ), 1 , 1 , , , 1 , 1 , 1 , 1
64 , 1, , 1, 0, , ,n n n n n n n n

i j i j i j i j i j i j i j i jV V V j M i N
h
ν

− − + + + −Θ + Θ + Θ = − Θ −Θ = − =� �         (39) 

with boundary conditions 

( ) ( ),0 ,, , , , , , 0, , .n n
i i n i M i nV x c t V x d t i Nξ ξ= = = �                           (40) 

Here ,
n

i jV  is an approximate solution of ( ), ,i j nv x y t . The three-diagonal systems (37), (38) and (39), (40) 
are solved by the efficient elimination method [16]. 
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4. Numerical Results 
Two exact solvable TDCBEs (1)-(6) are solved to show demonstrate the efficiency and robustness of the pro- 
posed schemes. To analyze the convergence of the proposed schemes, we used the maximum absolute errors of 
the solutions ( ), ,x y tθ , ( ), ,u x y t  and ( ), ,v x y t : 

( ) ( ), 0 ,0
max , , , , ,i j i jh i N j M

e x y t x y tθ θ
∞ ≤ ≤ ≤ ≤

= −Θ  

( ) ( ), 0 ,0
max , , , , ,u i j i jh i N j M

e u x y t U x y t
∞ ≤ ≤ ≤ ≤

= −                        (41) 

( ) ( ), 0 ,0
max , , , , .v i j i jh i N j M

e v x y t V x y t
∞ ≤ ≤ ≤ ≤

= −  

The order (or Runge coefficient) of convergence of the proposed schemes is defined by the double-crowding 
spatial grids 

, , ,
, , 2

, , , 2

Order .log
u v h

u v
u v h

e

e
θ

θ
θ

∞

∞

 
 =
 
 

                             (42) 

The initial and boundary conditions (3), (4), (12) and (5), (6), (13)-(16) for the solutions ( ), ,u x y t , ( ), ,v x y t , 
( ), ,x y tθ  are taken from the analytical solutions. The computational domain is  

( ){ }, : 0 1, 0 1x y x yΩ = ≤ ≤ ≤ ≤ . 
All calculations were performed in double-precision arithmetic on a AMD Phenom II X6 processor using 

Intel FORTRAN Compiler. 
Example 1. ([7] [8]). In this example, we solve the two-dimensional Burgers Equations (1), (2), for which the 

exact solutions are 

( )
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

2

2

2

2

2π exp 5 π cos 2π sin π
, , 2 ,

2 exp 5 π sin 2π sin π

π exp 5 π sin 2π cos π
, , 2 .

2 exp 5 π sin 2π sin π

t x y
u x y t

t x y

t x y
v x y t

t x y

ν
ν

ν

ν
ν

ν

−
= −

+ −

−
= −

+ −

                    (43) 

The initial and boundary conditions are taken from the exact solutions. We solve the TDHE (11), for which 
the exact solution is 

( )
( ) ( ) ( )22 exp 5 π sin 2π sin π

, , .
2

t x y
x y t

ν
θ

+ −
=                         (44) 

The initial (12) and boundary conditions (13)-(16) are taken from the exact solutions. 
The convergence of the solutions ( ), ,x y tθ , ( ), ,u x y t , ( ), ,v x y t  versus the inverse of the Reynolds 

number ν  and the numbers of grid N, M are presented in Table 1. To show that the method is fourth-order 
accurate in space, we fix the time step τ  as 0.0001 that in each the numbers of grid 80N M= ≤  holds the 
stability condition (32). The orders of convergence of the proposed schemes are consistent with the theoretical 
expectations ( )4O h . 

In Table 2 we compared the efficiency of the proposed scheme with the time step 
2

4
hτ
ν

=  and implicit the  

fourth-order finite-difference method with the time step 0.01τ =  [8] at 0.01ν = . From this Table the both 
methods are comparable by the convergence of the solution ( ), ,x y tθ  and total calculation times. 

Example 2 ([7] [8] [17]). In this example, we solve the two-dimensional Burgers Equations (1), (2), for which 
the exact solutions are  

( )
1

3 1 4 4, , 1 exp ,
4 4 32

x y tu x y t
ν

−
 − + −  = − +   

    



T. Zhanlav et al. 
 

 
127 

Table 1. The convergence of the solutions ( ), ,x y tθ , ( ), ,u x y t , ( ), ,v x y t  and their corresponding orders of convergence 

for the Example 1 at T = 1, 0.0001τ =  versus the parameter ν  and the numbers of grid N, M. The first column shows the 
parameter ν , the second ones displays the numbers of grid N, M. The third, fifth and seventh columns display the maximum 
absolute error 

,h
eθ ∞

, 
,u h

e
∞

, 
,v h

e
∞

, while the second, forth, and sixth columns present their orders of convergence, 

respectively. The factor x in the brackets denotes 10x.                                                                 

  ( ), ,x y tθ θ=  ( ), ,u u x y t=  ( ), ,v v x y t=  

Example 1. N M=  ,h
eθ ∞

 Orderθ ,u h
e

∞
 Orderu ,v h

e
∞

 Orderv 

0.001ν =  10 0.269 (−2)  0.441 (−4)  0.177 (−4)  

 20 0.209 (−3) 3.687 0.611 (−5) 2.853 0.129 (−5) 3.782 

 40 0.138 (−4) 3.917 0.607 (−6) 3.332 0.792 (−7) 4.027 

 80 0.890 (−6) 3.959 0.474 (−7) 3.676 0.511 (−8) 3.955 

0.01ν =  10 0.462 (−2)  0.510 (−3)  0.220 (−3)  

 20 0.518 (−3) 3.156 0.716 (−4) 2.831 0.253 (−4) 3.120 

 40 0.365 (−4) 3.823 0.536 (−5) 3.739 0.179 (−5) 3.819 

 80 0.235 (−5) 3.955 0.351 (−6) 3.931 0.115 (−6) 3.953 

0.1ν =  10 0.164 (−2)  0.800 (−3)  0.102 (−3)  

 20 0.177 (−3) 3.207 0.863 (−4) 3.212 0.115 (−4) 3.159 

 40 0.125 (−4) 3.827 0.607 (−5) 3.829 0.812 (−6) 3.825 

 80 0.820 (−6) 3.930 0.398 (−6) 3.929 0.523 (−7) 3.955 

 

Table 2. Comparison of the maximum absolute error 
,h

eθ ∞
 and CPU-time of the proposed scheme with 

2

4
hτ
ν

=  and 

implicit the fourth-order finite-difference method [8] with 0.01τ = . Here considered the Example 1 at 0.01ν = , 1T = . 
The factor x in the brackets denotes 10x .                                                                            

Example 1. Proposed scheme at 
2

4
hτ
ν

=  The scheme in [8] at 0.01τ =  

N M=  ,h
eθ ∞

 Orderθ CPU-time, sec ,h
eθ ∞

 Orderθ CPU-time, sec 

10 0.458 (−2)  0.000 0.584 (−3)  0.000 

20 0.579 (−3) 2.982 0.000 0.324 (−4) 4.171 0.031 

40 0.425 (−4) 3.768 0.015 0.200 (−5) 4.017 0.124 

80 0.276 (−5) 3.944 0.218 0.249 (−6) 3.006 0.483 

 

( )
1

3 1 4 4, , 1 exp .
4 4 32

x y tv x y t
ν

−
 − + −  = + +   

  
                        (45) 

The initial and boundary conditions are taken from the exact solutions. We solve the TDHE (11), for which 
the exact solution is 

( ) 1 12 12 9 4 4, , exp 1 exp .
2 32 32

x y t x y tx y tθ
ν ν

+ −  − +    = − +    
    

                 (46) 

The initial (12) and boundary conditions (13)-(16) are taken from the exact solutions. 
The solutions (45) are so-called shock solutions of the TDCBE. It is well known that one of the difficulties in  
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Table 3. The same as in Table 1, but for for the Example 2. The factor x in the brackets denotes 10x .                        

  ( ), ,u u x y t=  ( ), ,v v x y t=  

Example 2. N M=  ,u h
e

∞
 Orderu ,v h

e
∞

 Orderv 

0.01ν =  80 0.502 (−2)  0.455 (−1)  

0.00001τ =  160 0.489 (−3) 3.360 0.258 (−2) 4.138 

 320 0.399 (−4) 3.616 0.155 (−3) 4.057 

 640 0.286 (−5) 3.801 0.938 (−5) 4.048 

0.05ν =  20 0.209 (−2)  0.140 (−1)  

0.00001τ =  40 0.158 (−3) 3.727 0.813 (−3) 4.107 

 80 0.111 (−4) 3.828 0.484 (−4) 4.070 

 160 0.740 (−6) 3.908 0.331 (−5) 3.867 

0.10ν =  10 0.254 (−2)  0.130 (−1)  

0.0001τ =  20 0.137 (−3) 4.208 0.757 (−3) 4.110 

 40 0.958 (−5) 3.843 0.449 (−4) 4.075 

 80 0.635 (−6) 3.914 0.296 (−5) 3.921 

 
solving Burgers’ equations is that shock of the solution may occur after some time, even if the initial functions 
are smooth. When the characteristic curves of Burgers’ equation cross, a shock of the solution occurs. A robust 
and accurate numerical algorithm should be able to capture the shock and the numerical solution should exhibit 
the correct physical behavior. From Table 3, we observe that for small values of ν , one must consider a large 
numbers of N and M to obtain proper solutions. Here our proposed scheme works well, and the orders of 
convergence of the proposed schemes are consistent with the theoretical expectations ( )4O h . 

5. Conclusion 
The proposed higher-order finite-difference schemes are easy for implementation and can be used for a 
numerical solution of two-dimensional coupled Burgers’ equation with higher accuracy. The numerical results 
show that the variation in the values of the Reynolds number does not adversely affect the numerical solutions. 
Since all numerical results obtained by the above methods show a reasonably good agreement with the exact one 
for modest values of ν , and also exhibit the expected convergence as the mesh size is decreased, the proposed 
methods can be considered to be competitive and worth recommendation. 
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