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Abstract 
For the analysis of square contingency tables with same row and column ordinal classifications, 
the present paper gives the decomposition of the generalized linear diagonals-parameter symme-
try model using the diagonals-parameter symmetry model. Moreover, it gives the decomposition 
of the symmetry model using above the proposed decomposition. 
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1. Introduction 
Consider an R R×  square contingency table with the same row and column classifications. Let ijp  denote the 
probability that an observation will fall in the ith row and jth column of the table ( 1, , ; 1, ,i R j R= =  ). For 
square tables with ordered categories, Goodman [1] proposed the diagonals-parameter symmetry (DPS) model, 
defined by  
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where ij jiψ ψ= . Note that the DPS models with { }1j iδ − = , { }j i
j iδ δ −
− = , and ( ){ }R j i

j iδ δ − −
− =  are identical  

to the symmetry (S) (Bowker [2]), linear diagonals-parameter symmetry (LDPS) (Agresti [3]), and another 
LDPS (ALDPS) (Tomizawa [4]) models, respectively. 
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Yamamoto and Tomizawa [5] proposed the generalization of LDPS model. We will denote   as the set of 
integers. For a fixed K ∈ , the generalized LDPS (LDPS(K)) model is defined by  
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where ij jiψ ψ= . Note that the LDPS(K) model with 1δ =  is identical to the S model. Especially the LDPS(0) 
and LDPS(-R) models are equivalent to the LDPS and ALDPS models, respectively. 

Tomizawa [6] gave the decomposition of the LDPS model using the DPS model, and showed that a test 
statistic for the LDPS model was equal to the sum of those for decomposed models. 

For the analysis of square contingency tables with ordered categories, the purposes of this paper are (1) to 
give the decomposition of the LDPS(K) model using the DPS model, (2) to show that for the test statistic for the 
LDPS(K) model is equal to the sum of those for decomposed models, and (3) to give the decomposition of the S 
model using above the decomposition of the LDPS(K) model. 

2. Decomposition of the Generalized Asymmetry Model  
Tomizawa [6] proposed the linear diagonals-parameter marginal symmetry (LDPMS) model, defined by  

( ) ( ) ( )1, , 1 ,i
i ip p i R+ −= ∆ = −  
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Let X and Y denote the row and column variables, respectively. The LDPMS model indicates that ( )Pr Y X i− =  
is i∆  times higher than ( )Pr X Y i− =  for all 1, , 1i R= − . Under LDPMS model, if 1∆ >  then  

( ) ( )Pr PrX Y X Y< > > , and if 1∆ <  then ( ) ( )Pr PrX Y X Y< < > . 
Also, Tomizawa [6] gave the decomposition of the LDPS model using the DPS and LDPMS models, and 

showed that a test statistic for the LDPS model is equal to the sum of those for the DPS and LDPMS models. 
To consider the decomposition of the LDPS(K) model, we shall introduce a new model. For a fixed K ∈ , 

the generalized LDPMS (LDPMS(K)) model is defined by  

( ) ( ) ( )1, , 1 .K i
i ip p i R+ + −= ∆ = −  

Especially the LDPMS(0) model is equivalent to the LDPMS model. 
We will denote 1  as the set of integers of 1R− +  or less, 2  as the set of integers from 2R− +  to 2− , 

and 3  as the set of integers of 1−  or greater. Under the LDPMS(K) model with a fixed 1K ∈ , if 1∆ >  
then ( ) ( )Pr PrX Y X Y< < > . Also, under the LDPMS(K) model with a fixed 2K ∈ , if 1∆ > , there exists a 
certain t such that ( ) ( )Pr PrY X i X Y i− = ≤ − =  for 1, 2, ,i t=   and ( ) ( )Pr PrY X i X Y i− = > − =  for 

1, 2, , 1i t t R= + + − . Moreover, under the LDPMS(K) model with a fixed 3K ∈ , if 1∆ >  then  
( ) ( )Pr PrX Y X Y< > > . 
We obtain the following theorem. 
Theorem 1. For a fixed K ∈ , the LDPS(K) model holds if and only if both the DPS and LDPMS(K) 

models hold.  
Proof. If the LDPS(K) model holds, then the DPS and LDPMS(K) models hold. Assuming that both the DPS 

and LDPMS(K) models hold, then we shall show that the LDPS(K) model holds. 
From the LDPMS(K) model holds, we obtain  
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Also, from the DPS model holds, we see  
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Therefore, we obtain K i
iδ

+∆ =  for all 1, , 1i R= − . Namely, the LDPS(K) model holds. The proof is com- 
pleted.  

3. Orthogonality of Test Statistic and Model Selection  
Assume that a multinomial distribution applies to the R R×  table. Let ijn  denote the observed frequency in 
the ith row and jth column of the R R×  square table ( 1, , ; 1, ,i R j R= =  ), with ijn n= ∑∑ . The maximum 
likelihood estimates (MLEs) of expected frequencies under the model could be obtained by using, e.g., the 
Newton-Raphson method in the log-likelihood equation. 

Each model can be tested for goodness-of-fit by, e.g., the likelihood ratio chi-square statistic (denoted by 2G ) 
with the corresponding degrees of freedom (df). The test statistic 2G  of model M is given by  
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where ˆ ijm  is the MLE of expected frequency ijm  under model M. The number of df for LDPMS(K) model is 
2R − , which is equal to that for LDPMS model. 

A quick method for choosing the best-fitting model among different models is to use Akaike’s [7] information 
criterion (AIC), which is defined as  

( ) ( )AIC 2 maximum log likelihood 2 number of parameters ,= − +  

for each model. For more details of AIC, see Konishi and Kitagawa [8]. This criterion gives the best-fitting 
model as the one with minimum AIC. Since only the difference between AICs is required when two models are 
compared, it is possible to ignore a common constant of AIC and we may use a modified AIC defined as  

( )2AIC 2 number of df .G+ = −  

Thus, for the data, the model with the minimum AIC+ (i.e., the minimum AIC) is the best-fitting model. 
For the analysis of contingency tables, Read [9] discussed the orthogonality, which is equivalent to the 

asymptotic separability in Aitchison [10] and the independence in Darroch and Silvey [11] of test statistic for 
goodness-of-fit of two models. 

On the orthogonality of test statistic for models in Theorem 1, we obtain the following theorem. 
Theorem 2. For a fixed K ∈ , the following equation holds:  

( )( ) ( ) ( )( )2 2 2LDPS DPS LDPMS .G K G G K= +  

The number of df for the LDPS(K) model equals the sum of number of df for the DPS and LDPMS(K) models.  
Proof. First, we consider that the MLEs of expected frequencies { }ijm  under the LDPS(K) model are given 

by  
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where δ̂  is the solution of the following equation  
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We can solve (3.1) for δ  by using the Newton-Raphson method. 
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Second, we consider that the MLEs of expected frequencies { }ijm  under the DPS model are given by  
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where ( ) ( )
ˆ

j i j i j in nδ + −
− − −= . 

Last, we consider that the MLEs of expected frequencies { }ijm  under the LDPMS(K) model are given by  
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where ∆̂  is the solution of the Equation (3.1) with δ  replaced by ∆ . Thus, we see that ( )ˆij ijn m  under the 
LDPS(K) model is equal to the product of ( )ˆij ijn m  under the DPS model and that under the LDPMS(K) model. 
Therefore, the test statistic for goodness-of-fit for LDPS(K) model is equal to the sum of those for two models. 
The proof is completed.  

4. Decomposition of the Symmetry Model  
For square contingency tables with ordered categories, Kurakami, Yamamoto and Tomizawa [12] considered 
two models. One is the generalized exponential symmetry (GES) model defined by  
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where ij jiψ ψ=  and { }ijw  are the specified non-negative values. The other is the generalized weighted global 
symmetry (GWGS) model defined by  

.ij ij ij ji
i j i j

w p w p
< <

=∑∑ ∑∑  

For a fixed 3K ∈ , the GES model with non-negative values { }ijw K j i= + −  is identical to the LDPS(K) 
model. For a fixed 1K ∈ , because ( ){ }ijw K j i= − + −  are non-negative values, the LDPS(K) model is 
included in the GES model. Note that for a fixed 2K ∈ , the LDPS(K) model is not included in the the GES 
model, because { }ijw K j i= + −  have both positive and negative values. For a fixed 1 3K ∈ ∪  , we shall 
refer to the GWGS model with { }ijw K j i= + −  as the WGS(K) model. 

Kurakami et al. [12] also gave the decomposition of the S model using the GES and GWGS models, and 
showed that a test statistic for the S model is approximately equivalent to the sum of those for the GES and 
GWGS models. 

We will denote 4  as the set of non-negative integers. Yamamoto, Ohama and Tomizawa [13] gave the 
following theorems. 

Theorem 3. For a fixed 4K ∈ , the S model holds if and only if both the LDPS(K) and WGS(K) models 
hold.  

Theorem 4. For a fixed 4K ∈ , the following asymptotic equivalence holds:  

( ) ( )( ) ( )( )2 2 2LDPS WGS .G S G K G K+  

The number of df for the S model equals the sum of the number of df for the LDPS(K) and WGS(K) models. 
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From the theorems given by Kurakami et al. [12], we obtain the following theorems as extensions of 
Theorems 3 and 4 (because the 1 3∪   includes 4 ). 

Theorem 5. For a fixed 1 3K ∈ ∪  , the S model holds if and only if both the LDPS(K) and WGS(K) models 
hold.  

Theorem 6. For a fixed 1 3K ∈ ∪  , the following asymptotic equivalence holds:  

( ) ( )( ) ( )( )2 2 2LDPS WGS .G S G K G K+  

The number of df for the S model equals the sum of the number of df for the LDPS(K) and WGS(K) models.  
From Theorems 1 to 6, we obtain the following corollaries. 
Corollary 1. For a fixed 1 3K ∈ ∪  , the S model holds if and only if all the DPS, LDPMS(K) and WGS(K) 

models hold.  
Corollary 2. For a fixed 1 3K ∈ ∪  , the following asymptotic equivalence holds:  

( ) ( ) ( )( ) ( )( )2 2 2 2DPS LDPMS WGS .G S G G K G K+ +  

The number of df for the S model equals the sum of the number of df for the DPS, LDPMS(K) and WGS(K) 
models.  

5. An Example  
Consider the data in Table 1, taken directly from Bishop, Fienberg and Holland ([14], p. 100). From Table 2, all 
LDPS(K) models, the S model and DPS model give poor fits to these data. However, all LDPMS(K) models fit 
these data well. 

The LDPMS(2) model is the best-fitting model among the other LDPMS(K) models because it has a mini- 
mum AIC+ value. Under the LDPMS(2) model, the MLE of ∆  is ˆ = 1.04∆ . Thus, we see that the status 
category for a father tends to be less than that for his son. 

Theorem 1 would be useful for seeing the reason for its poor fit when the LDPS(K) model fits the data poorly. 
Thus, for the data in Table 1, the poor fit of the LDPS(K) model is caused by the poor fit of the DPS model 
rather than the LDPMS(K) model. Also, Theorem 5 would be useful for seeing the reason for its poor fit when 
the S model fits the data poorly. From Table 2, WGS(K) models (except the WGS(−1) model) give poor fits to 
these data. Thus, when K is not equal to −1, we cannot see that the poor fit of the S model is caused by the poor 
fit of either LDPS(K) and WGS(K) models (although, we can see that the poor fit of the S model is caused by 
the poor fit of both LDPS(K) and WGS(K) models). However, using Corollary 1, we can see that the poor fit of  

 
Table 1. Occupational status for Danish father-son pairs; from Bishop et al. ([14], p. 100) (The parenthesized value is MLEs 
of expected frequencies under the LDPMS (2) model).                                                                           

Father’s status 
Son’s status 

Total 
(1) (2) (3) (4) (5) 

(1) 18 17 16 4 2 57 

 (18.00) (17.06) (15.80) (3.61) (4.48)  

(2) 24 105 109 59 21 318 

 (23.90) (105.00) (109.41) (58.25) (18.93)  

(3) 23 84 289 217 95 708 

 (23.35) (83.65) (289.00) (217.82) (93.79)  

(4) 8 49 175 348 198 778 

 (9.23) (49.75) (174.26) (348.00) (198.75)  

(5) 6 8 69 201 246 530 

 (3.52) (9.23) (70.06) (200.15) (246.00)  

Total 79 263 658 829 562 2391 

Note: Status (1) is high professionals, (2) White-collar employees of higher education, (3) White-collar employees of less high education, (4) Upper 
working class, and (5) Unskilled workers. 
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Table 2. Likelihood ratio chi-square values G2 and AIC+ for models applied to the 
data in Table 1.                                                                       

Applied models Df 2G  AIC+ 

S 10 24.80* 4.80 

DPS 6 14.84* 2.84 

LDPS(−5) 9 19.21* 1.21 

LDPS(−4) 9 19.41* 1.41 

LDPS(−3) 9 19.91* 1.91 

LDPS(−2) 9 21.94* 3.94 

LDPS(−1) 9 22.56* 4.56 

LDPS(0) 9 19.05* 1.05 

LDPS(1) 9 18.72* 0.72 

LDPS(2) 9 18.68* 0.68 

LDPS(3) 9 18.68* 0.68 

LDPS(4) 9 18.69* 0.69 

LDPS(5) 9 18.71* 0.71 

LDPMS(−5) 3 4.37 −1.63 

LDPMS(−4) 3 4.57 −1.43 

LDPMS(−3) 3 5.07 −0.93 

LDPMS(−2) 3 7.11 1.11 

LDPMS(−1) 3 7.72 1.72 

LDPMS(0) 3 4.22 −1.78 

LDPMS(1) 3 3.89 −2.11 

LDPMS(2) 3 3.84 −2.16 

LDPMS(3) 3 3.85 −2.15 

LDPMS(4) 3 3.86 −2.14 

LDPMS(5) 3 3.87 −2.13 

WGS(−5) 1 5.59* 3.59 

WGS(−4) 1 5.39* 3.39 

WGS(−1) 1 2.22 0.22 

WGS(0) 1 5.73* 3.73 

WGS(1) 1 6.07* 4.07 

WGS(2) 1 6.12* 4.12 

WGS(3) 1 6.12* 4.12 

WGS(4) 1 6.11* 4.11 

WGS(5) 1 6.10* 4.10 
*Means significant at the 0.05 level. 

 
the S model is caused by the poor fit of DPS and WGS(K) models rather than the LDPMS(K) model.  

6. Concluding Remarks  
We have given the decomposition of the LDPS(K) model using the DPS model (namely, Theorem 1). Also, we 
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have shown that the test statistic for the LDPS(K) is equal to the sum of those for the decomposed models 
(namely, Theorem 2). Moreover, we have given the decomposition of the S model using Theorem 1 (namely, 
Corollary 1), and shown that the test statistic for the S model is approximately equivalent to the sum of those for 
the decomposed models (namely, Corollary 2). Although details will be omitted, Yamamoto, Ohama and 
Tomizawa [15] gave the another decomposition of the the LDPS(K) model for a fixed 4K ∈ . However, it 
does not hold the orthogonality of test statistic for models. Thus, Theorem 1 may be useful for analyzing the 
data than the decomposition by Yamamoto et al. [15]. Because Theorem 1 shows the decomposition of LDPS(K) 
for a fixed K ∈  (because   includes 4 ), and also holds the orthogonality of test statistic for models. 
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