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Abstract

This study derives conditions for existence of a positive sustainable consumption in an economy
with an essential exhaustible resource. It does so by approximating technology with a variable
elasticity of substitution production function, instead of the constant elasticity of substitution spe-
cification widely assumed in previous studies. This approach permits examination of the robust-
ness of results previously derived in the literature to key technological assumptions. It also gene-
rates new insights regarding the role of substitutability and technical progress on existence. We
find that a capital-resource elasticity of substitution greater than one is sufficient for existence
even when the resource is strictly essential; a situation precluded by constant elasticity of substi-
tution specifications. Under an elasticity of substitution lower than one, existence can still be at-
tained (in contrast to the constant elasticity of substitution case) but only through capital-aug-
menting technical progress. Hicks-neutral technical progress is neither necessary nor sufficient
for existence. A sufficiently high resource-augmenting technical progress thwarts existence of a
positive sustainable consumption.
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1. Introduction

This paper examines the role of input substitutability and technical progress on the existence of positive sus-
tainable consumption in an economy with an essential exhaustible resource. The framework used in the litera-
ture to study the existence issue (e.g. [1]-[5]) is known as the Dasgupta-Heal-Solow-Stiglitz (DHSS) model.
This literature has two important limitations. First, technology is modeled with a constant elasticity of substitu-
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tion (CES) function.® Under a CES specification, input substitutability and essentiality (i.e. an input is essential
if positive production requires a positive amount of that input) are fundamentally linked to each other. An elas-
ticity of substitution between the exhaustible resource and capital (which we denote by o,, ) greater than one
implies inessentiality of the resource.” Consequently, high substitutability and non-essentiality are confounded
and their individual roles in intertemporal sustainability of consumption cannot be identified. Under these tech-
nological assumptions the aforementioned studies found that o,, >1 is sufficient for existence of a positive
sustainable consumption. This framework leaves an important question unanswered: is high substitutability (i.e.
o, >1) still sufficient for sustainability when essentiality is preserved?

Moreover, under a CES specification, o, <1 implies bounded average product of the resource as its quan-
tity approaches zero. Consequently, low substitutability and limited resource productivity are also confounded.
Under these technological assumptions studies found that o,, <1 is sufficient for inexistence of a positive sus-
tainable consumption. But it remains unclear whether limited substitutability (i.e. o, <1) is still sufficient for
inexistence when average product of the resource is unbounded?

The second limitation is related to technical progress. Previous analyses have been conducted under the as-
sumption of Hicks-neutral technical progress. One exception is [4] who have looked at capital-augmenting tech-
nical progress but have not considered resource-augmenting technical progress, nor have they considered neutral
and non-neutral technical progress simultaneously. Therefore many questions also remain unanswered pertain-
ing the effect of technical progress on sustainable consumption. Can limited capital-resource substitutability
(o, <1) be compensated by technical progress to guarantee existence of a positive consumption path? If so,
what kind of technical progress?

We develop a framework capable of 1) linking capital-resource substitutability with the existence of positive
sustainable consumption when the resource is strictly essential regardless of the value of o, , 2) linking biased
technical progress with existence, and 3) capturing compensations between o,, and technical progress that re-
sult in existence of a positive sustainable consumption.

2. Model
The economy is described by the DHSS model:
S =% (1)
K. =f(AALAK,)-C - 1K, )

where K, is the stock of human-made capital at time t, S, is the level of non-renewable resource stock, r, is
the flow of the natural resource used in production, A is an efficiency factor capturing Hicks-neutral technologi-
cal progress, A is an efficiency factor corresponding to the i" input (i =r,K) which may increase due to
technical progress, f() is the production function, C, is consumption att, and A is the capital depreciation
rate. Dots above variables denote time derivatives.

This economy evolves according to the following constraints:

k201", @3)

S, =0 (4)

{8y <Si}ro ®)
{Co<f(AALAK) (6)
{K 20}, (7
{0<C, <C};, ®)

where S, and C, are arbitrarily chosen values (subscript b denotes “boundary” levels). Henceforth the index t

![5] uses a generic approximation to the production technology. The downside of this is the impossibility to tie existence conditions to spe-
cific technological parameters such as technical progress and elasticity of substitution.

?In this situation, as argued by [6], the existence of an exhaustible input is no longer a “fundamental” problem.
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will be dropped from the variables for notational simplicity.
The combination of Equations (4) and (5) prevents depletion of the resource in finite time. Equations (2)-(8)
can be combined to obtain:

K<f(AArAK)-C,-1K 9)

We are left with a system of one differential Equation (Equation (1)) and one differential inclusion (Equation
(9)) denoting the set of all feasible paths. By solving the system formed by (1) and (9) we find a constant level
of the control variable (C,) that produces trajectories of resource and capital consistent with constraints (2)-(8)
at every period t. This is, in essence, an intergenerational maximin program where we seek to compute the
maximum level of constant consumption. To formally derive conditions for existence of an interterm poral
maximin program we employ the “viable control” approach developed by [7] and extended to models of produc-
tion with exhaustible resources by [4].

Due to the aforementioned limitations of a CES specification we approximate production technology by the
following variable elasticity of substitution specification:

ax+e
Y = AKK*eparty exp{ékK oK J (10)

where A>1, €20, >0, o, >0,and o, >0.
The function in Equation (10) is a particular case of the more general transcendental function

Y = AK“ e exp(ékK o Jexp[érr o ]

where 6, =0. Our particular case features all the desired properties (essentiality of inputs and unbounded av-
erage product of the resource as its usage approaches zero, regardless of substitutability) while greatly reducing
the analytical demands of the problem. Our approximation to technology nests the Cobb-Douglas specification
(when 8, =0) widely used in the literature, and incorporates Hicks-neutral technical progress (A), capi-
tal-augmenting technical progress (A, = K?), and resource-augmenting technical progress (A =r"). By ap-
proximating technology with a transcendental specification, our analysis: 1) nests many results in previous stu-
dies, 2) examines the robustness of others, and 3) generates new insights regarding the role of substitutability
and technical progress on existence of positive sustainable consumption.

3. Analysis

We first examine sufficiency of o, >1 on existence of positive sustainable consumption. Our result is sum-
marized in the following proposition.

Proposition 1. Let the DHSS economy be constrained by production function (10). If o, >1 and average
product of the natural resource is unbounded (i.e. «, +y <1), there exists a positive consumption path
{cb >0,r, Kt,t}ti0 in spite of the resource being essential and regardless of the rate of capital depreciation (A ).
See proof in Appendix A.

Corollary 1. Positive technical progress is not necessary for existence despite essentiality and capital depre-
ciation. Proof: the conditions o,, >1 and «, +y <1 guarantee existence even when ¢=y=0,and A=1.

Corollary 2. Resource-augmenting technical progress can prevent existence. Proof: while the integral in in-
equality (A.7), Appendix A, converges due to ¢, >0, the factor

I(ar+y) (e )-(ax+e)  ax
| C /Ky +A |l 5, (arty)  (ax+e)
L_(O‘r + 7/)} (o, +7)

We prove in Appendix B that our framework replicates sustainability conditions obtained with a Cobb
Douglas approximation by [4] in the case of positive capital depreciation (Proposition B.1), and by [2] under
zero capital depreciation (Proposition B.2).

The analysis in [2] found that, under a CES specification, o,, <1 is sufficient for inexistence of positive
sustainable consumption. He reasoned ([2], pp. 34) that, in this case, inexistence is due to the fact that the aver-

approaches infinity as » approaches 1—g¢,.
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age product of the resource is bounded as the quantity of the resource approaches zero. We revisit this result
when a capital-resource elasticity of substitution lower than one and unbounded average product of inputs (i.e.

lim,_, Y- o) are allowed to coexist.
r

r—0

Proposition 2. Let the DHSS economy be constrained by production function (10) and let o, <1 (i.e.
0, <0). A positive sustainable consumption exists, in spite of the exhaustible resource being essential and re-
gardless of the rate of capital depreciation ( A ), if the average product of the natural resources is unbounded (i.e.

2
(a:+7)
notone function of its argument, and it is greater than one if &, <0. For proof see Appendix C.

This proposition shows that limited substitutability does not necessarily puts the economy in an unsustainable
path. It also underscores the importance of capital-augmenting technical progress, as shown in the following co-
rollary.

Corollary 3. If «, <1, then capital-augmenting technical progress is necessary for existence. Proof: this re-

(ak +¢)

Ko J—l >0, where ®(.) is a positive and mo-

a,+y<1)and if (ag+¢)21+(a, +7) q{_

sult follows from (e +¢)>1, which is implied by ®(.)>1 and the existence condition.

Notice that both capital-augmenting (&) and resource-augmenting () technical progress have an ambiguous
effect on the likelihood of existence. This is because, under our transcendental production function, ¢ has a
positive effect on capital productivity (captured in the left hand side of the inequality) but a negative effect on
substitutability o, . The latter implies an increase in @(.) which reduces the likelihood of existence. On the
other hand, » reduces the average product of the resource as its quantity converges to zero (positive effect on
the right hand side) but increases substitutabiltiy o,, . The latter implies a decrease in CD() which reduces the
likelihood of existence.

4. Discussion

Studies approximating technology with a CES specification, generated two important predictions. First, o,, >1
is sufficient for existence [2]-[4]. Second, o, <1 is sufficient for inexistence [2]. Our analysis reinforces the
first prediction in a non-trivial context in which essentiality is always preserved and it reverses the second pre-
diction (Proposition 2) when a variable elasticity of substitution specification is used.®

Our analysis confirms that lim, _, Yo is necessary for existence. However it reveals that o, 21 is not
r

necessary. The result in Proposition 2 demonstrates that o,, <1 (8, <0) does not necessarily condemn an

economy to unsustainability. It reveals that the hurdles of limited substitutability can be overcome with a suffi-
ciently high productivity of capital. Equation (A.4) in Appendix A reveals that Hicks-neutral technical progress
is beneficial for sustainability in the sense of reducing the minimum level of the resource required to sustain
positive consumption. In contrast, resource-augmenting technical progress () has an ambiguous effect on sus-
tainability. Hicks-neutral and resource-augmenting technical progress are neither necessary nor sufficient for
existence.

Assuming that ¢, +y <1 (which implies Iimr_)o%z o) the role of capital-augmenting technical progress
as a countervailing force to limited substitutability is conceptually illustrated in Figure 1. An elasticity of subs-
titution greater than one guarantees existence of positive sustainable consumption. When o, =1, capital-aug-
menting technical progress of 1—¢, or more, guarantees existence of positive sustainable consumption (Prop-
osition B.1). As o, drops below one, a larger capital-augmenting technical progress is required for existence
of positive sustainable consumption (Proposition 2, and Figure C1). As revealed by the existence condition in
Proposition 2, there may not exist a level of & capable of guaranteeing existence if its effect on (D() is strong
enough. In this case, the slope of the plotted curve tends to zero for some positive o,, . In turn this effect be-
comes stronger, the larger ¢, in absolute value.

3Such a specification permits combination of essentiality with unbounded average product of the resource.
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Figure 1. Existence requires higher capital-augmenting technical progress as substi-
tutability decreases.

5. Conclusions

This study revisits the issue of existence of positive sustainable consumption in an economy with an essential
exhaustible resource. It does so by utilizing a transcendental approximation to technology. Such parametric spe-
cification allows formal examination of the effect of capital-resource substitutability while preserving essential-
ity. We also highlight the role of non-neutral technical progress on existence.

Our analysis offers two important insights. First, o, >1 guarantees existence of positive sustainable con-

sumption even when the exhaustible resource is strictly essential. Second, o,, <1 does not necessarily imply

inexistence unless it entails Iimr_)o%< o as it is the case with a CES specification. When o, <1, capital-
augmenting technical progress can be an effective countervailing force to limited substitutability, while re-
source-augmenting and Hicks-neutral technical progress cannot. This issue has not received adequate attention
in the literature.

This study extends previous analyses of sustainability under an essential exhaustible resource by considering
a particular production function that allows for co-existence of o,, <1 and an unbounded average product of
the resource. But a general characterization of the family of production functions that preserve these properties
while being consistent with stylized facts about growth and allowing decentralization to a market equilibrium is
still absent from the literature and constitutes a promising avenue for future research.
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Appendix
Appendix A

Proof of Proposition 1.

The problem at hand is to minimize the natural resource extraction rate subject to technology f (A, AK, Ar) ,
differential inclusion (9) and equation of motion (1). To solve this problem we use the viability approach devel-
oped by Aubin (1991) and applied to this problem by Martinet and Doyen (2007). Let us define a viability ker-
nel as the set of initial resources and capital levels for which there exists an extraction trajectory that can sustain
a positive consumption indefinitely. Let us denote the minimum resource stock for which a positive consump-
tion level can be sustained indefinitely with accumulated capital K by V (K) .

Therefore V (K) represents the boundary of the viability kernel which is characterized by an extraction pro-

file that makes K and S tangent or inward to the viability kernel; i.e. an extraction profile such that V (K)

ov
oK
where r is the flow of the natural resource (to minimize it subject to equations of motion is the primal objective),

f,K,Cb) is the minimum resource flow that achieves a consumption level of C, under technology
f A,AkK,Arr) and capital stock K, and K is the equation of motion for capital. Assuming capital depre-
ciates at a constant rate of A4, the time-derivative of capital is K = f (A, A K, Ar)-C, - K . Plugging the
transcendental approximation to technology into the equation of motion yields

is the solution to the following Hamilton-Jacobi-Bellman (HJB) equation, V +minr>rb(vaycb){ K +r} 0,

ag +&
K = AK**y ‘Z'”exp[ K “ J—Cb—lK

where K is the capital stock, and C, is constant consumption. Assuming the minimum stock is an autonomous
expression (not a direct function of time) implies V =0 . With this information the HIB equation can be re-ex-
pressed as:

{ [f(AAK,AT)- Cb—/IK]+r}=

where f (A, AK, Ar) denotes the transcendental technology described in Equation (10).
The first order condition of this problem is:

r>rb(f K)

A Al
Ko (A1)
or
Plugging this back into the HIB equation and solving for the resource flow yields:
1
ax+e \ |ar+y
r = ﬂ}(‘(wﬂ) exp| -5, K (A.2)
[1—(&, + 7)] A

The viability kernel of an economy with accumulated capital K, can be expressed in terms of its partial de-

rivative as V (K, )= J'O N

a—dK which, since C, < K, can be partitioned and expressed as

V(Ky)= .[CbﬂdK +IK°ﬂdK The first term on the right hand side amounts to V (C, ). We can re-write the
0 0 oK Cp
Ko OV

viability kernel as V (K,)=V (C,)+C, +j —dK where C, is a constant of integration. The left hand
side is required to converge to the minimum resource requirement S, as capital tends to infinity (in essence, a

transversality condition), which results in S _I —dK +V (C,)+Cg, . Solving this expression for V(C,)
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and plugging this back into the viability kernel yields V (K,)=S, —J'w v

% oK

dK —C,, + ch+] —dK which

can be re-expressed as:

© OV
V(Ko)zsb—jKO%dK (A3)
Combining (A.1) and (A.2) and inserting the resulting expression in (A.3) yields:
-(ar+7)
1 (ak +¢) (ak +€)

— . - - (ar +7)

V(Kq,Cy, Sy ) =S, + A« [T K ) Gt K exp| — Ak e |dk (A4)
Ko 1-(e, +7) (o, +7)

An interior path exists if and only if the second term in (A.4) is finite. This occurs whenever the integral con-
verges. We show then that the integral convergesif &, >0.
The integral, which we denote by I, can be rearranged in the following way:

1-(ap +y)—(ak +¢) /K ) - l(:[:/y) 5 (ak +¢)
="k (= | /272 exp| ————K “ |dK (A5)
Ko 1-(e, +7) (o, +7)
Since the term in brackets depends negatively on the capital stock then the following inequality holds:
1 (ar+y)
1-(ap +7)~(ak +¢) (ak +¢)
o | — s K.+ | (@)
<"k e | Go/Ketd exp % g ow |k (A.6)
Ko 1- (ar +;/) (ar +;/)

Therefore if the right hand side of inequality (A.6) converges, the left hand side converges. We can re-express
the integral in (A.6) as an upper incomplete gamma function. We start with a variable transformation. We first
(ak +¢) 1-(ay +7)—-(ag +&)

. ) . P -
re-define ( k ) K “  asvariable x. Moreover let us transform K (*") to express it in terms of x.
o, +y

1-(ar +7)-(ag +€ﬂ ag

S ( (@) |(ax+e)
(o +7)

1-(a +7)-(ag +5ﬂ| ag

51( ( (ar+7) (ak +¢)
(e +7)

1-(ap +7)—(ag +¢) 1-(ap +7)- aK+s]aK+6 ak

In particular K (e +7) =K[ (artr) | ek (ax+e)

. Therefore

1~(ar +7)-(ak +s)—‘ ak

1-(ar +7)-(ak +¢) 1-(ar +7)-(ak +€)-| ak : ) ‘( )
ar+y ag +¢&

K (o) can be denoted by x[ CEI CTo L {
(@ +7)

. As a result the upper

bound of inequality (A.6) is:

F—(a, +7)-(ak +£)—‘ ak

I<TfL K ) exp(~x)dx =TT a, F (K, )] (A7)

1~(a;+7) _F—(a, +7)-(ak +&) | ax

(ar+7) o+ ag +&
where T :{—CD/KOJ”%} S (arvr)  [(ere)
1-(a, +7) (a,+7)
5k (ak +¢)

gamma function with F (K, ) = ( ] K, “ as the lower limit of integration and
a, +y

[1—(ar+7) (ag +¢) ]aK a, +7) (o +¢€)
(o, +7)(ag +¢)
vergence of the upper incomplete gamma function [8]. In this case, the condition amounts to &, >0. We now

and T'[a,F(K,)] is the upper incomplete

a= . The condition F(K,)>0 is sufficient for absolute con-
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show that this is equivalent to a capital-resource elasticity of substitution higher than one.
The Allen-Uzawa elasticity of substitution between capital and resource is

o =i[zixj f ]

F Kr

where F is the determinant of the bordered Hessian of the production function, f; is the marginal productivity
of input j ( j = K,r for capital and natural resource respectively), and F,, is the cofactor of f,, in the bor-
der Hessian. Replacing determinants, cofactors, and partial derivatives by their corresponding expressions from

the transcendental technology and assuming, without loss of generality, that y =& =0 yields

oM = oy +ay+o,.ky
kr ™
é‘kkk—i_ak(o‘K 'z—i_é‘kyj_aK klz
2a, [aKy+5ky}k—ary k—(ay+5ky)[a, ~1]
K oy l+5ky
K
After some algebraic manipulation, this can be re-expressed as o,y = a’Z;aK y+oky . Itis clear
K4 +4
ary[aK+§kk] aKy kky
then that:
aYra YO g it s s
a ya7K+a y + 0, ky
o +ok] ¢ K
oM = “*imeMkky —1 if 5, =0 forall & andy positive.
— K +6,
a'y[aK +5.k] Y+ oKy
%Z“”y+ﬂw <1 if 5, <0
— K +94
ary[aK +5kk] aKy kky

Therefore the condition &, >0 is equivalent to a capital-resource elasticity of substitution greater than one. m

Appendix B

Proposition B.1.
If 5, =0 (the Cobb Douglas case) then the boundary of the viability kernel described by Equation (A.4) be-
comes:
1-(ay +7)

: (“K”)[ Gy +AK | (@)

_ Tar [ K (@)
V (Ko, G, S,) =S, +A 7 [T K (57 (e +7) (B.1)

Ko
Let us denote the integral on the right hand side of (B.1) as |. This integral can be re-expressed as
1-(ap +7)

C,/K+a (o)
1-(a, +7)
the capital stock then the following inequality holds:

I=["Kk ()

Ko

1-(ap +7)—-(ag +¢)
{ dK . Since the bracketed term in the integrand depends negatively on

1-(ap +7)

Cy /Ko + 4 | Cro7)
1-(a, +7)

1-(ay +7)—(ag +&)
{ dK (B.2)

<ok )
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Therefore if the right hand side of the inequality converges, the left hand side converges. Solving the integral
on the right hand side of the inequality yields:

l;{(la;;})/) 1-(ak +¢) 1-(ak +¢)
| < Cyp/Ko+4 |l (o +7) oo (@+7) -K, (ar+7) (B.3)
1-(a, +7) 1-(ag +¢)

—(a +¢)

1
The right hand side converges (is a finite number) if and only if ( ) <0 or, equivalently,
a, +y

(aK +g) >1, which is the result found by Martinet and Doyen (1974). m

Proof of Proposition B.2.
If 5, =0 (the Cobb Douglas case), then the boundary of the viability kernel is described by Equation (16). If
capital does not depreciate, the boundary of the viability kernel can be expressed as:

1-(ar+7)

1 C (ar+7) 7(‘1K +e)
V(K =S +A T | — b " K @) gk B.4
e = &0
Solving the integral in (B.4) yields:
__r 1-(ar+7)
(ar+7)-(ak +¢) (ar+7)-(ak +¢)

arty C (ar+7)

V(K;,Cy,S,) =S, + A b w g () (B.5)
(o, +7)—(ax +&)|1-(a, +7)

Therefore the minimum level of resource stock needed to sustain consumption at C, (i.e. V(K,,C,.S;))

(o +7)—(ay +¢)

(o, +7)

will be finite if only if is negative or, equivalently, (o, +&)>(a, +7), which is the re-

sult found by Solow (1974). m

Appendix C

Proof of Proposition 2.
Existence of a positive sustainable consumption in this case depends upon convergence of the right hand side
of inequality (A.6) which, once the constant part is removed from the integral, can be re-expressed as:

_(aK +e)+(ar+y)-1 5 (ak +¢)
IstOK (@) exp —(a iy)K a1dK (CY
r

Convergence of the right hand side of (C.1) depends on how fast the integrand converges to zero as K tends to
infinity. Since &, <0, the second factor in the integrand will converge to infinity as K tends to infinity. There-
fore the integrand will converge only if the first factor approaches zero fast enough. For a K, arbitrarily close
to zero (which yields an upper bound to the boundary of the viability kernel), we can numerically show that the
integral converges if and only if

(ax +¢)
<aK+e>+<ar+y>—1Zq,[_( 4 KJ

(@ +7) a +7)
S (ak +e)
where CD() is a positive and monotone function of ———~——K “ . The convergence condition can be

a +7)
written as an implicit inequality as

(ax +¢)
(aK+5)21+(ar+;/){CD[— O K o J—l]: (C.2)

(e +7)
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Figure C1. Parametric combinations and existence of sustainable consumption.
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Figure C2. Parametric combinations and existence of sustainable consumption.
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We compute the function @{—ﬁK K J assuming K, =1E-07, ¢=0, and a, =a, +7=0.3
a, +y
S (o +&)+(a +7)-1 .
and depict it in Figure C1. If ( ) is higher than the plotted curve for each value of
oty
—(5—") , then there exists a positive sustainable consumption.
oty

Provided 8, <0, the second term on the right hand side of Equation (C.2) is negative. Therefore three facts
follow from inequality (C.2). First, (aK +g) >1 is necessary for existence (as directly implied by (D() >1).
Therefore, if «, <1, capital-augmenting technical change is necessary for existence. Second, resource-aug-
menting technical change reduces the likelihood of existence and, thus, adversely affects sustainability. Finally
capital-augmenting technical change has an ambiguous effect on existence (the left hand side of Equation (C.2)
is affected both positively and negatively by ¢). This is due to the fact that, while increases in ¢ raise the
marginal productivity of capital (up to a point), they reduce capital-resource substitutability as illustrated in
Figure C2under K=r=15, a¢=a,+7=0.3,and 5, =-0.05. m
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