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ABSTRACT 

MicroRNAs (miRNAs) are small molecular 
non-coding RNAs that have important roles in 
the post-transcriptional mechanism of animals 
and plants. They are commonly 21-25 nucleo-
tides (nt) long and derived from 60-90 nt RNA 
hairpin structures, called miRNA hairpins. A lar-
ger number of sequence segments in the human 
genome have been computationally identified 
with such 60-90 nt hairpins, however the major-
ity of them are not miRNA hairpins. Most exist-
ing computational methods for predicting 
miRNA hairpins are based on a two-class classi-
fier to distinguish between miRNA hairpins and 
other sequence segments with hairpin struc-
tures. The difficulty of these methods is how to 
select hairpins as negative examples of miRNA 
hairpins in the training dataset, since only a few 
miRNA hairpins are available. Therefore, these 
classifiers may be mis-trained due to some false 
negative examples of the training dataset. In this 
paper, we introduce a one-class support vector 
machine (SVM) method to predict miRNA hair-
pins among the hairpin structures. Different from 
existing methods for predicting miRNA hairpins, 
the one-class SVM classifier is trained only on 
the information of the miRNA class. We also il-
lustrate some examples of predicting miRNA 
hairpins in human chromosomes 10, 15, and 21, 
where our method overcomes the above disad-
vantages of existing two-class methods. 
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1. INTRODUCTION 
MicroRNAs (miRNAs) are small, non-coding RNAs (21-
25 nucleotides in length) that regulate the expression of 
protein-encoding genes at the post-transcriptional level [1, 
2, 21]. Each miRNA derives from a larger precursor, 
which folds into an imperfect stem-loop structure. 

In human, the processing and maturation of miRNAs 
are divided into several steps before silencing their targets. 
First, the long primary transcripts (pri-miRNAs), which 

can be up to several kilobases, are processed by Drosha-
complex in nucleus to yield precursor miRNAs (pre-
miRNAs) [10, 12]. The pre-miRNA is a double-stranded 
sequence of about 60-90 nt with a 2-nt 3' overhang and 
forms a hairpin structure (also called miRNA hairpin). 
Second, pre-miRNAs are transported from the nucleus 
into the cytoplasm by another complex, which consists of 
Exportin 5 and RanGTP [6, 29]. Subsequently, the pre-
miRNA is cleaved into an imperfect double-stranded 
RNA duplex by endonuclease RNase III enzyme called 
Dicer [25, 29, 42]. This duplex is composed of the mature 
miRNA strand and its complementary strand. Finally, 
mature miRNAs are incorporated into RICS (RNA-
induced silencing complex) before they bind to their tar-
gets to regulate gene expression. 

Until now, several computational approaches have 
been proposed for predicting miRNAs. Most of them are 
based on the common structural characteristic of secon-
dary structures of their pre-miRNAs [15, 35, 40]. Since 
pre-miRNAs are often short (60-90 nt), there can be too 
many subsequences in a genome having hairpin structures. 
However, only a minority of them are miRNA hairpins. 
Using only information of their structures therefore may 
not allow us to distinguish miRNA hairpins from other 
hairpin structures. Other methods that consider informa-
tion of both sequences and structures are needed.    

Most methods so far used a two-class classifier to sepa-
rate the miRNA hairpins from the ones assumed to be 
negative. The main difference between these methods is 
how negative examples are selected for the two-class 
classifier training dataset. For example, Szafranski et al. 
[35] and Xue et al. [40] selected examples that overlap 
with one of the last exon of known mRNAs; or Helvik et 
al. [15] tried to get them randomly from DNA sequences 
with hairpin structures as ``negative'' miRNA hairpins. 
The negative examples collected in such ways would con-
tain false negatives, since no study so far has mentioned 
the information regarding true negative miRNA hairpins. 
In other words, only the information of miRNA hairpins 
is available. Therefore, the classifier of existing methods 
may be incorrect, due to some false negative miRNA 
hairpins contained in the training dataset. 

In this paper, we present a new method for predicting 
miRNA hairpins that employs support vector machines 
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for one-class classification (one-class SVMs). One-class 
SVMs recently have been successfully applied in several 
areas, especially domains with imbalanced data such as 
document classification [30], gene prediction [19] and 
image retrieval [9]. Different from previous methods for 
predicting miRNA hairpins, our method uses only avail-
able miRNA hairpins for training the model, while other 
methods train their classifiers by using an additional data-
set of negative examples, which may contain some false 
negatives as explained above. Moreover, more features of 
hairpin sequences and structures are used to represent 
hairpins, with expectation that they would be useful for 
the model. Our one-class SVM classifier gave good re-
sults in predicting miRNA hairpins. We also illustrated 
some examples of predicting miRNA hairpins in human 
chromosomes 10, 15, and 21 where our method can avoid 
the problem of false negative examples of the existing 
two-class methods. 
 
2. MATERIALS AND METHODS 
2.1. Datasets for training and testing  
As mentioned in Section 1, our method uses one-class 
SVMs to recognize miRNA hairpins from potential ones 
produced by ScorePin [15]. To do this, the one-class 
SVM model should capture the characteristics of known 
miRNA hairpins. In our work, the positive class we used 
consists of 474 known human miRNA hairpins from 
miRBase (version 8.1) [13, 14]. (http://microrna.  
sanger.ac.uk/sequences/) that have been verified by ex-
periments or predicted by computational methods with 
high confidence. To ensure that all miRNA hairpins were 
folded as hairpins, we removed a few of those containing 
none or more than one RNAfold-predicted hairpin-loop. 
The positive class used in this work is therefore of 451 
miRNA hairpins. 

To evaluate our one-class SVM models for miRNA 
hairpins, we conducted two kinds of experiments. 

Cross-validation: like some previous researches [15, 35, 
40], we first prepared the dataset for the cross-validation 
procedure to compare our method with the other methods. 
The dataset contained 451 positive examples as described 
above, and 727 negative examples of miRNAs hairpins. 
These 727 negative miRNA hairpins were ScorePin-
hairpins that overlap with the last exon of known coding-
protein genes. We randomly partitioned the dataset into 
three subsets, such that the numbers of both positive and 
negative examples in each of the three subsets were 
equivalent or nearly equivalent. Of them, one subset was 
retrained as the validation data for test prediction methods, 
and was trained on the two remaining subsets (note that 
with our method, one-class SVM, only positive examples 
are used for the training). The cross-validation procedure 
was repeated three times. Results from three trials were 
then averaged to produce a single estimation. 

Test on chromosomes 10, 15, and 21: we use all known 
miRNA hairpins, excluding ones on chromosomes 10, 15 

and 21, to train the one-class SVM model. This model is 
then used to recognize miRNA hairpins from ScorePin-
hairpins (see Section 3.1). Table 1 presents a summary of 
all data sets used in two kinds of experiments. 
Table 1. The data of human miRNA hairpins. 

Experiment #Examples 
Testing on chromosomes 437 training examples 

41039 hairpin candidates 
Cross-validation 2/3 x 451 training positives 

1/3 x 451 testing positives 
1/3 x 727 testing negatives 

2.2. One-class support vector machines 
Support vector machine (SVM) is a learning technique 
based on statistical learning theory [38]. It has been ap-
plied to a wide range of real-world tasks. The formulation 
of SVMs can be considered as a simple linear classifica-
tion, normally using both negative and positive examples 
for training. SVMs can perform nonlinear separation by 
using a kernel technique, which realizes a nonlinear map-
ping to a feature space. Scholkopf et al. [33] have ex-
tended standard SVMs to one-class classification prob-
lems. Their approach is to construct a hyperplane that is 
maximally distant from the origin [33]. 

In this section, we give details of the algorithm for 
training one-class SVMs proposed by Scholkopf et al. 
[33]. The training algorithm is as follows: let the training 
data N

l Rxxx ∈,...,, 21 belong to one class, where ix is a 
feature vector and l is the number of examples. The one-
class SVM estimates a function that will take the value +1 
in a region where the majority of the data points are con-
centrated, and the value -1 everywhere else [30, 33]. For-
mally, the function can be written as follows: 
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where S  is a simple subset of input space and S  is the 
complement of .S Let HX →Φ :  be a kernel map which 
converts the training examples from the origin space to a 
feature space. The strategy is to map the data into the fea-
ture space corresponding to the kernel, and to separate 
them from the origin by the maximum margin. In order to 
separate the data set from the origin, we need to solve the 
following quadratic programming problem [9, 30, 33]: 
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where )1,0(∈v  is a parameter that represents an upper 
bound on the fraction of outliers in the data, ρ is the mar-
gin of the hyperplane with respect to the data, and ix  are 
non-zero slack variables allowing a soft margin. We ob-
tain w  and ρ  by solving this problem. When we give a 
new data point x  to be classified, a label is assigned ac-
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cording to the decision function, which can be expressed 
as: 

)))(.sgn(()( ρ−Φ= ixwxf  
Instead of solving the primal optimization problem di-

rectly, one can consider the following dual program: 
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here, )),((),( jiji xxxxK Φ= are kernels, which allow 

many more general decision functions when the data are 
not linearly separable, and the hyperplane can be repre-
sented in a feature space. The parameters iα are La-
grange multipliers.    

In our research, we used the LIBSVM (version 2.84) 
with three types of kernel functions (linear, polynomial, 
and radial basis (RBF)). This library is an integrated tool 
for support vector classification and regression which can 
handle one-class SVM using the algorithm proposed by 
Scholkopf et al. [33]. The LIBSVM is available at [43].  
 
2.3. Structural and sequential features of miRNA 
hairpins 
There are many miRNA prediction methods which used 
structural features as key features. However, recent re-
ports have shown that the sequence features are important 
in predicting miRNA hairpins [39, 40]. Xue et al. [40] 
indicated that the short contiguous subsequences of 
miRNA hairpin sequences are significantly distinct from 
other RNA hairpin sequences. For this reason, we pro-
pose a set of features that uses both the sequential fea-
tures and structural features to characterize the RNA 
hairpin structure sequences. 

For sequential features, we extracted features from 
RNA hairpin sequences using a 5-nucleotide sliding win-
dow along an RNA hairpin sequence, and computed the 
number of occurrences of each 5-gram. As a result, each 
sequence is represented by a 1,024-dimensional vector of 
the number of occurrences of all possible 5-grams. In 
addition, several other features based on the sequences 
are considered, such as the number of occurrences of each 
nucleotide (A, C, G, U) in the 5' and 3' arms and GC-

content defined as in [35].     
For structural features, we extracted them from the sec-

ondary structure of each hairpin. The secondary structures 
are predicted using RNAfold [16]. The structural features 
used in our method, were introduced in other previous 
miRNA prediction methods [15, 35]. The features consist 
of: 

1. miRNA hairpin length as the number of nucleotides. 
2. Loop size as the number of unpaired bases in the 

hairpin loop of the predicted secondary structure. 
3. Minimum free energy (MFE) as the total free energy 

of hairpin structure predicted by using RNAfold tool. 
4. Paired bases as the number of nucleotides predicted 

to be in a hydrogen-bonded state. 
5. The numbers of nucleotides from 5' site to the loop 

start. 
6. The number of 2-nt overhangs from 5' site and 3' site 

to loop start. 
In total, the feature vector, which is input to our one-

class SVMs, consists of 1,036 variables. It captures the 
characteristics of both the sequence and the structure of 
the RNA hairpin sequences. 

 
3. RESULTS AND DISCUSSIONS 
3.1. One-class SVM performance 
We experimentally evaluated our method by using the 
three-fold cross-validation procedure as described in Sec-
tion 2.1. In order to avoid miRNA hairpins in the same 
group (defined in [44]) being divided into different folds, 
we placed all similar miRNA hairpins in the same fold.  
Three criteria of precision, recall, and F1-measure were 
used to evaluate the results. We carried out experiments 
with three types of kernels (linear, polynomial, and radial 
basic function (RBF)). For each cross-validation run, we 
used default parameters ,δ ,d and various values of pa-
rameter v  in the range of [0.07, 0.11]. The prediction 
results are shown in Table 2. It can be seen that one-class 
SVMs worked well with v = 0.10 and RBF kernels (γ = 
0.0001); the highest F1-measure =95.27%, precision = 
94.63%, and recall = 95.92%. The work in this paper is 
an extension of our conference paper [37]. Basically, 
there is one improvement here: we tried to check the con-
tribution of each kind of features to the prediction results.  

Table 2. The prediction results of one-class SVMs on the testing dataset. Pre., Rec., and F1. are precision recall and F1-measure, re-
spectively. 

Linear kernel Polynomial kernel RBF kernel v  
Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. 

0.07 88.02 98.66 93.04 88.02 98.66 93.04 91.20 97.32 94.16 
0.08 89.09 98.66 93.63 89.09 98.66 93.63 94.67 95.30 94.98 
0.09 91.03 95.30 93.11 91.03 95.30 93.11 95.27 94.63 94.95 
0.10 93.75 90.60 92.15 93.71 89.93 91.78 95.92 94.63 95.27 
0.11 94.37 89.93 92.10 93.71 89.93 91.78 95.24 93.96 94.59 
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Table 3. The prediction results of one-class SVMs using different 
feature sets. FS1 is the feature set using only structural features; 
FS2 is the feature set using both sequential features and struc-
tural features; Pre., Rec., and F1. are prediction, recall and F1-
measure, respectively. 

Kernel Feature 
set 

Pre. Rec. F1. 

FS1 95.42 83.33 88.97Linear 
FS2 93.75 90.60 92.15
FS1 95.42 83.33 88.97Polynomial 
FS2 93.71 89.93 91.78
FS1 92.81 86.00 89.27RBF 
FS2 95.92 94.63 95.27

To determine the importance of the sequential features 
introduced for the first time for this research, we re-
moved the sequential features, and then conducted train-
ing and testing of the model again. The vector represen-
tation of examples using only structural features, denoted 
as FS1, using two kinds of sequential and structural fea-
tures, denoted as FS2. Table 3 shows the results of one-
class SVM with the two kinds of vector representations 
FS1 and FS2 (with the same value for parameter v  = 
0.10). It can be seen that the classifier performance of 
FS1 is much lower than that of FS2. Therefore, the se-
quential features are relevant for modeling miRNA hair-
pins. 

We also tried to compare the one-class SVM method 
with the two-class SVM method, which has been intro-
duced in [35] for the same problem, predicting miRNAs. 
Different from our one-class SVM method, the two-class 
SVMs have to be trained on both positive and negative 
classes of miRNA hairpins. As we mentioned in Section 
1, only positive examples of miRNAs are available, and 
it is difficult to select some potential miRNA hairpins as 
``negatives''. Similar to some previous researches, we are 
indisposed to establish a class of 727 “negative” miRNA 
hairpins as described in Section 2.1, and thus the test 
results here would be respect for the assumption that 
these 727 negative examples would be true. Table 4 pre-
sents the performance of one-class SVMs and two-class 
SVMs. It can be seen that although one-class SVMs 
trained on fewer examples (only positive ones), they 
performed well when compared with two-class SVM 
methods. 

3.2. Test on chromosomes 10, 15, and 21 
To emphasize that the one-class SVM is more suitable 
than a two-class classifier in the problem of recognizing 
miRNA hairpins, we tested the one-class SVM method 
on three human chromosomes 10, 15, and 21 and com-
pared the predicted results with the results from the two-
class SVM method described in [35].  

In this work, the training dataset is all real miRNA 
hairpins after excluding ones on the testing chromo-
somes (Table 1). Through various cross-validation ex-
periments as mentioned in the preceding section, we 
found that one-class SVM models have a good perform-
ance with RBF kernel (γ  = 0.0001). We fixed these 
values to build the one-class SVM model for the training 
dataset of miRNA hairpins in this kind of experiments. 
We then used ScorePin to scan along both genomic 
strands of the three chromosomes, 10, 15, and 21, to find 
good hairpin candidates. There were 62,508 hairpin can-
didates with a ScorePin-score ≤  105. Among them, 
10,035 were confirmed to have an RNAfold-predicted 
hairpin with a minimum free energy ≤  -25 kcal/mol. 
Each candidate is represented by a vector of structural 
and sequential features as described in Section 2.3, and 
then input to the one-class SVM model. Table 5 shows 
some predicted miRNA hairpins which have previously 
been confirmed by labor experiments or other prediction 
methods. It can be seen, our method recognized all 4 
existing miRNA hairpins on chromosome 10, and four of 
five existing miRNAs on both chromosomes 15 and 21. 
Other miRNA hairpins found by our method are pro-
v i d e d  i n  t h e  s u p p l e m e n t a r y  f i l e s 
(http://www.jaist.ac.jp/~tran/miRNAs/). We also used a 
two-class SVM method as described in [35] to predict 
miRNA hairpins on the same chromo somes 10, 15, and 
21. In addition to all known miRNA hairpins in the train-
ing set of the one-class SVM method, the training data 
for this two-class SVM model needed negative examples 
of miRNA hairpins. We got all 727 negative examples of 
hairpins as described in Section 2.1, together with 437 
existing miRNA hairpins in the human genome exclud-
ing ones on chromosomes 10, 15, and 21, to train 

Table 4. Comparisons of prediction results between one-class SVMs and two-class SVMs on the testing dataset. FS1 is the feature set 
using only structural features; FS2 is the feature set using both sequential features and structural features; Pre., Rec., and F1. are pre-
diction, recall, and F1-measure, respectively. 

One-class SVMs Two-class SVMs Feature set Kernel 
Pre. Rec. F1. Pre. Rec. F1. 

Linear 95.42 83.33 88.97 94.00 94.00 94.00 
Polynomial 95.42 83.33 88.97 98.43 83.33 90.25 

 
FS1 

RBF 92.81 86.00 89.27 97.76 87.33 92.25 
Linear 89.09 98.66 93.63 97.96 96.64 97.30 
Polynomial 89.09 98.66 93.63 98.63 96.64 97.63 

 
FS2  

RBF 95.92 94.63 95.27 97.97 97.32 97.64 
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Table 5. The known miRNA hairpins predicted by one-class 
SVMs on chromosomes 10, 15, and 21. Location consists of the 
start point and end point of the miRNA hairpin on the chromo-
some. MFE is a minimum free energy of the miRNA hairpin struc-
ture. 

Chr
# 

Location miRNA_ID MFE 

17927110:17927200 hsa-mir-511-1 -34.6 
17927110:17927200 hsa-mir-511-2 -34.6 
52729335:52729425 hsa-mir-605 -54.8 

 
10 

104186251:104186341 hsa-mir-146b -41.2 
60903206:60903296 hsa-mir-190 -32.5 
86956075:86956165 hsa-mir-7-2 -43.1 
77289181:77289271 hsa-mir-184 -37.9 

 
15 

87712251:87712341 hsa-mir-9-3 -41.1 
16833274:16833364 hsa-mir-99a -47.0 
25868151:25868241 hsa-mir-155 -39.5 
36014883:36014973 hsa-mir-802 -35.0 

 
21 

16834016:16834106 hsa-let-7c -43.2 

 
Table 6. The known miRNA hairpins predicted by two-class SVMs 
on chromosomes 10, 15, and 21. Location consists of the start 
point and end point of the miRNA hairpin on the chromosome. 
MFE is a minimum value of the miRNA hairpin structure. 

Ch
#

Location miRNA_ID MFE
17927110:17927200 hsa-mir-511-1 -34.6 
17927110:17927200 hsa-mir-511-2 -34.6 
52729335:52729425 hsa-mir-605 -54.8 

 
10 

104186251:104186341 hsa-mir-146b -41.2 
60903206:60903296 hsa-mir-190 -32.5 15 
86956075:86956165 hsa-mir-7-2 -43.1 
16833274:16833364 hsa-mir-99a -47.0 
25868151:25868241 hsa-mir-155 -39.5 

 
21 

36014883:36014973 hsa-mir-802 -35.0 

the discriminative two-class SVM model. Table 6 shows 
some miRNA hairpins predicted by the two-class SVM 
model. Among them, all four miRNA hairpins on chro-
mosome 10 were identified as same as using the one-class 
SVM. Consistent with the results reported in [35], the 
two-class SVM also recognized three of five existing 
miRNA hairpins on chromosome 21, and two of four on 
chromosome 15. Especially, while one-class SVM recog-
nized correctly an additional miRNA hairpin on chromo-
some 21, the two-class SVM predicted them as negatives. 
The reasons why two-class SVM method incorrectly rec-
ognized some known miRNA hairpins might be that the 
two-class SVM training is based on some negative exam-
ples of miRNA hairpins, which might not be true due to 
the way to select "negative" ones. 

4. CONCLUSIONS 
We have introduced a one-class learning method to pre-
dict pre-miRNAs in the human genome. Our one-class 

support vector machine method has an advantage over 
other two-class discriminative models: it uses only avail-
able positive examples of miRNA hairpins for building 
the model, while all existing methods for the same prob-
lem must use additional negative ones, which are not 
available, since it is hard to find true negatives for the 
training of a two-class classifier. Our method showed 
good performance, and we have illustrated the case of 
testing on chromosomes 10, 15 and 21, in which our 
method gave the prediction results more precise than 
those from an existing two-class support vector machine 
method.  
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