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Abstract 
In the first part of this paper, we found a more convenient algorithm for solving the equation of 
motion of a system of n bodies. This algorithm consists in solving first the trajectory equation and 
then the temporal equation. In this occasion, we will introduce a new way to solve the temporal 
equation by curving the horizontal axis (the time axis). In this way, we will be able to see the pe-
riod of some periodic systems as the length of a certain curve and this will allow us to approx-
imate the period in a different way. We will also be able to solve some problems like the pendu-
lum one without using elliptic integrals. Finally, we will solve Kepler’s problem using all the for-
malism. 
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1. Introduction 
We shall use the following notation given at the first part [1].  

 ///  
Notation: Along this paper, we shall consider the variables t and t . The derivatives respect to the variable t 

will be denoted by the symbol “•” while the derivatives respect the variable t  will be denoted by the symbol 
apostrophe “'”. In addition, if 1 , 1 3ijA lR i n j∈ ∀ ≤ ≤ ≤ ≤  we will denote:  
• 1 2 3i i i iA A A A≡ + +   
• ( )1 2 3, ,i i i iA A A A≡   
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• =1
n

i iji ijA A A≡ ≡∑ ∑   

• ( )1, , nA A A≡    

• 
11 12 13

1 2 3

.

n n n

A A A
A

A A A

 
 ≡  
 
 

     

/// 
In the first part of this paper, we study the problem of n bodies interacting in a certain medium, which we will 

assume that it is the vacuum in this part (since the general case is analogous), whose equation of motion (in the 
vacuum case) is given by  

( ) ( )( )
( )
( )

0 0

0 0

i i im x t F x t

x t x t I

x t x

 =
 = ∀ ∈


=



 

                            (1) 

where im  and ijx  are the mass and the component j of the position of the i-body respectively while iF  is the 
force applied to the i-body. 

We saw that if 3: nx J lR ×→  is such that ( ) ( )( )x t x t t=    with  

( ) ( )( )
( )0 0

t t u t t

t t t

 =


=



 

 

                                 (2) 

then Equation (1) (without the initial conditions) is equivalent to  

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2
0

if 0

if 0

ij i ij ij

ij ij ij ij

F x t u t m x t x t

T t W t u t T t x t

 ′ ′= =


′ + = ≠



   

 

 

   



                     (3) 

where  

( ) ( )21
2ij i ijT t m x t=                                 (4) 

( ) ( )21
2ij i ijT t m x t′=

 

                                (5) 

( ) ( )( ) ( )
0

d
t

ij ij ijt
W t F x s x s s′= ∫











 .                           (6) 

At the same time, we saw that Equation (3) and the initial conditions (and hence Equation (1)) are equivalent 
to  

( ) ( ) ( )
( )
( )

0

0 0

0 0

/ /

/ /

W t T t T t

x x t t J

x x t

+ +
 = ∀ ∈


′

 

 



 

 



                         (7) 

( ) ( ) ( )( )0 0ij ij ijx t x t F x t′ ′′= = ⇒ =

  

                           (8) 

( ) ( )( ) ( )
( )

1 10 / /
n n

m x t
x t F x t t J

m x t
+ ′ 

′ = ⇒ ∀ ∈  ′′ 




 

  




                    (9) 
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( )

( ) ( ) ( )
( ) ( )

( )
( )( )
( ) ( ) ( )

( ) ( ) ( )

0sgn if 0

sgn if 0 and 0

if 0

ij ij

ij

lm

l lm

W t T t
x t

T t

u t F x t
x t x t

m x t

h t x t x t

λ

λ

 +
 ′ ≠

= 

′ ′′ = ≠
′′


′ ′′= =


















 

 





 

  

                 (10) 

where h can be any function, i, j, l and m are arbitrary indexes satisfying ( ) 0ijx t′ ≠ , ( ) 0lmx t′′ ≠  and λ  is 
given by  

( )0 0x x tλ ′= 

 .                                    (11) 

We also proved that if x  is a parametrization of C, where C is the image of x , then it satisfies conditions 
(7), (8) and (9). Due to this fact, we call trajectory equation to condition (7), since C represents the trajectory of 
the system and conditions (8), (9) are just extra conditions for particular cases. We finally saw that if 

* * 3: nx J lR ×→  satisfies conditions (7), (8) and (9), then 3: nx J lR→  given by ( ) ( )( )*x t x tτ= 

   also 
satisfies them, with *: J Jτ →  such that ( )0 0t tτ =   and ( ) 0tτ ′ > . In addition  

( ) ( )( )
( )

*u t
u t

t
τ

τ
=

′







.                                  (12) 

On the other hand, we call temporal equation to Equation (2), since it determines the relationship between t 
and t . We also call temporal equation to Equation (10). We proved that if the force comes from a potential V, 
then we can write Equation (10) (for ( ) 0x t′ ≠

 ) using the mechanical energy of the system as follows  

( ) ( )
( )( )

( )
sgn

E V x t
u t

T t
λ

−
=











                            (13) 

where E is the energy. 
Based on these results, we develop the following algorithm for solving Equation (1):  
1) Find a solution * * 3: nx J lR ×→  of the trajectory equation and check that it satisfies conditions (8) and (9).  
2) Choose conveniently a function *: J Jτ →  with ( )0 0t tτ =   and ( ) 0tτ ′ >  in order to build another 

solution 3: nx J lR ×→  given by ( ) ( )( )*x t x tτ= 

  .  
3) Find the function u given in Equation (10) (or (13)).  
4) Solve the temporal equation.  
Finally, ( ) ( )( )x t x t t=    is the solution of Equation (1). 
We saw that if we want to solve the equation of motion, it is more convenient to follow this algorithm. 
In this occasion, we will change the last step of this algorithm, i.e., we will find a new way to solve the tem-

poral equation, by curving the horizontal axis (the time axis). In this way we will be able to solve some prob-
lems that cannot be solved in the traditional way (without using elliptic integrals) like the pendulum problem. 
We will also be able to see the period of some periodic systems as the length of a curve. This fact can be com-
pared with the Hamilton-Lagrange’s formalism, where we can see the period of some systems as the area of a 
surface given by the phase space [2]. 

First, we will use the arc length function and its inverse in order to introduce a new way to graph functions by 
curving the axes. Then, we will use these results in order to complete the algorithm and to graph each compo-
nent of the solution of Equation (1) in this way. Finally, we will solve the harmonic oscillator, the pendulum, the 
particle under the action of two elastic springs [3] and Kepler’s problems using all the formalism. 

2. A New Way to Graph Functions by Curving the Axes 
In this section we will use the arc length function and its inverse in order to introduce a new way to graph func-
tions by curving the axes. Before doing this, we will introduce the notation that will be used and we will give 
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some definitions.  
 ///  

Notation and preliminaries: let C be a curve in the plane given by a parametrization [ ]: ,a b lR Cγ ⊆ →  
with ( ) ( ) ( )( ),t x t y tγ = .  
• We will denote by ( ){ }: ,xJ x lR x y C= ∈ ∈  and ( ){ }: ,yJ y lR x y C= ∈ ∈ , i.e., xJ  is the image of ( )x t  

and yJ  is the image of ( )y t .  
• We will assume that [ ]0 ,a b∈  and we will denote by ( ) ( )0 0 0, 0P x y γ= = .  
• If ( )l a  and ( )l b  are the lengths of the curve from 0P  to ( )aγ  and ( )bγ  respectively, we write 

( ) ( )( ),L l a l b= − .  

Definition 1: let C be a curve in the plane describing the graph of a function depending of x and given by a 
parametrization [ ]: ,a b Cγ → . We define the function [ ] : xl x J Lγ →  as follows: [ ]( )l x x sγ =  if and only if 
s is either l+  or l− , where l is the length of the curve C measured from 0P  to ( ),x y  and the sign depends 
of the orientation of the parametrization as shown in Figure 1 and Figure 2. 

In a similar way, if C describes the graph of a function depending of y, we define the function [ ] : yl y J Lγ →  
as shown in Figure 3 and Figure 4.  

Definition 2: let C be a curve in the plane given by a parametrization [ ]: ,a b Cγ → . We define the function 
: xx L Jγ →  as follows: ( )x s xγ =  if and only if s is either l+  or l− , where l is the length of the curve C 

measured from 0P  to ( ),x y  and the sign depends of the orientation of the parametrization as shown in 
Figure 5 and Figure 6. 

In a similar way, we define the function : yy L Jγ →  as shown in Figure 7 and Figure 8.  
 ///  

Before proceeding to the new way to graph functions, we will discuss some points about these functions. 
On the one hand, note that all these functions are uniquely determined by the curve C described implicitly by 
( ), 0F x y = , the initial point 0P  and the orientation. In addition, there are infinite parametrizations that define 

the same function. Then, in the examples that we will see later, we will find F, 0P  and the orientation in order 
to determine these functions, i.e., we will not find the parametrization γ . 

On the other hand, if C describes the graph of a function : x yy J J→  depending of x, by Definition 1 it is  
 

 
Figure 1. In this case ( )l xγ  is positive since its sense coincides with the orientation.     
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Figure 2. In this case ( )l xγ  is negative since its sense is opposite to the orientation.           

 

 
Figure 3. In this case ( )l xγ  is positive since its sense coincides with the orientation.           

 
easily proved that [ ]l xγ  is given by  

[ ]( ) ( )
0

2d1 d
d

x

x

yl x x s s
xγ = ± +∫                              (14) 
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Figure 4. In this case ( )l yγ  is negative since its sense is opposite to the orientation.                   

 

 
Figure 5. In this case s l= , i.e., s coincides with length of the curve measured from 0P  to ( ),x y  
since it is in the same sense of the orientation.                                                    
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Figure 6. In this case s l= − , where l is the length of the curve measured from 0P  to ( ),x y , since 
its sense is opposite to the orientation.                                                        

 

 
Figure 7. In this case s l= , i.e., s coincides with length of the curve measured from 0P  to ( ),x y  
since it is in the same sense of the orientation.                                                        

 
where the sign + corresponds to the orientation given in Figure 1 and the sign − to the orientation given in 
Figure 2. 

In addition, in this case we can see in Definition 2 that xγ  is the inverse function of [ ]l xγ  and then it 
follows from the inverse function theorem and Equation (14) that xγ  is given by  
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Figure 8. In this case s l= − , where l is the length of the curve measured from 0P  to ( ),x y , since 
its sense is opposite to the orientation.                                                        

 

( )
( )( )

( )

2

0

d 1
d d1

d
0

x
s

s y x s
x

x x

γ

γ

γ


= ±


+


 =

                           (15) 

where the sign + corresponds to the orientation given in Figure 5 and the sign-to the orientation given in Figure 
6. 

If C describes the graph of a function : y xx J J→  depending of y the process is analogous by changing 
[ ]l xγ  and xγ  by [ ]l yγ  and yγ . 
Next, we will use these functions in order to graph functions by curving the axes.  

 ///  
Curvilinear vertical axis: assume we have a differential equation whose solution is given by the function 
( ) [ ] ( )( )X t l y X tγ=   where the curve C is given by ( )x x y= , it is oriented as in Figure 3 and ( )0 0 0,P x y=  

(with ( )0 0x x y= ). Then, we can graph this function as shown in Figure 9. 
This way of making the graph of the function is equivalent to make the graph of the function X  by curving 

the X-axis with the function x. Note that the origin of the horizontal axis is ( )0,0  (i.e. it does not change) 
while the origin of the vertical axis is 0P . Note also that the original X-axis is not used to make the graph of the 
function, it is only used to perform the new y-axis and to make the graph of the function X . Finally, we can 
graph X versus t in a more simple way as shown in Figure 10. 

If the curve C is oriented as in Figure 4 the direction of the X-axis changes.  
Curvilinear horizontal axes: assume now that we have a differential equation whose solution is given by the 

function ( ) ( )( )X t X x tγ=   where the curve C is given by ( )y y x= , it is oriented as in Figure 5 and 
( )0 0 0,P x y=  (with ( )0 0y y x= ). Then, we can graph this function as shown in Figure 11. 

This way of making the graph of the function is equivalent to make the graph of the function X  by curving 
the t-axis. Note that the origin of the vertical axis is ( )0,0  (i.e. it does not change) while the origin of the 
horizontal axis is 0P . Note also that the original t-axis is not used to make the graph of the function, it is only 
used to perform the new t-axis and to make the graph of the function X . Like the previous case, we can graph  
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Figure 9. Graph of the function ( ) [ ] ( )( )X t l y X tγ=  .                                           

 

 
Figure 10. Graph of the function X by curving the X-axis.                                        

 
X versus t in a more simple way as shown in Figure 12. 

If the curve C is oriented as in Figure 6 the direction of the X-axis changes. 
If C is not the graph of a function the idea is the same. For example if C is a closed curve and it is positively 

oriented, the graph of X versus t is shown in Figure 13. In this case we need to say how many times the 
parametrization of the curve “turns”. If it turns indefinitely, then [ ): 0,X lR∞ →  and we can see in Figure 13 
that X is a periodic function whose period is given by the length of C.  

 ///  
Next, we will complete the algorithm for solving the equation of motion by using these results. We will only  
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Figure 11. Graph of the function ( ) ( )( )X t X x tγ=  .                                

 

 
Figure 12. Graph of the function X by curving the t-axis.                             

 
use the xγ  functions, since we will just curve the t-axis. 

3. A New Way to Solve the Temporal Equation 
In the first part of this paper we find a more convenient algorithm for solving the equation of motion of a system 
of n bodies. In this section we will use the xγ  functions in order to change the step four of that algorithm, by 
solving the temporal equation in a different way. 

Before doing that, we will need the following mathematical notion.  
 ///  

Definition 3: let :f J lR→  and 0x lR∈ . We define the following set ( )0,K f x :  
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Figure 13. Graph of the function X when the t-axis is a closed curve.                               

 

( ) [ ]0 02
1, : 1 is integrable in ,K f x x J x x
f

  = ∈ − 
  

 

Note 1: in order an element x belongs to ( )0,K f x  it is necessary (but not sufficient) that  
( ) 1f s ≤ [ ]0 ,s x x∀ ∈  

in order the term which appears under the radical be no negative.  
Note 2: if we do not choose the element 0x  appropriately (for instance if ( )0 1f x > ) then the set 
( )0,K f x  can be empty.  
Note 3: although ( ) 0f x = , it may be possible that x belongs to ( )0,K f x , since the improper integral 

could converge. Analogously, if ( )0 0f x = , it may be possible that the set ( )0,K f x  is not empty for the 
same reason.  

Proposition 1: let :x I J→  and :u J lR→  be such that  

( ) ( )( )
( ) 0

d
d

0

x s u x s
s

x x

 =

 =

.                                (16) 

Let also ( )0: ,y K u x lR→  be such that  

( ) ( )0
02

1 1d
x

x
y x s y

u s
= ± − +∫                           (17) 

where 0y lR∈  and the sign is arbitrary. 
Then, if u does not change the sign in the interval ( )0,K u x , ( )0: ,x L K u xγ →  is the solution of the 

differential equation where C is described by ( )y y x= , ( )0 0 0,P x y= , and the curve is oriented as follows  
• If u is positive, then C is oriented as in Figure 5.  
• If u is negative, then C is oriented as in Figure 6.  

Proof: by Equation (17) we have  

( )
( )2

d 1 1.
d
y x
x u x

= ± −  
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It follows that  

( )
( )

( )02

1 ,
d1
d

u x x K u x
y x
x

= ± ∀ ∈

+

 

where the sign is + provided 0u ≥  and the sign is − provided 0u ≤ . 
Then, according to Equation (15) we have that ( ) ( )x s x sγ=  is the solution of Equation (16) where 
( )0 0 0,P x y=  and C is described by ( )y y x=  with its respective orientation.  

 ///  
By Proposition 1, we will complete the algorithm for solving the equation of motion. 
We will assume that the initial time 0 0t = , which implies that Equation (2) is written as Equation (16) by 

taking 0 0t x= . In addition, we can see in Equation (10) (or (13)) that u does not change its sign, and hence we 
can use Proposition 1. Then, we will change the algorithm as follows  

1) Find a solution * * 3: nx J lR ×→  of the trajectory equation and check that it satisfies conditions (8) and (9).  
2) Choose conveniently a function *: J Jτ →  with ( )0 0t tτ =   and ( ) 0tτ ′ >  in order to build another 

solution 3: nx J lR ×→  given by ( ) ( )( )*x t x tτ= 

  .  
3) Find the function u given in Equation (10) (or (13)).  
4) Find a function y that satisfies Equation (17).  
Finally, ( ) ( )( )x t x x tγ=   is the solution of Equation (1) where C is described by ( )y y x= , ( )0 0 0,P x y=  

and the curve is oriented as follows  
• If λ  is positive, then C is oriented as in Figure 5.  
• If λ  is negative, then C is oriented as in Figure 6.  
where λ  is given by Equation (11). 

In this way, we can graph each component of x  as in Figure 12 (or 13) by curving the horizontal axis, i.e., 
the time axis. 

Note that we have only changed the step four. However, there is also a big difference in the step two. 
In the step two of the old algorithm, the statement “choose conveniently a function *: J Jτ → ” refers to 

choose τ  so that the temporal equation can be solved easily. However, according to Equation (12) we have  

( ) ( )( )
( )

*d .
d

u tt u t
t t

τ

τ
= =

′









 

This implies that  

( )( )*d d .
d d
t u t
t t

τ τ=






 

Hence we arrive to  

( )*d .
d

u
t
τ τ=  

Then, we can see that choosing τ  so that the temporal equation can be solved easily is equivalent to make a  

simple change of variables in the temporal equation. This implies that if the solution of ( )*d
d
t u t
t
=


  is a 

non-elemental function, then the solution of ( )d
d
t u t
t
=


  will also be a non-elemental function. Hence, we can 

say that in the old algorithm, the step two is not very important. 
In the step two of the new algorithm, the statement “choose conveniently a function *: J Jτ → ” refers to  

choose τ  so that ( )( ) ( )*u t tτ τ ′≤  , which implies that according to Equation (12), ( ) 1u t ≤  and then  

( )0,K u x J=  in most cases, and that the integral given in Equation (17) can be solved easily. We will see in the 
following examples that in this case, the step two is key since if we choose properly τ , then we will be able to 
find y analytically and if we do not choose τ  properly, we will not be able to find it. 
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Finally, suppose that there is just one body and it moves in only one direction 1x x=  and we find a function 
x  that satisfies ( ) 0x t ≠  and ( )0 0x t x=

 . Then, the step one is satisfied. In addition, in this case the step two 
is unnecessary. Hence, the algorithm in this case becomes  

1) Choose conveniently a function :x J lR→  that satisfies ( ) 0x t′ ≠  and ( )0 0x t x=

 .  
2) Find the function u given in Equation (10) (or (13)).  
3) Find a function y that satisfies Equation (17).  
As before, the statement “choose conveniently a function :x J lR→ “ refers to choose x  so that ( ) 1u t ≤  

and that the integral given in Equation (17) can be solved easily. 
Finally, suppose that the universe is only composed of the n bodies. Then, it would be impossible to tell if the 

bodies move according to x  and the time t is “an horizontal line” or if the bodies move according to x  and 
the time curves according to Equation (17). 

Hence, we can say that the master equation is a generalization of Newton’s second law which includes the 
possibility that the time curves. We can also say that we do not know if Newton’s second law is all right since 
we do not know if the time curves or does not. 

Next we will see four examples. The first three examples will be one dimensional problems and then we will 
use this last algorithm. 

4. Examples 
In this section, we will solve the harmonic oscillator, the pendulum, the particle under the action of two elastic 
springs [2] and Kepler’s problems. Note that all these problems have periodic solutions (at least for some values 
of the energy). We will use this formalism in order to approximate the periods. In order to do that we will need 
the following proposition.  

 ///  
Proposition 2: let C be a curve with elliptical shape with semi-axes a and b and let 1C  and 2C  be two 

curves as shown in Figure 14. Then we have  

( ) ( ) ( ) ( )2 2
1 24 4a b l C l C l C a b+ = ≤ ≤ = +  

where ( )l C , ( )1l C  and ( )2l C  are the length of C, 1C  and 2C  respectively.  
 ///  

Suppose that ( ) ( )( )x t x x tγ=   is the solution of one of these problems with C a closed curve with elliptical 
shape and semi-axes a and b and [ ]: ,x a a lR− → . If γ  turns indefinitely the solution holds for all t and 
according to Figure 13 it is periodic. The period is given by the length of C and then, according to this 
proposition, we have  

( )2 24 4a b a bτ+ ≤ ≤ +  

where τ  is the period. 
In other words, 0τ τ τ= ± ∆  where  

( )2 2
0 2 a b a bτ = + + +                                (18) 

( )2 22 a b a bτ∆ = + − + .                              (19) 

Hence, if we know a and b, we can approximate the period of the solution using Equation (18) and the error 
of the approximation is given by Equation (19). If we call   to the ratio between the semi-minor axis and the 
semi-major axis, according to Equations (18) and (19), the relative error is given by  

2

2
0

1 1
1 1

τ
τ
∆ + − +

=
+ + +

 

 
.                                 (20) 

Since 0 1≤ ≤ , then it is easily proved that  
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Figure 14. Graph of the curves C, 1C  and 2C .                                                 

 

0

2 20
2 2

τ
τ
∆ −

≤ ≤
+

                                  (21) 

where 2 2 0.17
2 2
−
+

 . 

In addition, if 0x =  is the equilibrium point, we can also calculate the amplitude of the motion by doing  

( )
[ ]

( )
,

max max
t a a

A x t x t
∈ −

= =




 .                              (22) 

Next we will see some examples and we will use these results in order to approximate the period of the 
solution. In all the examples we will consider just one body and we will denote by 1X x≡  and 2Y x≡ . In the 
one dimensional examples we will use the second algorithm. 

4.1. Harmonic Oscillator 
The force and the potential in this case are given by  

( )F X kX= −  

( ) 21
2

V X kX=                                    (23) 

where k is the elastic constant. 
Before proceeding, we will call  

0
k
m

ω = .                                     (24) 

We propose as a solution the following one  
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( )X t vt=

                                     (25) 

where v is given by  

2Ev
m

=                                     (26) 

with E the mechanical energy. 
We will choose  

0
0 0

Xt x
v

= = .                                  (27) 

Then, the solution satisfies ( ) 0X t′ ≠

  (since we are not considering the trivial case 0E = ) and 
( )0 0X t X=

  and hence the first step of the algorithm is complete. 
In order to find u, according to Equations (5), (23), (24), (25) and (26) we have  

( )T t E=

                                    (28) 

( )( ) 2 2
0V X t E tω=

  .                                (29) 

In addition, according to Equations (11) and (25),  

( )
0 0

0

.
X X

vX t
λ = =

′

 





 

Since v is positive, then  

( ) ( )0sgn sgn Xλ =  .                                 (30) 

Finally, by Equations (13), (28), (29) and (30) the function u is given by  

( ) ( ) 2 2
0 0sgn 1u t X tω= −

  .                              (31) 

Then, the second step of the algorithm is complete. 
In order to find y, according to Equation (31) we have  

( )
2 2
0

2 2 2
0

1 1 .
1

s
u s s

ω
ω

− =
−

 

Then, by making the change of variable  

0sµ ω=  

and choosing conveniently the value of 0y , Equation (17) becomes  

( ) 2 2
0

0

1 1 .y x xω
ω

= ± −  

Without being quite formal, it follows that the curve C is given by  

2 2
2
0

1y x
ω

+ = .                                   (32) 

Hence, the third step is complete. 
Finally, ( ) ( )( )X t X x tγ=   is the solution where X  is given by Equation (25), C is described by Equation 

(32), ( )( )0 0 0,P x y x=  with 0x  given in Equation (27) and the orientation is given according to the sign of the 
initial velocity. 
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Since C is a closed curve and we are considering that γ  turns indefinitely, we can graph X versus t as given  

in Figure 13. The solution is periodic and in this case, since the curve is a circumference of ratio 
0

1
ω

, we can 

calculate the period analytically and it is given by  

0

2πτ
ω

= .                                      (33) 

In addition, according to Equations (22), (24), (25) and (26) the amplitude is given by  

0 0

1 2 .v EA X
kω ω

 
= = = 

 
  

We can find the period and the amplitude in the traditional way and we obtain the same results. 

4.2. The Pendulum 
We will call θ  to the angle formed by the rope and the vertical and we will denote  

X lθ=                                       (34) 

where l is the length of the rope. 
Then, the equation of motion can be written as Equation (1) where the force is given by  

( ) sin XF X mg
l

 = −  
 

 

and g is the gravity. 
We will choose conveniently the potential as follows  

( ) 22 cos
2
XV X mgl
l

 = −  
 

.                              (35) 

Before proceeding, using this equation and the fact that the kinetic energy is positive, note that  

2E mgl≥ − .                                     (36) 

In addition, we will define conveniently  

0
g
l

ω =                                       (37) 

2
E
mgl

α = .                                     (38) 

We propose the solution of Equation (25) and we will take 0 0t x=  according to Equation (27) where in this 
case  

( ) 2
0

2 4 2 1 sgnEv gl l E
m

ω α= + = + .                         (39) 

By condition (36) we can see that v is well defined. 
As in the harmonic oscillator example, the solution satisfies ( ) 0X t′ ≠

  and ( )0 0X t X=

  which implies that 
the first step of the algorithm is complete. 

In order to find u, according to Equations (5), (25), (35) and (39) we have  

( ) 2T t E mgl= +

                                   (40) 
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( )( ) 22 cos
2
vtV X t mgl

l
 = −  
 





 .                             (41) 

In addition, in a similar way we can prove Equation (32). 
Finally, according to Equations (13), (32), (40) and (41) the function u is given by  

( ) ( )
2

0

2 cos
2sgn

2

vtE mgl
lu t X

E mgl

 +  
 =

+





 .                          (42) 

Then, the second step of the algorithm is complete. 
In order to find y, according to Equation (42) we have  

( )

2

2
2

2 sin
1 21 .

2 cos
2

vsmgl
l
vsu s E mgl

l

 
 
 − =
 +  
 

 

Then, by making the change of variable  

2 cos
2
vsmgl

l
µ  =  

 
 

and choosing conveniently the value of 0y , Equation (17) becomes  

( )

1arccosh cos if 0
2

2 ln cos if 0
2

1arcsinh cos if 0.
2

vx E
l

l vxy x E
v l

vx E
l

α

α

    <   
  

    = ± =   
  

    >     

 

Without being quite formal, it follows that the curve C is given by  

2

cosh cos if 0
2 2

e cos if 0
2

sinh cos if 0.
2 2

vy
l

vy vx E
l l

vx E
l

vy vx E
l l

α

α

−

    = <       
  = =  

 
    = >    

   

 

According to Equation (39) we can also write C as follows  

( ) ( )
( )

( ) ( )
0

2 2
0 0

0

2 2
0 0

cosh 1 cos 1 if 0

e cos if 0

sinh 1 cos 1 if 0.

y

y x E

x E

y x E

ω

α α ω α ω

ω

α α ω α ω

−

 − = − <
 = =


+ = + >

                     (43) 

Hence, the third step is complete. 
Finally, ( ) ( )( )X t X x tγ=   is the solution where X  is given by Equation (25), C is described by Equation 

(43), ( )( )0 0 0,P x y x=  with 0x  given in Equation (27) and the orientation is given according to the sign of the 
initial velocity. In addition, according to Equation (34) we have  
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( ) ( )( ) ( )( )1t X x t x t
l γ γθ θ= =   

If 0E < , then C is a closed curve with elliptical shape. The semi-axes of the ellipse are given by  

( )
2

0

arccos 1
1

a
α

ωα
=

−
                                (44) 

2
0

1arccosh
1

1
b α

ωα

 
 
 =

−
.                                (45) 

It is easily proved that b a>  and hence the “ellipse is vertical”. 
Since C is a closed curve and we are considering that γ  turns indefinitely, we can graph X versus t as in 

Figure 13. The solution is periodic and according to Equations (18), (44) and (45) its approximate period is 
given by  

( ) ( )2 2

0 2
0

1 1arccos arccosh arccos arccosh
2

1

α α
α α

τ
ωα

   + + +   
   =

−
.                (46) 

The relative error is given by Equation (20) where in this case  

arccos
1arccosh

a
b

α

α

= =
 
 
 

 .                               (47) 

We will study the limit cases, i.e., when 2E mgl→ −  (see Equation (36)) and when 0E → . 
The first case corresponds to small oscillations and according to Equation (38) 1α → . Then, by Equation (47) 

it is easily proved that 1→  which implies that the curve is a circumference. Hence, as in the harmonic 
oscillator case, it is not necessary to approximate the period, since it can be calculated analytically. According to  

Equations (44) and (45) we have that 
0

1a b
ω

= →  and then the ratio of the circumference takes the value of 

0

1
ω

. Hence, the period is given by Equation (33) where in this case 0ω  is given by Equation (37) as was 

expected.
 In the second case we have that 0α →  and then, Equations (46) and (47) becomes  

0τ → ∞  

0.→  

Since 0→  we can see in Equation (20) that  

0

0.τ
τ
∆

→  

Taking into account that in the previous case 1→  and then, according to Equations (20) and (21), the 
relative error is maximum, we can say that to higher energy, better approximation in the period. However, by 
Equations (19), (44) and (45) it is easily proved that the error depending on α  is a decreasing function and it 
tends to infinity when 0α → . 

Finally, we can also find the amplitude and according to Equations (22), (25), (39) and (44) it is given by  

( ) ( )2 arccos .A X a va l α= = =  

We can find the amplitude in the traditional way and see that we arrive to the same result. 
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If 0E =  the graph of the curve is shown in Figure 15 where a is given by  

0

π .
2

a
ω

=  

If we graph X versus t as in Figure 12 and we assume that the initial velocity is positive we can see that the 
solution is increasing and since the curve has vertical asymptotes in a± , according to Equations (25) and (39) it 
tends to  

( ) π.X a l=  

However, it never reaches that value. 
If 0E >  the graph of the curve is shown in Figure 16 where a and b are given by  

2
0

π 1 1
2 1

a
ωα

=
−

                                 (48) 

2
0

1arcsinh
1

1
b α

ωα

 
 
 =

−
.                                (49) 

In this case, if we graph X versus t as in Figure 12 and we assume that the initial velocity is positive, we can see 
that X increases indefinitely and hence according to Equation (34) θ  increases too. This means that the pendulum  
 

 
Figure 15. Graph of the curve C for 0E = .                                                 

 

 
Figure 16. Graph of the curve C for 0E > .                                                   
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describes a rotating circular motion. The time τ  that takes to the pendulum to circle is given by the length of  

the curve from 0x  to 0
2πlx
v

+ , since according to Equations (25), (27) and (34)  

( )0 0 0 0
2π 1 2π 1 2π 2π.l lx X x X l
v l v l

θ θ   + = + = + = +   
   
   

As in Proposition 2, we can obtain lower bounds and upper bounds for this length and approximate τ  in the 
same way as before. For example if 0 0X = , taking into account that according to Equations (27), (39) and (48)  

0 0x =  

0
2π 2lx a
v

+ =  

it is easily proved that 0τ τ τ= ± ∆  where  

( )2 2
0 a b a bτ = + + +  

( )2 2a b a bτ∆ = + − +  

with a and b given by Equations (48) and (49). 

4.3. Particle under the Action of Two Elastic Springs 
The force and the potential in this case, considering small oscillations, are given by [2]  

( ) 3
2
0

kF X X
l

= −  

( ) 4
2
0

1
4

kV X X
l

=                                   (50) 

where k is the elastic constant and 0l  is the natural length of the springs. 
We propose as a solution  

( ) ( )sinhX t A tω=

                                   (51) 

where  
2
04 4 02

0

4 4l E EA l
k kl

= =                                  (52) 

4 4 02 2 2
0 0

kE E
l m kl

ω ω= =                                  (53) 

with 0ω  given in Equation (24) and E the mechanical energy. 
We will choose  

0
0 0

1 arcsinh Xt x
Aω

 = =  
 

 .                                (54) 

Then, the solution satisfies ( ) 0X t′ ≠

  (since we are not considering the trivial case 0E = ), ( )0 0X t X=

  
and hence the first step of the algorithm is complete. 

In order to find u, according to Equations (5), (50), (51), (52) and (53) we have  

( ) ( )2coshT t E tω=

                                   (55) 



F. Petrovich 
 

 
959 

( )( ) ( )4sinhV X t E tω=

  .                               (56) 

In addition, according to Equations (11) and (51),  

( ) ( )
0 0

00

.
cosh

X X
A tX t

λ
ω ω

= =
′

 





 

Since A, ω  and ( )0cosh tω   are positive, then Equation (30) holds. 
Finally, according to Equations (13), (30), (55) and (56) the function u is given by  

( ) ( ) ( )
( )
4

0 2

1 sinh
sgn

cosh
t

u t X
t
ω
ω

−
=









.                            (57) 

Then, the second step of the algorithm is complete. 
In order to find y, according to Equation (57) we have  

( )
( ) ( )

( )

2 2

2 4

cosh sinh1 1 .
1 sinh

s s
u s s

ω ω
ω

− =
−

 

Then, by making the change of variable  

( )2sinh sµ ω=  

and choosing conveniently the value of 0y , Equation (17) becomes  

( ) ( )( )21 arccos sinh .
2

y x xω
ω

= ±  

Without being quite formal, it follows that the curve C is given by  

( ) ( )2cos 2 sinh .y xω ω=  

Using well known properties of the trigonometric and the hyperbolic functions we can write this equation as 
follows  

( ) ( )1cos cosh
2

y xω ω= .                              (58) 

Hence, the third step is complete. 
Finally, ( ) ( )( )X t X x tγ=   is the solution where X  is given by Equation (51), C is described by Equation 

(58), ( )( )0 0 0,P x y x=  with 0x  given in Equation (54) and the orientation is given according to the sign of the 
initial velocity. 

It is proved that C is a closed curve with elliptical shape. The semi-axes a and b are given by  

( ) 1 0.88arccosh 2a
ω ω

=                               (59) 

1 1 0.79arccos
2

b
ω ω

 =  
 

 .                             (60) 

In this case a b>  and hence the “ellipse is horizontal”. 
Since C is a closed curve and we are considering that γ  turns indefinitely, we can graph X versus t as in 

Figure 13. The solution is periodic and according to Equations (18), (58) and (59) its approximate period is 
given by  

0
5.69τ
ω

 .                                  (61) 
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The relative error, according to Equation (20) and taking into account that  

0.90b
a

=   

is given by  

0

0.17.τ
τ
∆
  

Note that if 0E →  (which implies small oscillations), then 0ω →  (see Equation (53)) and hence 0τ → ∞ . 
On the other hand, if E →∞ , then ω →∞  and hence 0 0τ → . 

By means of the procedure indicated before, it is easily proved that A is the amplitude. 

4.4. Kepler’s Problem 
The force and the potential in this case are given by  

( ) 3
rF r
r

α= −                                   (62) 

( )V r
r
α

= −                                    (63) 

where ( ),r x y= , r r=  and α  is a constant. 
We will assume that the initial conditions are given by  

( ) ( )
( ) ( )

0

0

0 ,0
0 0,

r r
r v
 =
 = 

                                 (64) 

where 0r  and 0v  are positive. 
In addition, we will choose 0 0 0t x= = . 
Then, since ( ){ },y xT T−  is a base of the T  orthogonal subspace (see the appendix of [1]) and ( )0 0xT =  

(because ( )0 0x = ), the trajectory equation becomes  

( ) ( ) ( ) ( )( ) ( )
( ) ( )
( ) ( )

0

0

0 0

,0 0

0, / / 0

x y y xW t T t W t T T t

r r

v r

 − + =
 =
 ′

   

   





                       (65) 

where according to Equations (4), (6) and (62)  

( ) ( ) 2
0

10 0
2yT T mv= =                               (66) 

( ) ( ) ( )
( )30

d
t

x
x s x s

W t s
r s

α
′

= − ∫

 







                           (67) 

( ) ( ) ( )
( )30

d
t

y
y s y s

W t s
r s

α
′

= − ∫

 







.                           (68) 

We propose the following solution  

( ) ( )
( ) ( )

cos

sin
x x

y

x t A t B

y t A t

ω

ω

 = +


=

 



 



                            (69) 

where xA , xB  are real constants and yA , w can be complex. 
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We have  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2 2

cos 2 cos sin

cos 2 cos .
x x x x y

x y x x y x

r t x t y t A t A B t B A t

A A t A B t A B

ω ω ω

ω ω

= + = + + +

= − + + +

     

  

 

 

Let  

( ) ( )cost tµ ω=                                     (70) 

then we arrive to  

( ) ( ) ( ) ( )2 2 2 2 2 22 .x y x x y xr t A A t A B t A Bµ µ= − + + +  

  

In order to solve the integrals given in Equation (67) and (68), we will ask that this expression is a perfect 
square. It happens if and only if  

2 2 2
x x yB A A= −                                     (71) 

where we assume that x yA A≥ , provided yA  is real. 
In this case we obtain  

( ) ( )( )22 .x xr t B t Aµ= + 

  

We will assume that  

( ) 0x xB t A t Jµ + ≥ ∀ ∈                                (72) 

and hence we finally arrive to  

( ) ( )x xr t B t Aµ= + 

 .                                (73) 

On the other hand, according to Equation (69) we have  

( ) ( )
( ) ( )

sin

cos
x

y

x t A t

y t A t

ω ω

ω ω

′ = −

′ =

 



 



.                               (74) 

Then, by Equation (69) it follows that  

( ) ( ) ( ) ( ) ( )( )2 sin cos sinx x xx t x t A t t A B tω ω ω ω′ = − +    

   

( ) ( ) ( ) ( )2 sin cos .yy t y t A t tω ω ω′ =   

   

We can write these expressions using Equation (70) as follows  

( ) ( ) ( ) ( ) ( )2
x x xx t x t A t t A B tµ µ µ′ ′ ′= +    

                           (75) 

( ) ( ) ( ) ( )2
yy t y t A t tµ µ′ ′= −   

  .                              (76) 

Hence, by Equations (73), (75) and (76), we finally obtain that Equations (67) and (68) becomes  

( ) ( ) ( ) ( )
( )( )

2

30
d

t x x x
x

x x

A s s A B s
W t s

B s A

µ µ µ
α

µ

′ ′+
= −

+
∫




                       (77) 

( ) ( ) ( )
( )( )

2

30
d

t y
y

x x

A s s
W t s

B s A

µ µ
α

µ

′
=

+
∫




 .                           (78) 

Let  
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( )
( ) ( )1 3 22

2d
2

x x

x x x x x

B AK
B A B B A

µµµ µ
µ µ

+
= =

+ +
∫                         (79) 

( )
( ) ( )2 3 2

1 1d
2x x x x x

K
B A B B A

µ µ
µ µ

= =
+ +

∫                         (80) 

where we made the change of variables x xB Aν µ= +  for solving the integrals. 
We can write Equations (77) and (78) as follows  

( ) ( )( ) ( )( ) ( )( ) ( )( )2
1 1 2 21 1x x x xW t A K t K A B K t Kα µ α µ= − + −

                   (81) 

( ) ( ) ( )( )( )2
1 11y yW t A K K tα µ= −

  .                            (82) 

On the other hand, by Equations (5) and (74) we have  

( ) ( )2 2 21 sin
2x xT t mA tω ω=

   

( ) ( )2 2 21 cos .
2y yT t mA tω ω=

   

Using Equation (70) we arrive to  

( ) ( )( )2 2 21 1
2x xT t mA tω µ= −

                               (83) 

( ) ( )2 2 21
2y yT t mA tω µ=

  .                               (84) 

Finally, by Equations (81), (82), (83) and (84) we can turn Equation (65) into an algebraic equation as follows  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2 2 2
1 1 2 2

2 2 2
1 1

1 1

1 0 1 .

x x x y

y x

A K K A B K K A

A K K T A

α µ α µ µ

α µ µ

 − + − 
 = − + − 

 

This equation can be written as  

( ) ( )
( ) ( )( ) ( ) ( )( )

2 2 2 2
2 1

2 2 2 2 2 2
2 11 0 1 0 .

x y x x y

x y x x x y x

A A B K A A K

A A B K A T A A K A T

α µ µ α µ

α µ α

+

= − + +
                (85) 

In order to satisfy this equality for all µ , we will ask  

( ) ( )2 2
20 1x x y xA T A A B Kα= .                             (86) 

Then, Equation (85) becomes  

( ) ( ) ( ) ( )2
2 1 1 21 1 .x x x xB K A K A K B Kµ µ µ+ = +  

This equation depends only on xA  and xB  and using Equations (79) and (80) it is easily proved that it is 
satisfied for all µ . 

In order to satisfy ( ) ( )0 , 0 0r r=  , according to Equation (69) we have to ask  

0x xA B r+ = .                                   (87) 

By Equation (74), the other initial condition ( ) ( )00, / / 0v r′  is satisfied by taking  

0

y

v
wA

λ =                                    (88) 
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where λ  is given in Equation (11). 
Finally, the trajectory equation is satisfied if and only if Equations (71), (86) and (87) hold, provided that xB  

and xA  are real and that condition (72) is satisfied. This is a system of three equations where xA , yA  and xB  
are the unknowns. Using Equations (66) and (80) it is proved that the solution is given by  

2xA
E
α

= −                                       (89) 

2
2

2y
lA
mE

= −                                      (90) 

0 2xB r
E
α

= +                                      (91) 

where l is the angular momentum (which is known that is constant). 
However, this solution holds only if 2 2

x yA A≥ . Using Equations (89) and (90) this condition is equivalent to  
2

2 .
2

mE
l
α

≥ −  

By this condition, we can obtain the minimum value of 0v  and then it is easily proved that the minimum 
value of E is given by  

0
02

E
r
α

= − .                                      (92) 

If 2 2
x yA A<  we can see in Equation (71) that xB  is complex but according to Equation (91) xB  is real 

which is a contradiction. Then the system of equations has not solution in the case 2 2
x yA A<  and hence the 

solution given in Equation (69) does not work. 
Next we will choose ω  in order to satisfy condition (72). Provided that 0E E≥  there are two cases, 0E <  

or 0E >  (we will not consider the case 0E = ). 
In the first case, according to Equations (89) and (90), xA  is positive and yA  is real. In addition, using 

Equation (91) and the fact that 0E E≥  with 0E  given in Equation (92) it is proved that xB  is negative. In 
this case we will choose 0ω ω=  with 0 lRω ∈ . Then, according to Equation (70) we have  

( ) ( ) ( )0cos cos 1.t t tµ ω ω= = ≥ −    

Using this result, and taking into account that xA  is positive and xB  is negative it is proved that condition 
(72) is satisfied. 

In the second case, according to Equations (89), (90) and (91), xA  is negative, yA  is a pure imaginary 
complex number and xB  is positive. In this case we will choose 0iω ω=  with i the imaginary unit and 

0 lRω ∈ . Then, according to Equations (70) and (71) we have  

( ) ( ) ( ) ( )0 0cos cos cosh 1t t i t tµ ω ω ω= = = ≥     

22 2 2 .x x y x y x xB A A A A A A= − = + ≥ = −  

Using these results it is proved that condition (72) is satisfied. 
Finally, using that  

( ) ( )cos coshix x=  

( ) ( )sin sinhi ix x− =  

the solution of the trajectory equation is given by  

( )
( ) ( )( )
( ) ( )( )

0 0 0

0 0

cos , sin if 0

cosh , sinh if 0

x x y

x x y

A t B A t E E
r t

A t B A t E

ω ω

ω ω

 + ≤ <= 
+ >

 




 

                    (93) 
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where xA , yA  and xB  are given in Equations (89), (90) and (91) and 0E  is given in Equation (92). 
It is worthwhile to point out that we choose yA  in the following way  

0if 0

if 0

y
y

y

A E E
A

i A E

 ≤ <= 
>

.                                (94) 

If 0E < , according to Equation (93), r  is the parametrization of an ellipse as was expected. The semi- 
major and semi-minor axis are given by xA  and yA  respectively and the center is given by ( ), 0xB . 
According to Equation (71), the focus of the ellipse is in the origin as Kepler’s first law says. We can obtain the 
semi-axes and the center in the traditional way and check that we arrive to Equations (89), (90) and (91). In 
addition, we can calculate the minimum value of the energy under the hypothesis we have a bound motion and 
check that we obtain Equation (92). 

We can see in Equation (93) that ( ) 0r t′ ≠
  and that  

( ) ( )0 0.i ix t x t′ ′′= ⇒ ≠ 

   

Hence, conditions (8) and (9) are satisfied and then the first step of the algorithm is complete. 
We will just choose ( )t tτ =   to complete the second step. 
In order to find u, on the one hand, according to Equations (63) and (73) we have  

( )( ) ( )
( )
( )

.x x

x x x x

EB t EA
E V r t E

B t A B t A
µ αα

µ µ
+ +

− = + =
+ +







 

 

By Equation (89) this expression turns out to be  

( )( ) ( )
( )

x x

x x

B t A
E V r t E

B t A
µ
µ

−
− =

+








.                             (95) 

On the other hand, according to Equations (83) and (84) we obtain  

( ) ( ) ( ) ( ) ( )2 2 2 2 21 .
2x x x y xT t T t T t m A A A tω µ = + = + − 

  

     

According to Equation (71) we arrive to  

( ) ( )( ) ( )( )21
2 x x x xT t m B t A B t Aω µ µ= − + −

   .                        (96) 

Finally, according to Equations (13), (95) and (96) we have  

( )
( )( )

2
2 2

2 1 .
x x

Eu t
m B t Aω µ

= −
+





 

Using Equations (89) and (91) we can write this expression as follows  

( )
( )( )

23
2

2 2 2
8 x

x x

AEu t
m B t Aα ω µ

= −
+





 .                            (97) 

We will choose ω  in order to satisfy  
3

2 2

8 1.E
mα ω

− =  

Note that 0E <  implies that ω  is real and 0E >  implies that ω  is complex. Then this is consistent 
with the results obtained above. In addition, we will consider 0 0ω >  in both cases. Then we have  

0 0

0

if 0
if 0

E E
i E
ω

ω
ω

≤ <
=  >

                                 (98) 
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where 0ω  is given by  

3

0 2

8 E
m

ω
α

= .                                    (99) 

Finally, Equation (97) turns out to be  

( )
( )( )

2
2

2
x

x x

Au t
B t Aµ

=
+





.                              (100) 

On the other hand, using Equation (88) and the fact that 0v  is positive we arrive to  

( ) ( ) ( )0sgn sgn sgn .yu Aλ ω= =  

In addition, by Equations (94) and (98) it is easily proved that  

( ) ( )0sgn sgnyA Eω = −  

which implies  

( ) ( )sgn sgnu E= − .                                (101) 

Finally, by Equations (100) and (101) and using condition (72) we obtain  

( ) ( )
( )( )

sgn .x

x x

A
u t E

B t Aµ
= −

+




 

However, according to Equation (89)  

( ) ( )sgn sgn xE A= −  

and then we just can write  

( ) ( )( )
.x

x x

A
u t

B t Aµ
=

+




 

Using Equations (70), (89) and (91) this equation can be written as follows  

( ) ( )
1

1 cos
u t

tκ ω
=

−




                               (102) 

where κ  is given by  

0

1x

x

B E
A E

κ = − = −                                 (103) 

and 0E  is given in Equation (92). 
Note that since 0E E≥  and 0 0E <  then κ  is positive. 
Finally we complete the third step. 
In this case we will not find the function y since it is not easy to find a function τ  in order to solve the 

integral of Equation (17). However, in this case we can solve the temporal equation implicitly. According to 
Equations (2) and (102) and taking into account that 0 0 0t t= =  this equation becomes  

( ) ( )
( )

1
1 cos

0 0.

t t
t

t

κ ω
 = −
 =
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It is easily proved that the solution is given by  

( ) ( )( )sin .t t t t tκ ω
ω

= −   

By Equation (98) we can write the solution depending the case as follows  

( ) ( )( )

( ) ( )( )

0
0

0
0

sin if 0

sinh if 0

t t t t E
t

t t t t E

κ ω
ω
κ ω
ω

 − <= 
 − >


 

 

                         (104) 

where 0ω  is given in Equation (99). 
Finally, ( ) ( )( )r t r t t=    is the solution of Kepler’s problem (with the initial conditions given in Equation 

(64)) where r  is given in Equation (93) and ( )t t  is given by Equation (104). 
Finally, we will obtain Kepler’s third law which says that the square of the orbital period is directly 

proportional to the cube of the semi-major axis. 

In Equation (93) we can see that if 0E < , then r  is a periodic function whose period is given by 
0

2π
ω

. 

Then, according to Equation (104), the time it takes to “the planet”to make a full turn is given by  

0
0 0 0 0

2π 2π 2πsin .κτ ω
ω ω ω ω

 
= − = 

 
 

Using Equations (89) and (99) we finally arrive to  

2 2 34π x
m Aτ
α

=  

and then we proved Kepler’s third law. 

5. Conclusion 
We used the arc length function and its inverse in order to introduce a new way to graph functions by curving 
the axes as shown in Figure 10 and Figure 12. Using this, we found a more conveniently method to solve the 
temporal equation and then we changed the fourth step of the algorithm given in the first part in order to graph 
each component of the solution of Equation (1) as given in the mentioned figures. Following this algorithm, we 
solved the harmonic oscillator, the pendulum, the particle under the action of two elastic springs and Kepler’s 
problems. We were able to solve the pendulum and the particle under the action of two elastic springs problems 
without using elliptical integrals and to see the periods of both problems as the length of a curve given in Equa-
tions (43) and (58) respectively. Then, using this fact, we approximate the periods of both problems in Equations 
(46) and (61) with a relative error less than 0.17. Finally, in Kepler’s problem, we solved the trajectory equation 
and we proved that the solution describes an ellipse with focus in the origin (for some values of the energy). We 
could obtain the semi-major and semi-minor axes, the center of the ellipse and the orbital period by using this 
formalism. 
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