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Abstract 
Landslide susceptibility (LS) mapping is a requisite for safety against sediment related disasters, 
and considerable effort has been exerted in this discipline. However, the size heterogeneity and 
distribution of landslides still impose challenges in selecting an appropriate scale for LS studies. 
This requires identification of an optimal scale for landslide causative parameters. In this study, 
we propose a method to identify the optimum scale for each parameter and use multiple optimal 
parameter-scale combinations for LS mapping. A random forest model was used, together with 16 
geomorphological parameters extracted from 10, 30, 60, 90, 120, 150, and 300 m digital elevation 
models (DEMs) and an inventory of historical landslides. Experiments in two equal-sized (625 km2) 
areas in Niigata and Ehime, Japan, with different geological and environmental settings and 
landslide density, demonstrated the efficiency of the proposed method. It outperformed all other 
single scale LS analysis with a prediction accuracy of 79.7% for Niigata and 78.62% for Ehime. 
Values of areas under receiver operating characteristics (ROC) curves (AUC) of 0.877 and 0.870 
validate the application of the multi-scale model. 
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1. Introduction 
Landslides are naturally occurring complex geological phenomena that cause significant damage in mountainous 
regions. Landslide mitigation and risk reduction require mapping of susceptible areas and estimating the like-
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lihood of landslide occurrences [1]. Landslide susceptibility (LS) deals with the likelihood of landslide occur-
rence in an area on the basis of local terrain conditions [2]. Most LS studies follow a simple principle: the past 
and the present are the keys to the future. The conditions leading to the past and present failures will help in es-
timating the style, frequency, extent, and consequences of failures in the future [3]. Over the years, the number 
of studies concerning methods and the progress in landslide susceptibility have grown rapidly. They involve ei-
ther qualitative or quantitative modeling [4]. Many pioneer works in this field concern qualitative studies where 
the judgment established by experts, based on the data investigated, was used to produce susceptibility maps [5]. 
The subjectivity of these methods was addressed by the adoption of quantitative assessment methods such as 
bivariate or multivariate statistical analysis, logistic regression, likelihood ratio, and weight-of-evidence [6]-[9]. 

Recently, various machine-learning (ML) techniques have been used in landslide research, more often be-
cause of their robustness in handling large complex data. These approaches include Artificial Neutral Networks 
(ANN), Support Vector Machine (SVM), and Decision Trees [10]-[12]. Random Forests (RF) is a relatively new 
ML technique in the field of landslide research, and is utilized in this study. RF, a bagged trees ensemble, is 
considered as a superior classification algorithm and is widely used in various fields of data mining such as gene 
classification [13]-[15]. However, the use of RF in landslide research is still limited to a few examples [16]-[18]. 

Different intrinsic and extrinsic parameters are used to analyze LS, and many of them such as geology, soil 
depth, soil type, and land use usually have limitations of availability and scale [19]. Therefore, LS evaluation 
solely based on a digital elevation model (DEM) has been conducted assuming that topography reflects other 
factors such as geology and land use [20]-[22]. Increased availability of high-resolution global DEMs (e.g., 
SRTM 1 Arc-Second Global and ASTER GDEM) and recent advances in DEM acquisition techniques encour-
age this approach. 

However, the selection of an appropriate DEM scale is necessary to achieve high precision in LS research 
[23]. At coarser scales, terrain presentation may be too smoothed. Therefore, Keijsers et al. [24] suggest that 
slope morphology and hydrological patterns are better represented with fine resolution DEMs. However, Tarolli 
and Tarboton [25] found that LS prediction performance decreases at finer resolutions because too localized to-
pography does not represent the processes governing landslide initiation. Catani et al. [26] found that the impor-
tance of landside predicting parameters changed with spatial scale, and concluded that for some parameters, 
scale representing not local values but their trends should be evaluated. However, they did not conduct a con-
crete study to incorporate the variability of parameter importance at different scales for LS mapping (LSM). 

This DEM-based study proposes a novel approach to identify the optimal resolution of each topographic pa-
rameter and use those parameters at multiple-optima for an LS study using an RF model. The method was ap-
plied to two areas with different geo-environmental settings and landslide density to examine how regional dif-
ferences affect the scale of each parameter. 

2. Study Area 
The analysis was carried out at two equal-sized areas in Japan that differ in geological and environmental set-
tings and landslide density (Figure 1). The study area in Niigata Prefecture, Honshu, was selected as a repre-
sentative of an area with frequent landslides. It has an area of 625 km2 (25 × 25 km), and the location has the 
highest landslide density in the region. An equal sized area in Ehime Prefecture, Shikoku, was selected as a rep-
resentative of an area with fewer landslides. 

The landslides in Niigata reflect specific geotectonic and climatic settings [27] [28]. The area lies in a large 
graben called North Fossa Magna [29] with active neotectonics [30]-[32]. According to a 10 m DEM (see Sec-
tion 3 for details), elevations in the area range from 5 to 1284 m, with a mean of 369 m. The mean slope is 17.4˚. 
The mountains in the area mainly consist of Tertiary to Quaternary sedimentary rocks, including so-called 
“Green Tuff”, and Quaternary volcanic rocks and their deeply weathered materials (Figure 2) [33]-[35]. The 
study area and its surroundings are characterized by heavy snowfall, whose meltwater contributes to rich 
groundwater and frequent landslides [36]. The closest meteorological station (Tsunan, Japan Meteorological 
Agency) receives an average annual precipitation of about 1900 mm (1981-2010) with an average annual snow-
fall of about 1.35 m (1989-2010). The study area in Ehime is located in central Shikoku. Its elevation ranges 
from 4 to 1895 m with a mean of 825 m. Mean slope is 31.7˚, much larger than in Niigata. Most of the area is 
underlain by crystalline schist of the Jurassic complex from the Sanbagawa belt. Low-grade metamorphic 
greenstones from the Chichibu belt, a Jurassic accretionary complex zone, also dominate the southern section of  
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Figure 1. Map showing density of landslides in (a) Japan, (b) Niigata, and (c) Ehime, prepared using the land- 
slide data from the NIED (National Research Institute for Earth Science and Disaster Prevention, Japan).                                                                               

 

 
Figure 2. Geological map of the study areas in (a) Niigata and (b) Ehime.                                     

 
the study area (Figure 2) [37] [38]. A meteorological station in the southern part of the study area (Hongawa, 
Japan Meteorological Agency) and one in the northern part (Niihama, Japan Meteorological Agency) receive 
average annual precipitation of 3077 and 1305 mm (1981-2010), respectively. The study area is steep and af-
fected by major tectonic lines [39], favoring landslides, but their density is lower than that in Niigata. 

3. Data 
A 10-m DEM obtained from the GSI (Geospatial Information Authority of Japan) was used for topographic 
analysis. The minimum elevation for both study areas is about 5 m, whereas the mean and maximum elevations 
are, respectively, 369 and 1284 m for Niigata and 825 and 1895 m for Ehime. The landslide inventory used was 
provided by the NIED (National Research Institute for Earth Science and Disaster Prevention, Japan; available 
online at http://lsweb1.ess.bosai.go.jp/gis-data/index.html). The inventory covers the whole of Japan and was 

http://lsweb1.ess.bosai.go.jp/gis-data/index.html
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prepared by interpreting 1:40,000 aerial photographs. While the inventory includes many historical landslides 
identified from topographical discontinuities, small slope disturbances were not included. The use of historical 
(geomorphological) landslide inventories, which summarize past multiple landslide events [40], may enable a 
robust LSM because it reflects various environmental conditions, and the number of available data tends to be 
large. However, because of the uncertainties associated with the identification of large failures as unique (single) 
events [41], and lack of differentiation among landslide types (possible inclusion of slow moving earth flows), 
exceptionally large landslides greater than the 95th percentile of the land-slide area (Figure 3) were not used in 
this study. Table 1 shows the properties of the investigated landslides. 

4. Methodology 
Topographic parameters were derived from the 10 m DEM. Random Forest was used to construct LS models 
using the topographic parameters and the landslide inventory. It was implemented in JMP Pro 11.2 (SAS Insti-
tute Inc., Cary, NC), and GIS based calculations were performed using ArcGIS 10.3 (ESRI, Redlands, CA) and 
Python 2.7. 

4.1. Topographic Parameters 
This study employs 16 DEM-derived topographic parameters (Figure 4, Table 2) previously used in landslide 
research [1] [42]-[44]. Elevation (El) is a measure of the height of a surface above mean sea level. Slope (Sl) in-
dicates the degree of inclination of the surface and shows the rate of elevation change. Slope aspect (Asp) 
represents the direction of the maximum slope. Drop (Dr), equivalent to the hydrologic slope [45] [46], shows 
the ratio of the maximum change in elevation along the direction of flow between cell-centers. It provides an 
exact measure of surface inclination in relation to flow. Profile curvature (Pfc) is surface curvature in the direc-
tion of slope and affects the acceleration and deceleration of surface flow. Plan curvature (Plc) is surface curva-
ture perpendicular to slope direction and affects the convergence and divergence of surface flow. Total curvature 
(Cr) reflects both the plan and profile curvatures and represents the overall surface curvature. 

Ridges and channels are fundamental features of terrain morphology, and therefore are used in various terrain 
analyses [47]. In this study, drainage density (Dd), the total length per unit area, was computed using a circular 
 

 
Figure 3. Percentile distribution of landslide area.                               

 
Table 1. Statistical properties of the studied landslides in Niigata and Ehime.                                                                  

Properties 
Niigata Ehime 

Area (m2) Area (m2) 

Min 212.0 1630.5 

Max 47,916.0 129,713.9 

Mean 9023.6 24,196.3 

Standard deviation 8328.5 23,824.4 

Number 10,662 2543 
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Figure 4. Interrelationship of the topographic parameters.                                                     

 
moving window of radius equaling the length of 10 cells. This unit area changing with DEM resolution allowed 
the mapping of drainage texture ranging from purely local to the regional average drainage density [48]. The 
shortest distance to a drainage line (Dtd) and shortest distance to a ridge (Dtr) were also computed. In areas of 
high seismicity, Dtr is a significant LS parameter reflecting the amplified motion observed at mountain tops [49]. 
Cells with flow accumulation higher than a threshold value were identified as drainage networks, while ridges 
were defined as lines of cells with zero flow accumulation. 

Relative relief or internal relief (Ir) is the maximum elevation difference in a unit area [42]. The elevation-  
relief ratio (Er) describes the area distribution at different elevations and is defined as: 

( ) ( )mean elevation min elevation max elevation min elevationEr = − −                (1) 

This parameter is a substitute for the hypsometric integral designed to abstract the salient geometric characte-
ristics of the topography at any scale [50] [51]. It reflects the stage of geomorphic development and lithological 
differences [52] [53]. Er and Ir values were calculated locally for every cell using a moving window of 10 × 10 
cells such that the unit of measurement represents the features relative to the scale of analysis (e.g., fine-scale  
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Table 2. Topographic parameters used for susceptibility modeling.                                                      

S.N. Parameters Abbreviation Significance 

1 Slope aspect Asp Solar insolation, evapotranspiration, species distribution and abundance 

2 Total curvature Cr Total surface curvature 

3 Distance to drainage Dtd Influence of fluvial processes 

4 Distance to ridge Dtr Tectonic geomorphology, amplification of seismic shaking, accumulation of flow 

5 Drainage density Dd Intensity of fluvial processes, stages of channelization 

6 Drop Dr Hydrological slope, geomorphological 

7 Elevation El Climate, vegetation, potential energy 

8 Elevation-relief ratio Er Stages of landscape development; characterization of topography 

9 Internal relief Ir Characteristic of terrain roughness 

10 Profile curvature Pfc Flow acceleration, erosion, deposition rate, geomorphology 

11 Plan curvature Plc Converging/diverging flow, soil water content, soil characteristics 

12 Slope Sl Velocity of surface and subsurface flow, geomorphology, soil water content 

13 Stream power index SPI Measures erosive power of flowing water 

14 Sediment transport 
capacity index STCI Net erosion and deposition rates; provides an estimate of transportation capacity and  

erosion 

15 Terrain characterization 
index TCI Descriptor of terrain shapes and spatial variability of soil depths 

16 Topographic wetness 
index TWI Soil moisture conditions and variability of soil types 

 
features with the 10 m DEM and coarser-scale form of hillslope with the coarser DEMs) [54]. 

The sediment transport capacity index (STCI) is equivalent to the length-slope factor of the Revised Universal 
Soil Loss Equation [43]. Therefore, it accounts for the effects of topography on both sediment transport and ero-
sion [55]. STCI is calculated as: 

( )( ) ( )1 22.13 sin 0.0896m nSTCI m A β= +                               (2) 

where A is the upslope contributing area (m2), β is the local slope gradient (in degrees), and m and n are con-
stants. Because the sensitivity of erosion predictions is not strongly affected by the values of the constants [56], 
the values m = 0.4 and n = 1.3 suggested by Chen and Yu [43] for Taiwan, an area of landslide activity compa-
rable to our study areas, were used in this study. 

The stream power index (SPI) also describes the potential of channel erosion and sediment transport processes 
[55]. It is defined as: 

( )ln tanSPI As β= ×                                     (3) 

where As is the specific catchment area (upslope contributing area per unit contour length). 
TCI is related to the spatial variability of soil depth and sediment transportation capacity [26] [57] and is de-

fined as: 
lnTCI Cr As= ×                                        (4) 

TWI has been used to describe soil moisture distribution and has been found useful for landslide susceptibility 
studies; higher TWI values are often found in landslide bodies [21] [43]. It is defined as: 

( )ln tanTWI As β=                                     (5) 

In addition to the 16 topographic parameters, random integers rand was also used to assess the performance 
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of other parameters according to the parameter ranking provided by the RF model [17]. 
Although the DEM-derived parameters represent distinct terrain properties and processes, their interrelation-

ship may lead to multicollinearity. However, for LSM, Harrell [58] suggests that multicollinearity does not in-
fluence the predictions from training and testing datasets if both have the same type of collinearities. This ap-
plies to our study because all parameters used with the training and testing datasets are mathematical derivatives 
of the same 10 m DEM. 

4.2. Random Forest 
RF is an ensemble learning method of classification using regression trees which combines the idea of bagging 
with random feature selection [59]-[62]. RF utilizes bootstrap and random techniques to select the subsample of 
data and predictor parameters while growing an ensemble of trees (hence called “forest”). In addition to con-
structing each tree using a different bootstrap sample of the data, RF changes how the classification or regres-
sion trees are constructed. In classical decision trees, each node is split using the best split among all parameters. 
In RF, by contrast, each node is split using the best among a subset of predictors randomly chosen at that node. 
This strategy leads to higher performance than many other classifiers such as discriminant analysis, SVM, and 
ANN; it also makes RF robust against overfitting [59] [63]. RF has several other advantages: 1) it does not re-
quire assumptions on the distribution of explanatory parameters; 2) it allows for the mixed use of categorical and 
numerical parameters without using dummy parameters; 3) it can account for interactions and nonlinearities 
between parameters [17]. 

RF produces multiple outputs to aid the interpretation of results, including out-of-bag (OOB) accuracy esti-
mates and parameter importance measures [64]. OOB errors from RF classifications provide an alternative to 
cross-validation. For each tree in the forest, a random third of all observations are held out from the training set, 
and are referred to as OOB. The OOB error is, thus, the proportion of misclassified observations. The other cru-
cial output is the measure of parameter importance, i.e., the statistical weight of each predictor variable. This 
study employs this measure to analyze the influence of scale on landslide causative parameters. OOB accuracy 
estimates provide the predictive efficacy of RF models. The change in generalized R-square (R2), a measure of 
variance in the dependent variable explained by the independent variables, was analyzed to identify the required 
number of trees. 

Classification data used in an RF model for LSM should contain information about both landslides and no- 
landslide areas. A single-pixel sampling strategy using the centroid of a landslide polygon was employed. No- 
landslide points, whose number is equal to the number of landslides, were randomly created in no-landslide 
areas. Values of parameters for the landslide and no-landslide points were extracted. The data (50% landslide 
and 50% no-landslide) for Niigata and Ehime consist of 21,324 and 5086 entries, respectively. The data were 
randomly divided into training (50%) and testing (50%) datasets. 

4.3. Multi-Resolution LSM 
The seven DEM-scales (10 to 300 m) were applied to construct RF models classifying landslide presence and 
absence to identify the optimal resolution for each parameter. Figure 5(a) outlines the process. First, the values 
of the 16 parameters are computed for all the scales, and the values are used in an RF model to classify the 
landslide data. The scale of each parameter with the highest importance in the classification, determined as an 
average of 10 iterations, is considered optimal. This process is repeated for all the parameters, and finally, a 
combination of all parameters at their optimal scales is used to create a multi-resolution LS model and an LS 
map. The finest grid size among the parameters at their optimal scales is selected as the mapping unit. Figure 
5(b) outlines the determination of parameter importance in a multi-resolution LS model. In the hypothetical 
example shown in Figure 5, Sl at 30 m contributes most to the classification, and therefore is the most important 
parameter for the LS study. 

5. Results 
To identify the minimum number of trees required for a stable RF, the number of trees was gradually increased 
to 5000. Figure 6 shows that the RF model stabilizes with fewer than 100 trees. This study uses 500 trees to ac-
commodate unseen inconsistencies, following the strategy of Díaz-Uriarte and Alvarez de Andrés [13]. 
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Figure 5. Outline of multi-resolution technique for: (a) selection of optimal parameter scale and (b) 
determination of parameter importance.                                                         

 

 
Figure 6. Generalized R-squared and number of in an RF model.                  

 
Table 3 and Table 4 show the contribution of each parameter in the RF model at each scale for Niigata and 

Ehime, respectively. The results show that the optimal scale with the highest contribution differs among para-
meters. 

For Niigata, the finest resolution (10 m) is optimal for parameters Dtd, Er, Ir, and Sl, while most of the other 
parameters exhibit optima at higher resolutions, preferably at 30, 60, and 300 m. Two parameters, Asp and Dd,  
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Table 3. Contribution of each parameter and each scale to modeling landslide distribution in Niigata. The highest contributor 
is selected as optimal (averaged over 10 iterations, RF T# 500).                                                          

Parameters  Scales 

Optimal 10 30 60 90 120 150 300 

Asp 300 0.113 0.108 0.112 0.131 0.152 0.146 0.238 

Cr 60 0.085 0.171 0.280 0.192 0.121 0.099 0.052 

Dtd 10 0.347 0.226 0.126 0.093 0.075 0.072 0.061 

Dtr 60 0.151 0.256 0.265 0.139 0.074 0.048 0.067 

Dd 300 0.168 0.166 0.128 0.113 0.125 0.115 0.185 

Dr 60 0.153 0.178 0.217 0.164 0.123 0.102 0.061 

El 30 0.176 0.189 0.152 0.124 0.111 0.107 0.141 

Er 10 0.198 0.170 0.116 0.144 0.114 0.117 0.140 

Ir 10 0.356 0.211 0.112 0.071 0.057 0.080 0.112 

Pfc 60 0.084 0.152 0.286 0.206 0.126 0.094 0.053 

Plc 60 0.129 0.198 0.237 0.156 0.117 0.090 0.074 

Sl 10 0.232 0.214 0.210 0.123 0.087 0.062 0.072 

SPI 60 0.101 0.214 0.259 0.153 0.104 0.081 0.088 

STCI 60 0.089 0.232 0.258 0.158 0.113 0.077 0.073 

TCI 60 0.045 0.139 0.282 0.187 0.137 0.108 0.102 

TWI 30 0.120 0.224 0.221 0.155 0.105 0.079 0.095 

 
Table 4. Contribution of each parameter and each scale to modeling landslide distribution in Ehime. The highest contributor 
is selected as optimal (averaged over 10 iterations, RF T# 500).                                                       

Parameters  Scales 

Optimal 10 30 60 90 120 150 300 

Asp 10 0.192 0.172 0.153 0.128 0.124 0.110 0.121 

Cr 90 0.141 0.153 0.162 0.169 0.132 0.141 0.103 

Dtd 10 0.338 0.209 0.125 0.116 0.080 0.079 0.052 

Dtr 10 0.205 0.191 0.157 0.122 0.088 0.147 0.089 

Dd 300 0.140 0.141 0.136 0.150 0.128 0.151 0.154 

Dr 150 0.127 0.139 0.157 0.164 0.138 0.180 0.095 

El 10 0.156 0.155 0.138 0.125 0.138 0.134 0.155 

Er 10 0.161 0.147 0.134 0.139 0.129 0.138 0.152 

Ir 10 0.264 0.165 0.119 0.112 0.107 0.106 0.127 

Pfc 90 0.128 0.129 0.150 0.176 0.138 0.159 0.120 

Plc 30 0.168 0.176 0.165 0.163 0.114 0.113 0.101 

Sl 10 0.210 0.175 0.162 0.137 0.116 0.105 0.094 

SPI 60 0.142 0.141 0.181 0.140 0.113 0.161 0.122 

STCI 60 0.110 0.131 0.194 0.158 0.124 0.164 0.119 

TCI 60 0.122 0.153 0.198 0.155 0.117 0.143 0.111 

TWI 30 0.160 0.169 0.169 0.144 0.113 0.141 0.105 
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contribute the most at 300 m, the coarsest resolution. The results from Ehime are similar. For Ehime, parameters 
Asp, Dtd, Dtr, El, Er, Ir, and Sl are optimal at the finest scale, whereas the other parameters exhibit optima at 
coarser scales. Similar to Niigata, Dd in Ehime was found to be optimum at the coarsest scale. Figure 7(a) 
compares the optimal parameter scale between the two study areas. The optimal scales for most parameters 
show similarity in both areas except Asp, for which the coarsest resolution in Niigata and the finest resolution in 
Ehime are optimal. 

The relative importance of each optimal parameter is shown in Figure 7(b). Parameters Dr, Sl, El, Ir, STCI, 
and TWI for Niigata and Dr, TCI, Plc, Cr, Sl, and TWI for Ehime constitute the top six parameters explaining the 
distribution of landslides in each area. Parameters with higher relative importance (≥8; Figure 7(b)) in both 
areas are Cr, Dtd, Dr, Ir, Sl, TCI, and TWI. Some parameters were found to be of greater importance in one area 
but not in the other. The parameters with large differences in relative importance between the two areas (≥5; 
Figure 7(b)) are Asp, El, Ir Plc, SPI, STCI, and TCI; Parameters El, Ir, SPI, and STCI have higher importance in 
Niigata while Asp, Plc, and TCI have higher importance in Ehime. The random variable “rand” was correctly 
identified as the least important parameter in the analysis. 

Figure 8 presents the testing and training accuracies of the RF models (averaged over 10 iterations) con-
structed with parameters at various scales. In both areas, the training accuracies (85.08% for Niigata and 95.44% 
for Ehime) and testing accuracies (79.70% and 78.62%) were found to be highest for the models with parame-
ters at the optimal scales. Among the model iterations, the models closest to the mean testing accuracy were 
used to produce LS maps. Figure 9 shows 25 km2 parts of the LS maps for the combined optimal scale and the 
10, 30, 90, and 150 m scales. 

The effectiveness of the model with parameters at the optimal scales was evaluated using receiver operating 
characteristics (ROC). The area under the ROC curve (AUC) characterizes the quality of a prediction model [65]. 
AUC values range from 0 to 1, and values closer to 1 represent a better classification model. Figure 10 illu-
strates AUC values on test data for RF models at different scales. The model with the parameters at optimal 

 

 
Figure 7. The optimal scales (upper) and relative importance (lower) of parameters for Niigata and Ehime.        
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Figure 8. Training and testing accuracies of LS models for different parameter scales for Niigata and 
Ehime (averaged over 10 iterations, RF T# 500) (Nii-train = training samples at Niigata; Nii-test = testing 
samples at Niigata; Ehi-train = training samples at Ehime; and Ehi-test = training samples at Ehime).         

 
scales shows an AUC value of 0.877 for Niigata and 0.870 for Ehime. The highest AUC values show that mul-
ti-resolution LS modeling outperforms the conventional single scale modeling. 

6. Discussion 
6.1. Parameter Scale 
Different terrain parameters vary in different ways when the DEM resolution changes [66]. This study has 
shown that the optimum scales for LS modeling also differ according to parameter (Table 3 and Table 4), and 
they tend to be common for the two study areas (Figure 7(a)). Although it is expected that the finest DEM can 
describe detailed topography and is hence suitable for LSM, several parameters are more significant at relatively 
coarse scales (≥30 m). This suggests that the smallest-scale variabilities of these parameters do not well re- 
present the physical processes of landslide triggering, as suggested by some previous studies [25] [67]. For ex-
ample, all curvature-related variables (Cr, Pfc, and Plc) and the composite topographic indices (SPI, STCI, TCI, 
and TWI) show meaningful influences on landslide susceptibility at scales equal to or larger than 30 m (Figure 
7(a)). This suggests that a 3 × 3 moving window for parameter computation properly encompasses a meaningful 
topographic unit, including both the detachment and deposition areas of a landslide, only at relatively coarse 
resolutions [17]. The landslide size distribution of the two study areas (Figure 3, Table 1) also suggests that 
most landslides are larger than the terrain represented at 10 m resolution. Scaling of Dr with the optimal 60 or 
150 m resolution also seems to correspond to the landslide size distribution. In contrast, for Ir and Er, the finest 
resolution (10 m) is the optimal scale for both areas, and it is ascribable to a larger 10 × 10 moving window used 
for their computation, which can represent a relatively large area even at the finest resolution. However, al-
though computed using a 3 × 3 moving window, Sl is optimal at the finest scale. This seems to reflect the high 
sensitivity of slope calculation to DEM resolution. It is widely known that lower resolution DEMs result in low-
er Sl values for the same terrain [68]. Because Sl is directly related to gravitational force triggering landslides, its 
accurate computation using fine DEMs is important. A similar explanation can be given for Dtd, which is also 
optimal at the finest 10 m scale. Fluvial activity such as channel erosion tends to induce landslides along the 
river course. The accurate location of rivers is better represented if the finest DEM is used [69]. 

For parameter Dtr, a coarser scale (60 m) for Niigata and the finest scale (10 m) for Ehime were found to be 
optimal. Ridges extracted at coarser scales usually correspond to major ridge lines, while at finer scales they in-
clude local topographic highs [70]. Dtr for Niigata at a coarser scale could therefore include the amplified mo-
tion observed along the major outstanding ridges during seismic events [49]. Indeed, some landslides in Niigata  
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Figure 9. Landslide distribution map (grey) and part of LS maps (25 km2 and probability ≥ 0.5) 
from RF models with different parameter scales for Niigata (upper) and Ehime (lower).                  

 

 
Figure 10. AUC values of ROC curves for test data for the models at various scales (left). ROC 
curves for the LS model with the parameters at the optimal scales (right).                             
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were due to high seismicity, as was the case of the 2004 Chuestu earthquake [71]. 
The optimal scales of Dd and Asp differ significantly from those of the other parameters; the coarsest scale 

(300 m) is optimum for Dd, while Asp shows the largest deviation between the two areas, 10 and 300 m. Dd in 
this study is estimated over a unit area dependent on the scale of analysis, thus at finer scales itmight be related 
only to the local presence/absence of drainage lines. However, at coarser scales, it can reflect the known rela-
tionship between general relief characteristics and landslide occurrences [51] [72] [73]. For Asp, the finest reso-
lution (10 m) is optimal for Ehime, while the coarsest resolution (300 m) is optimal for Niigata. Local meteoro-
logical conditions and their relationship with LS may explain this variation. Both the study areas receive large 
amounts of precipitation; however, Niigata receives a significant portion of its precipitation as snowfall (1.35 m 
per year). The increased overburden due to accumulated snow and the increased soil moisture from snowmelt 
are responsible for landslides there [74]. Asp at a coarser scale indicates the overall direction of a hillslope and 
suggests that the difference in the deposition thickness of snow on the windward and leeward sides is crucial for 
LS in Niigata. In contrast, Asp at a finer scale could depict local variations in micro-climate, such as insolation 
and related groundwater conditions, which is related to rock weathering [75]. The close relationship between 
weathering and distribution of landslides has been reported in Shikoku Island including Ehime [76], indicating 
the effect of finer scale Asp on local climate, weathering, and landslides. 

6.2. Parameter Importance 
Among the values of relative parameter importance (Figure 7(b)), higher values for Cr, Dtd, Dr, Ir, Sl, TCI, and 
TWI in both study areas suggest that these parameters are instrumental in landslide occurrences. Landslide 
probability generally increases with terrain slope because of increased shear stress, and slope is considered very 
important in LS studies [77] [78]. Therefore, the higher importance of Dr and Sl is reasonable. The higher im-
portance of Dr compared to Sl confirms that Dr is a more direct representation of local maximum slope. 
Claessens et al. [45] provided a similar observation on the different effects of these slope parameters. The higher 
importance of Ir in both study areas also suggests the importance of topographic steepness. 

The importance of Dtd is explained by the bidirectional relationship between fluvial processes and slope fail-
ures. While landslides contribute to channel initiation, stream incision also contributes to landslides [73] 
[79]-[81]. The higher relative importance of TCI and TWI may reflect the significance of hydrological variations 
related to rock weathering and soil properties [21] [82] [83]. There is a general consensus regarding Cr that 
landslides are more likely to occur on concave slopes because of groundwater concentration [84]. In contrast, 
earthquake-induced landslides may be more likely on convex slopes with higher ground acceleration. The im-
portance of Cr in both study areas therefore hints to such mechanisms controlling LS. 

Parameters Asp, Plc, and TCI have markedly higher importance in Ehime than in Niigata. A combination of 
geological and environmental variables may explain this observation. As noted, the importance of Asp in Ehime 
may be due to local micro-climatic differences that lead to differential weathering. By contrast, the higher im-
portance of Plc in Ehime indicates the positive influence of horizontal flow movement in LS, as suggested by 
Nefeslioglu et al. [77] (Table 2). The area in Ehime receives a larger amount of rainfall than in Niigata, hence 
increased water concentration may contribute more to landslides. The higher importance of TCI in Ehime can be 
explained similarly because it is a parameter strongly related to terrain curvature. 

For Niigata, the relative importance of El, Ir, SPI, and STCI are evidently higher than in Ehime. The effects of 
El and Ir may be related to the effects of earthquakes because higher or high-relief areas tend to undergo accele-
rated seismic movement. SPI and STCI provide measures of erosion by water flowing from the entire upstream 
area (Table 2). They are hydrological parameters but are different from curvatures that reflect much more loca-
lized water concentration and divergence. The importance of curvature in Ehime and that of SPI and STCI in 
Niigata suggest that hilly and gentler terrain in Niigata requires not local but wider-scale water concentration for 
active landslides. 

6.3. Assessment of LS Models 
The performance of LS models analyzed at eight different scales were compared based on their accuracy esti-
mates (Figure 8) and AUC values (Figure 10). The scale dependency of input parameters was also observed in 
the accuracy estimates of the models (Figure 8). Except for the training accuracies of LS models for Ehime and 
an LS model for Niigata at 300 m resolution, the accuracy estimates decreases with an increasing analytical 
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scale beyond 30 m. The slight increase in the model accuracy for Niigata at 300 m is the effect of the two para-
meters that are optimal at that scale (Figure 7(a)). The discrepancy observed with the training accuracies for 
Ehime might be due to the smaller number of training samples. Higher testing accuracies were obtained for 
models at coarser scales (≥30 m) than at the finest scale (10 m). The proposed multi-resolution LS technique re-
sulted in a boost of testing accuracies according to the obtained AUC values (Figure 10). 

Figure 9 shows examples of local LS maps at different scales. The figure indicates that the usability of an LS 
map depends on the mapping scale as well as the model used. Selection of mapping scale of each parameter for 
the proposed multi-resolution approach enables us to achieve higher accuracy LSM. 

7. Conclusions 
LSM provides the relative likelihood of future landslides, conditional on local geomorphic and topographic cha-
racteristics [85]. Results of our LS study suggest that a single parameter-scale analysis falls short in accommo-
dating the heterogeneity of geomorphological characteristics of the landslides and their surrounding area. This 
study proposes a multi-resolution LSM technique to incorporate such variabilities. The method requires an iden-
tification of optimum scales for all parameters to best represent the conditions of slope failure. The parameters at 
different optimum scales are then brought together for the final LSM. 

The study has also demonstrated the usefulness of a DEM-based LS analysis in areas without other sets of 
high-quality thematic data. The analysis of scale and importance of the DEM-derived parameters reveal that 
while some parameters show similar importance and scale dependency for different regions, environmental dif-
ferences result in variability between regions. The performance of LS models also suggests that the finest scale 
of analysis is not always the best. The proposed multi-resolution LS analysis permits higher accuracy LSM than 
any single-scale analysis. Further study of different areas is necessary to confirm the usefulness of the multi- 
resolution approach. 
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