
Journal of Modern Physics, 2016, 7, 911-919 
Published Online May 2016 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2016.79083  

How to cite this paper: Bagayoko, D. (2016) Understanding the Relativistic Generalization of Density Functional Theory 
(DFT) and Completing It in Practice. Journal of Modern Physics, 7, 911-919. http://dx.doi.org/10.4236/jmp.2016.79083 

 
 

Understanding the Relativistic 
Generalization of Density Functional  
Theory (DFT) and Completing It  
in Practice 
Diola Bagayoko 
Department of Mathematics, Physics, and Science and Mathematics Education (MP-SMED), Southern  
University and A&M College, Baton Rouge, USA 

 
 
Received 21 January 2016; accepted 23 May 2016; published 26 May 2016 

 
Copyright © 2016 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous un-
derstanding of it was published [AIP Advances, 4, 127,104 (2014)]. This understanding includes 
two features that complete the theory in practice, inasmuch as they are necessary for its correct 
application in electronic structure calculations; this understanding elucidates what appears to 
have been the crucial misunderstanding for 50 years, namely, the confusion between a statio-
nary solution, attainable with most basis sets, following self-consistent iterations, with the 
ground state solution. The latter is obtained by a calculation that employs the well-defined op-
timal basis set for the system. The aim of this work is to review the above understanding and to 
extend it to the relativistic generalization of density functional theory by Rajagopal and Calla-
way [Phys. Rev. B7, 1912 (1973)]. This extension straightforwardly follows similar steps taken 
in the non-relativistic case, with the four-component current density, in the former, replacing 
the electronic charge density, in the latter. This new understanding, which completes relativistic 
DFT in practice, is expected to be needed for the study of heavy atoms and of materials (from 
molecules to solids) containing them—as is the case for some high temperature superconduc-
tors.  
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1. Introduction 
From its introduction by Hohenberg and Kohn [1], fifty one years ago, to 2014, density functional theory (DFT) 
and its local density approximation (LDA) [2] seemed to have serious limitations for an accurate description or 
the prediction of electronic and related properties of atoms, molecules, semiconductors, and insulators. Specifi-
cally, calculated energy gaps (for finite systems) and band gaps (for crystalline semiconductors and insulators) 
were mostly found to be unsatisfactory underestimates of the corresponding, measured values. Faced with this 
recalcitrant “band gap problem,” the condensed matter theory community searched for explanations of the un-
derestimation and for remedies to it.  

Self-interaction [3] and the derivative discontinuity of the exchange correlation energy [4]-[6] were respec-
tively introduced in 1981 and 1983 to explain the perceived limitations of DFT and of its local density approxi-
mation (LDA) version. Other elements of the explanations included the fact that the exact form of the exchange 
correlation energy is not known; consequently, some limitations of DFT calculations could stem from ap-
proximations inherent to it and to its functional derivative, the exchange-correlation potential. In the case of 
LDA calculations, non-local effects are possible contributors to the disagreement between theory and experi-
ment.  

Steps taken to remedy the referenced limitations ascribed to DFT have partly consisted of the introduction of 
non-local versions of the exchange correlation potential, mostly in the form of generalized gradient approxima-
tions (GGA) [7]-[10], and the construction of new potentials that have often entailed the use of fitting parame-
ters or some other forms of adjustments or corrections. In particular, augmenting some LDA and GGA poten-
tials with Hubbard U or other quantities is believed to improve significantly the description of strongly corre-
lated materials [11] [12]. Hybrid versions [13] [14] of the exchange correlation potential have been particularly 
popular in chemistry. We should note that there appears to be a proliferation of ad hoc potentials that have the 
limitation of being devoid of predictive capabilities, given the fitting or adjustments that often vary from one 
material to another. The plethora of such potentials and the related efforts and related publications certainly take 
away from the search for fundamental, predictive solutions, if any. This situation is tantamount to a “band gap 
catastrophe”, inasmuch as accurate descriptions and predictions of properties of materials are concerned. The 
former and the latter are quintessentially needed for theory to inform and to guide the design and fabrications of 
devices and the related search for novel materials.  

In 1998, our group presented exceptionally accurate, electronic and related properties of barium titanate (Ba-
TiO3) [15]; they were obtained with self-consistent calculations using a local density approximation (LDA) po-
tential [16] [17]. Specifically, the calculated band gap, optical transition energies, and dielectric functions agreed 
very well with corresponding, experimental values for BaTiO3. Our calculated electronic and related properties 
for wurtzite GaN, C, and Si were also in general agreement with experiment [18]. The computational method we 
introduced in 1998 led to the identification of a basis set and variational effect as the source of several of the 
perceived limitations of DFT and LDA. The original form of this method is known as the Bagayoko, Zhao, and 
Williams (BZW) method [15]. After 2010, the work of Ekuma [19] and Franklin [20] resulted in an enhanced 
version of the method (BZW-EF). Both forms of the method are described further in Section 2. Our basis set and 
variational effect explanation of the underestimation of energy and band gaps by DFT calculations does not as-
cribe the problem to DFT, rather, it shows that calculations using a single basis set cannot search for and verifi-
ably attain the absolute minima of the occupied energies (i.e., the ground state); for this reason, as further ex-
plained below, their results cannot be expected to have the full, physical content of DFT. Hence, disagreements 
with experiment cannot, for the most part, be credited to DFT.  

Despite the clear success of the BZW and BZW-EF method in describing or predicting electronic and related 
properties of materials, as amply illustrated below, our alternative explanation of and solution to the band gap 
problem have mostly been ignored up to 2014. The argument has been that, without the self-interaction correc-
tion and the addition of the derivative discontinuity of the exchange correlation energy to the band gap obtained 
with a DFT potential, one is not expected to get an agreement with experiment. In 2014, we presented a new 
understanding of DFT that rigorously adheres to conditions inherent to it; i.e., we proved that these conditions 
have to be met by a self-consistent calculation before its results can possess the full physical content of DFT. 
We provide a brief review of this proof [21] below, in Section 2, and show how it completes the theory in prac-
tice. We subsequently extend this understanding to the relativistic formulation of DFT in Section 3. In Section 4, 
a short conclusion reiterates some salient points in this work.  
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2. Understanding Non-Relativistic Density Functional Theory (DFT) and  
Completing It in Practice 

2.1. Understanding Non-Relativistic Density Functional Theory 
We presented [21] a step by step recall of the derivation of density functional theory by Hohenberg and Kohn 
[1]. To appreciate fully what follows, the reader is urged to consult this publication [21]. For our purposes here, 
we summarize the key points relative to this derivation, with emphasis on their bearing on the validity of any 
electronic structure calculation employing a DFT potential.  

The initial, non-relativistic form of density functional theory, as introduced by Hohenberg and Kohn, rests on 
two theorems the authors proved. The first one of these theorems states that, except for an additive constant, the 
external potential ( )v r , acting on a system of electrons in a box, is a unique functional of the charge density of 
that system. Of course, in addition to the external potential, these electrons are subject to the electron-electron inte-
raction. Hohenberg and Kohn [1] further established and important corollary of this theorem, namely that, with  

( ) ( ) ( )* dV v ψ ψ= ∫ r r r r                                  (1) 

and T and U as the kinetic and electron-electron interaction operators, the energy  

[ ] ( ) ( ) [ ]dvE n v n F n= +∫ r r r ,                              (2) 

where 

( ) ( )( )Ψ, ΨF n T U≡ +  r                                 (3) 

is a unique functional of the charge density. 

( ) ( ) 2

1 ,N
iin ψ

=
= ∑r r                                    (4) 

where the summation is over occupied states only. 
The second theorem of Hohenberg and Kohn [1], known as the variational principle of DFT, states that the 

above energy functional reaches its minimum, i.e., the ground state energy, when the density ( )n r  is the 
ground state charge density. Specifically, provided that the admissible functions in Equation (4) are restricted by 
the condition  

[ ] ( )dN n n N≡ =∫ r r                                   (5) 

meaning that the total number of particles is kept constant. 
Hohenberg and Kohn [1] established the inequality  

( ) ( ) [ ] ( ) ( ) [ ]d dv n F n v n F n′ ′+ > +∫ ∫r r r r r r ,                       (6) 

where ( )n′ r  is the charge density associated with another external potential ( )v′ r . We emphasize the fact that, 
in Equation (6), the external potential ( )v r  is utilized on both sides of the inequality: This inequality is the 
expression of the fact that the energy functional in Equation (2) attains its minimum for the correct, ground state 
density, ( ) ,n r  and not for a different density, ( ).n′ r  Replacing ( )v r  with ( ) ,v′ r  in Equation (6), re-
verses the direction of the inequality. Indeed, such a replacement signifies that the new system under study has a 
ground state charge density ( ).n′ r  Hence, the minimum of the energy functional can only be attained with this 
density.  

The above steps in the derivation of density functional theory (DFT) directly lead to its rigorous, mathemati-
cal and physical understanding articulated by Bagayoko [21], namely, for the results of electronic structure cal-
culations to possess the full physical content of DFT, it is (a) necessary to keep the number of particles constant 
and (b.1) to employ the exact, three dimensional ground state charge density or (b.2) to search for and to attain 
the absolute minima of the occupied energies.  

It is crucial to underscore here what appears to have been the key misunderstanding of DFT in many calcula-
tions, namely, the confusion between a stationary solution and the ground state solution; the former is obtained 
with most basis sets, following self-consistency iterations, while the latter is found after several successive, 
self-consistent calculations, with increasing, embedded basis sets, as explained below in connection with our 
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computational method (BZW and BZW-EF). Embedding here signifies that, except for the first calculation with 
a small basis set, each of the other calculations employs the basis set of the one preceding it plus one orbital. 
Depending on the s, p, d, or f character of the added orbital, the size of the basis set increases by 2, 6, 10, or 14, 
respectively, taking the spin into account.  

2.2. Completing DFT in Practice 
The above new understanding of DFT requires that electronic structure calculations search for and attain the ab-
solute minima of the occupied energies for the systems under study. Such an attainment signifies that the ground 
state of the system under study has been reached. As alluded to above, a self-consistent calculation with a single 
basis set produces a stationary solution among a potentially infinite number of such solutions. Given that such a 
calculation cannot claim to have attained the minimum of the energy content of the Hamiltonian in Equation (2), 
a unique functional of the charge density, its results should not be expected to possess the full, physical content 
of DFT and they generally do not, as attested to by the recalcitrance of the band gap problem. To reach the 
ground state energy, the use of our computational method (BZW and BZW-EF) or similar ones appears to be 
necessary. This method is fully described in several publications [15] [17]-[21]. We provide below a summary 
description of this method, with emphasis on its two features that complete DFT in practice.  

The first of these features of our method is the performance of several self-consistent calculations with in-
creasing, embedded basis sets. This implementation begins with a relatively small basis set that must be large 
enough to account for all the electrons in the atomic or ionic species in the molecules or solids under study. 
Successive, self-consistent calculations are subsequently performed, where each calculation employs the basis 
set of the one preceding it plus one additional orbital. Graphical and numerical comparisons of the occupied 
energies from two consecutive calculations, upon setting the Fermi energy to zero, show the lowering of some 
or of all the occupied energies as the basis set is augmented. The successive calculations stop when three con-
secutive ones lead to the same occupied energies, within our computational uncertainties of 0.005 eV. Three 
calculations are needed, given that instances were found where two consecutive calculations gave the same oc-
cupied energies, but the calculation following the second one led to some occupied energies lower than their 
counterparts from the two calculations. Clearly, these two calculations led to a local minimum that is not to be 
confused with the ground state for which absolute minima of the occupied energies are required. Further calcu-
lations, with much larger, augmented basis sets do not change the charge density. Hence, they do not change the 
content of the Hamiltonian, even though the corresponding matrices have larger dimensions. This feature of the 
BZW or BZW-EF method completes DFT in practice, inasmuch as it enables the required search and attainment 
of the ground state. 

The above implementation of the linear combination of atomic orbitals (LCAO) is known as the Bagayoko, 
Zhao, and Williams (BZW) method if the added orbitals are in the order of increasing energies for the excited 
states in the atomic or ionic species that form the molecule or solid under study. In the BZW-EF enhancement, 
orbitals are not necessarily added in the order of increasing energies; rather, for a given principal quantum num-
ber n, on an atomic or ionic site, p, d, and f orbitals, if applicable, are added before the corresponding s orbital. 
This counter-intuitive approach recognizes the fact that, for the valence states, polarization has primacy over 
spherical symmetry. Even though LDA and GGA calculations with the BZW method led to accurate descrip-
tions of several semiconductors, including predictions that have been confirmed by experiments for cubic Si3N4 
[22] and InN [23], there have been instances where band gaps obtained with the BZW method have been slightly 
lower than corresponding, experimental values by 0.1 to 0.3 eV. In contrast, band gaps obtained with the 
BZW-EF method are in agreement with experiment within the applicable uncertainties.  

The second feature of the method that completes DFT in practice consists of the determination, among the 
potential infinite number of calculations that produce the same occupied energies, of the one that provides the 
DFT description of the material under study. Among the first three consecutive calculations that produce the 
same occupied energies, the first one, with the smallest of the three basis sets, provides the DFT description of 
the system. The corresponding basis set is called the optimal basis set. This choice, introduced by the BZW me-
thod and maintained in the BZW-EF enhancement, is based on the Rayleigh theorem for eigenvalues [21] [24]. 
This theorem states that when an eigenvalue equation is solved with basis sets with N and (N + 1) functions, 
where the N functions are augmented to get the (N + 1), then, the ordered eigenvalues obtained with the (N + 1) 
functions are lower than or equal to their corresponding ones obtained with the N functions. In other words, the 
increase (by augmentation) of the size of the basis set lowers a given eigenvalue, unless it has reached its mi-
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nimal value; in the latter case, the eigenvalue remains unchanged.  
Clearly, upon the attainment of the absolute minima of the occupied energies, a further lowering of an unoc-

cupied energy is not due to any interaction in the Hamiltonian which does not change from its value obtained 
with the optimal basis set. Hence, such a lowering is a mathematical artifact stemming from the Rayleigh theo-
rem. This artifact is the well-defined basis set and variational effect noted in the introduction. It can be invoked 
only after the occupied energies have reached their absolute minima; before that, the lowering of occupied and 
unoccupied energies is ascribed to physical interactions contained in the Hamiltonian that changes from one 
calculation to the next. In principle, there is an infinite number of augmented basis sets that are larger than the 
optimal one, some of them lower some unoccupied energies. The above referenced basis set and variational ef-
fect is not to be confused with the rather ill-defined basis set effect. In 2014, Bagayoko [20] provided a DFT 
based explanation for the above selection of the referenced, optimal basis set.  

Indeed, the first calculation to reach the absolute minima of the occupied energies is the one providing the 
true DFT description of the material under study. Calculations with basis sets obtained by augmenting that of 
this calculation (i.e., the optimal basis set) do not change the charge density. So, as already noted, they do not 
change the content of the Hamiltonian. The energy content of this Hamiltonian, as given in Equation (2), is a 
unique functional of the charge density, according to the first Hohenberg-Kohn theorem. Another way of stating 
this fact is that the spectrum of the Hamiltonian is a unique functional of the charge density. Consequently, the 
lowered, unoccupied energies, while the charge density does not change, do not belong to the true DFT spec-
trum of the Hamiltonian. Such lowered, unoccupied energies, while the occupied ones do not change, explain 
the band gap underestimation by calculations that do not deliberately search for and attain the absolute minima 
of the occupied energies. The above second feature of the BZW and BZW-EF method completes DFT in practice, 
inasmuch as it enables the identification of the optimal basis set, i.e., that of the calculation that provides the 
true DFT description of the material under study. In doing so, this feature of our method avoids the destruction 
of the DFT or physical content of the lowest, unoccupied energies with the use of over-complete basis sets.  

2.3. Experimental Confirmation of Our Understanding of DFT 
Bagayoko discussed the cases of nine semiconductors [21] whose band gaps were underestimated by some 99 
single basis set calculations. For each of these semiconductors, the BZW and BZW-EF results are in agreement 
with experiment, not just for the band gaps, but also for a host of electronic and related properties. The reader is 
urged to consult Reference 21 for these semiconductors that are c-InN [23], AlAs [25], zb-ZnS [26], w-GaN 
[27], zb-GaN [27], rutile TiO2 [28], w-ZnO [20], zb-BP [29], and c-BN [30], where c-, w- and zb-stand for cubic, 
wurtzite, and zinc blende, respectively. Dozens of other semiconductors have been accurately described by DFT 
BZW and BZW-EF calculations, including some key, elemental ones, i.e., diamond [18], silicon [18], and ger-
manium [19].  

While the above agreements attest to the correct nature of our understanding of DFT and of our completion of 
it in practice, the term confirmation is more appropriate for the predictions we have made and that have been 
later verified by experiment. Specifically, for c-Si3N4, LDA-BZW calculations of Bagayoko and Zhao [22] pre-
dicted a band gap of 3.68 eV in 2001. In 2003, Egdell et al. [31] reported two different experimental results of 
3.6 eV and 3.7 eV that agree rather well with the BZW predictions. The LDA-BZW prediction for the bulk 
modulus of this material was 330 GPa. J. Z. Jiang et al. [32] reported a measured value of 317 ± 11 GPa, in ex-
cellent agreement with the prediction. Similarly, the LDA-BZW calculations of Bagayoko et al. [23] predicted 
an equilibrium lattice constant of 5.017 Å and a band gap of 0.65 eV for cubic InN (c-InN) in 2004. In 2006, 
Schörmann et al. [33] reported their measurements of 5.01 ± 0.01 Å for the equilibrium lattice constant and 
0.61 eV for the band gap, again in agreement with the predictions.  

In 2005, Bagayoko and Franklin [34] were the first to settle, with ab-initio results, the controversy between 
two groups of experiments about the band gap of w-InN. Before 2000, experiments mostly reported band gaps 
of about 2 eV. After 2000, with relatively pure crystals, experiments reported band gaps of 0.7 - 1.0 eV. The 
2005 result of 0.88 eV from the LDA-BZW calculations by Bagayoko and Franklin [33] agrees rather well with 
the experimental one of 0.883 eV [35], for a sample with moderate carrier concentration. Our theoretical settling 
of this controversy between groups of experiments is tantamount to a prediction. Wurtzite InN is well known to 
exhibit the Burstein-Moss effect, i.e., the increase of the band gap of a material with that of carrier concentration. 
Bagayoko and Franklin [34] explained how the relatively crude fabrication methods, before 2000, led to very 
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high carrier concentrations as compared to the relatively refined, deposition methods (i.e., with molecular beam 
epitaxy) employed after 2000.  

Our prediction of the indirect nature of the band gap of rutile TiO2 [28], contrary to known experimental and 
theoretical results, deserves a special mention. Indeed, upon obtaining the indirect band gap of 2.95 eV, for ru-
tile TiO2, and the smallest of the direct gaps of 3.05 eV, we felt compelled to publish these results. For us, it was 
a matter of informing the condensed matter theory community of a very rare instance where DFT-BZW-EF cal-
culations appear to have led to an erroneous result for the band gap of a material. In 2014, Santara et al. [36] re-
ported experimental results that show an indirect, fundamental gap for nanostructures and bulk rutile TiO2.  

The above confirmation of the accuracy of LDA or GGA BZW and BZW-EF calculations for the description 
and prediction of electronic and related properties of materials is a motivation for extending our understanding 
of non-relativistic DFT to the relativistic generalization of DFT. This understanding and the accompanying 
completion of relativistic DFT are expected to be needed for theoretical studies of heavy elements (i.e., Z of 57 
and higher) and of many systems that include them. Several high temperature superconductors, for which there 
remains much theoretical work to do, are examples of such materials. Depending on the degree of accuracy de-
sired, this relativistic DFT can be very useful for the description of most atoms, molecules, semiconductors, in-
sulators, or metals. 

3. Understanding Relativistic DFT and Completing It in Practice 
As we have done in the non-relativistic case, we closely follow below the derivation of the relativistic generali-
zation of DFT, by Rajagopal and Callaway [37], in order to elucidate its understanding that takes into account 
conditions that are inherent to its validity. The authors considered an arbitrary number of electrons in a box,  
subject to the four-vector potential ( ) ( ) ( ), , ,A x v t tµ   = r A r . Using the formulation of quantum electrody- 

namics by Schweber [38], they wrote the Schrödinger equation in Fock space [38] as 

0i H
t
∂ − Ψ = ∂ 


,                                  (7) 

where the Hamiltonian is  

0 C I extH H H H H= + + + .                               (8) 

The terms on right hand side of the above expression follow. 0H  is the operator for describing the 
non-interacting Dirac and electromagnetic fields. A Fock space is an infinite dimensional vector space exten-
sively utilized in quantum field theory to construct the states of a multi-particle system from those of a single 
particle system.  

( ) ( ) ( )3
0 demH H x x h x xψ ψ= + ∫  .                            (9) 

emH  represents the free radiation field and ( )h x , given below, is the single particle Dirac Hamiltonian. 

( ) ( )h x i mµ
µγ= ∂ − .                                 (10) 

Using the radiation gauge, the authors wrote the Coulomb interaction between electrons explicitly as  

( ) ( )( ) ( ) ( )3 3 2
0 0

1 d d
2CH x x x x e x x x xψ γ ψ ψ γ ψ′ ′ ′ ′= −∫   .                  (11) 

IH , the interaction between the transverse radiation field and matter, is  

( ) ( ) 3dIH j x A x xµ
µ= −∫ .                               (12) 

The last term on the right hand side of Equation (8), extH , is the interaction between the electrons and a 
non-quantized external field, extAµ . For convenience, the authors included in this external field the Coulomb 
field produced by the nuclei in the system. They assumed these nuclei to be fixed.  

( ) ( ) 3dext extH j x A x xµ
µ= −∫ .                              (13) 

The above assumption of fixed nuclei consists of neglecting the motion of nuclei, as compared to that of elec-
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trons. This assumption therefore requires the classic Born-Oppenheimer approximation, i.e., that the motion of 
nuclei and that of electrons can be separated. Rajagopal and Callaway [37] subsequently defined the four-current 
density in the ground state as  

( ) ( )J x G j x Gµ µ= ,                                (14) 

where G  represents the ground state of the system of matter and electromagnetic fields.  
The continuity equation, with the four-current density in the ground state above, is  

( ) 0J xµ
µ∂ =                                     (15) 

After defining the terms above, Rajagopal and Callaway proceeded to show that the external potential, extAµ , 
is a unique functional of the four-current density. In so doing, they established the relativistic counterpart of the 
first Hohenberg-Kohn theorem. As done by Hohenberg and Kohn, Rajagopal and Callaway employed le rai-
sonnement par l’absurde (reduction ad absurdum). The usual corollary, that the energy content of the Hamilto-
nian is a unique functional of the four-current density, follows straightforwardly. Another way of expressing this 
corollary is that the spectrum of the Hamiltonian is a unique functional of the four-current density. This last 
formulation is particularly pertinent for electronic structure calculations employing a linear combination of four- 
component spinor orbitals. The above referenced energy content of the Hamiltonian is  

[ ] [ ] ( ) 3dextE G F J J x A xµ
µ= − ∫                              (16) 

where 

[ ] 0 C IF J G H H H G= + + .                             (17) 

Following the approach of Hohenberg and Kohn, Rajagopal and Callaway [37] established the relativistic 
counterpart of the second Hohenberg-Kohn theorem. They first integrated the continuity equation to obtain 

( ) ( )0 3 0 3d d constG j x x G J x x= =∫ ∫ .                         (18) 

Equation (18) is the expression of the requirement to have the total number of particles kept constant.  
With G′  and G  as the ground state vectors corresponding to two different external potentials extA µ′  and 

extAµ , respectively, Rajagopal and Callaway proved the following inequality,  

[ ] ( ) [ ] ( )3 3d dext extF J J x A x F J J x A xµ µ
µ µ′ ′− > −∫ ∫ ,                     (19) 

with extAµ  on both sides of the inequality.  
The above inequality, in Equation (19) above, expresses the relativistic counterpart of the second Hohenberg- 

Kohn theorem.  
As in the case of non-relativistic DFT, the use of the relativistic generalization of DFT for electronic structure 

calculations has the following requirements, if the results are to possess the physical content of relativistic DFT: 
(a) the number of particles has to be kept constant and (b.1) one has to utilize the correct ground state current 
density or (b.2) one has to search for and reach the absolute minima of the occupied energies. As in the non-re- 
lativistic case, the four-current density corresponding to the absolute minima of the occupied energies is that of 
the ground state. Again, Equation (19) clearly shows that the results of calculations with a single four-component 
spinor basis set cannot be expected to provide the correct relativistic DFT description of a material. Such results 
are merely from an arbitrary, stationary solution out of a practically infinite number of such solution.  

4. Conclusion 
From the above understanding of the non-relativistic and relativistic density functional theory (DFT), it follows 
that failures of single basis set calculations to produce the correct description of materials stems from their non- 
adherence to one condition inherent to the validity of DFT. Indeed, in the absence of a known, exact ground 
state charge or four-current density, the search and attainment of the absolute minima of the occupied energies is 
simply required for results of electronic structure calculations to possess the full, physical content of relativistic 
or non-relativistic DFT. The Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Frank-
lin (BZW-EF) leads to highly accurate descriptions and predictions of electronic and related properties of mate-
rials, with DFT potentials. It does so without invoking the derivative discontinuity of the exchange correlation 
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energy or self-interaction correction. Further, with this method, one does not seem to need ad hoc potentials to 
obtain or to approach results in agreement with experiment. The above understanding of DFT and the BZW-EF 
method open the way for highly accurate descriptions and predictions of electronic and related properties of 
materials. In so doing, they enable theory to inform and to guide the design and fabrication of material-based 
devices.  
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