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Abstract 
 
For deeper understanding the process of baryonic matter evolution in the expanding Universe it is necessary 
to know the physical property of concrete field that represents the background of substrate type of dark en-
ergy. Beside, it is necessary to explore in details the influence of such field on the continuous medium of 
baryonic matter. These statements were realized for the quintessence field that describes by two gravitating 
scalar fields. They give own contributions at the total pressure and at the total mass density of baryonic mat-
ter. It allowed show that evolution of baryonic matter’s density perturbations obeys the equation of forced 
oscillations and admits the resonance case, when amplitude of baryonic matter’s density perturbations gets 
the strong short-time splash. This splash interprets as a new macroscopic mechanism of the initial matter 
density perturbations appearance. 
 
Keywords: Baryonic Matter’s Density Perturbations, Quintessence Field, Nonstationary Equation of State of 

the Universe 

1. Introduction 
 
The evolution of baryonic matter from its density fluc-
tuations appearance up to the processes of galaxies origin 
is one of the most important problems for modern cos-
mology [1,2]. This theme was considered as in Newto-
nian cosmology and as in the framework of relativistic 
cosmology from different sides (see, for example, [3,4]). 
Some current tendencies in this problem, in particular, 
are lighting in articles [5,6]. 

We’ll focus this paper on another aspect of this prob-
lem. Namely, in many articles the influence of different 
cosmological substrates on the evolution of baryonic 
matter’s perturbations was reduced to setting their equa-
tions of state, i.e. to setting parameter  . As the result it 
leads to setting the different expressions of Hubble con-
stant in the “friction term” of the basic equation  
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that describes the evolution of baryonic matter’s density 
perturbations. However, this approach allows consider 
such evolution as the process that elapses on the back-
ground of nonbaryonic cosmic substrate, only (and even 

stay in shadow the physical properties of this substrate). 
But in realty this substrate interacts with baryonic 

matter in definite way. That is why it is essential to con-
sider its influence on the baryonic matter evolution in 
details. Lower it will be shown that chosen variant of sub- 
stance (quintessence field with parameter 1   ) de-
scribes as small time-increasing field ( )t  on the back-
ground of constant scalar field  , while chosen va- riant 
of baryonic matter describes as small wave-type fluct- 
uations 
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on the background of uniformly distributed motionless 
gas with nonvariable mass density 

0m . Thus we have 
the system of two small fields ( ( )t  and ( )t ) that 
evolves on the stable background of   and 

0m . 
Such problem wording, hence, is analogous to those in 

cosmology where the multi-fluids evolution searches 
[7-10] and, more generally, in hydrodynamics where the 
motion of poly-component media examines (see, for 
example, [11,12]). Beside, for the closed to our physical 
system (scalar field and perfect fluid) the properties of 
cosmological density perturbations were considered in 



C. L. MIKHAJLOVICH 
 

Copyright © 2011 SciRes.                                                                              JMP 

835

article [13]. Mark, that opposite physical situation is per-
missible, also. In fact, the cosmological evolution of two 
coupled scalar fields in the presence of a barotropic fluid 
was examined in [14]. 

It is also necessary to enumerate some articles where 
different aspects of the mutual interaction between ba-
ryonic matter and quintessence were examined. In fact, 
in [15] was estimated the amplitude of perturbation in 
dark energy at different length scales for a quintessence 
model with an exponential potential; in [16-18] was con-
sidered the growth of perturbations in dark matter cou-
pled with quintessence. 

Some other cosmological aspects of quintessence ex-
istence were done in [19]. 

This article organized as follows. In Section 2, we 
demonstrate that two scalar fields can describe the phy- 
sical properties of quintessence field. (Mark that variant 
of the quintessence description by two scalar fields, si- 
milar to our, have been proposed in [20]. Two-scalar 
fields approach for the dark energy description was con-
sidered in [21], also). Section 3 devotes to searching the 
evolution of scalar field   that represents as small 
standing waves on the background of basic scalar field 
 . Section 4 is devoted to exploring the influence of 
field   on the evolution of baryonic matter’s density 
perturbations. In Section 5 we examine the effect of sti-
mulation the baryonic matter’s density perturbations 
growing by scalar field  . Our conclusions are pre-
sented in Section 6, finally. 
 
2. Scalar Fields Representing the  

Quintessence Field 
 

One of the actual problems for modern cosmology is the 
theoretical description of quintessence field—one type of 
dark energy. Its observable properties are the scale ho-
mogeneity and the absence of clustering [22]. Quintes-
sence is described by an ordinary scalar field minimally 
coupled to gravity, but with particular potentials that lead 
to late time inflation [23]. The action for quintessence is 
given by 
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where   is the 3-dimensional Laplace operator,  — 
potential of any scalar field.  

The simplest equation of state for any type of dark en-
ergy usually chooses in the linear form p  , where 
magnitude of   lays within the interval  
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Later on we’ll describe arbitrary quintessential field 
  by coupled scalar fields—ordinary   and Higgs- 
type  . 

Thus consider the self-consistent problem for the mu-
tual evolution of fields and Universe. The corresponding 
system of Einstein’s equations and equations of two in-
teracting scalar fields is 

2

2 2 2 2 2 2 4 4 2 24

3 2 2

a

a

G
m m  
 

 
       

   
 

 
      

 



 

 
           (3) 

2 3 23 0
a

m
a            
            (4) 

2 3 23 0.
a

m
a            
          (5) 

Let masses and fields correlate each other as 
, ,m m      while the self-action coefficients ful-

fill inequality— 1    . Hence, the period of os-
cillations for field   is essentially larger than the pe-
riod of oscillations for field   (T T  ) and    , 
accordingly. In another words, in time of field   
changing the basic field   don’t change practically, i.e. 
we may describe it by the conditions 

0, const                 (6) 

After neglecting the fields’ self-actions we get the 
simplified system of equations 
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which will be under our analyzes. Here 
2 2 2m̂ m     is the squared field’s   effective 

mass that determines by field mass m  and its interac-
tion with field  . 

Later on it is necessary to set masses of scalar fields 
and their initial amplitudes. According [25] their typical 
magnitudes are 
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where pM  is the Planckian mass. Having in mind these 
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constrains, consider the case when  

ˆ ,m m m                   (10) 

Moreover, for our model the inequalities (15) take 
place if 1    . Conditions (10) indicate that en-
ergy of basic field   is essentially larger than energy of 
additional field  . Under this assumption the system 
(9)-(10) takes on more simple form  
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Equation (11) reduce to one linear differential equa-
tion of the second order 0       with co- 
efficients 12 Gm   , 2m̂  . Its solutions we’ll 
look for in the standard exponential form 

 0 exp t    . Hence, we get the algebraic equation 
2 0     that has two roots: 
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From (9) and (10) it follows that ˆm m  . This con- 
dition allows to decompose the expression under root 
sign into the Taylor series with respect to small value 
m̂ m  , and to get two solutions 
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Note also, that second of them is the approximate solu-
tion of zeroth accuracy with respect to the ratio m̂ m  . 
Thus the sought-for solutions of field   we may take 
in the forms 
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From (9)-(11) it is unproblematic to find the additives 
to energy density and to pressure 
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From (16)-(18) it is easy to verify that these two scalar 

fields describe the quintessence field. In fact, from (2) 
we get  
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Due to condition (6) and (18) we see that ordinary 
scalar field   is in the vacuum state, i.e., 
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Therefore two coupled scalar fields describe the quin-
tessential state of dark energy. 
 
3. The Scalar Field   Evolution 
 
Let the fields   and   possess any space inhomoge-
neity. (Another type of the inhomogeneous quintessence 
model has been proposed in [26].) Under the conditions 
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Here we take into account that ~a a aH  , also. 
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. Last expression indicates that 
perturbed potential is the plane wave with the time- va-
riable amplitude, k


 its wave vector. Such choice is 

analogous to Jeans’ presentation of the perturbations in 
baryonic substrate. 

Substitution all of them into Equation (23) will arrive 
it to the following one 
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With the needed accuracy ( 1

  ) we have  
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and 0 expa Ht   with arbitrary amplitude  . After 
neglecting the field self-interaction we get equation 
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whose exact partial solution, in accordance [27], ex-
presses as 
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Now examine the behavior of this function in time. 
Let Ht   is the dimensionless time. Using the nu-
merical and the graphical representations of Bessel func-
tions [28] we see that at large argument ( 1  ) function 

 0 0J   . However, for our purpose we must consider 
the opposite situation when 1  . 

For doing this consider the series representation of 
Bessel function of zeroth order 
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if 1C  . This important result—time-increasing ampli-
tude—allows lighting the process of baryonic matter’s 
macroscopic perturbations growth from new side. 

4. Influence of Field   on the Baryonic 
Matter’s Density Perturbations Growing 
 

Our next step is searching the influence of field   on 
the baryonic matter’s density perturbations growing. 
Later on we’ll base on the Jeans equations for adiabatic 
case. 

In the usual designations (together with the equation 
of state for baryonic matter  m m mP P  ) they are 
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For enriching our goal it is necessary to use the well- 
known method of description the poly-components fluid 
dynamics. Namely, for searching the microscopic per-
turbations of baryonic matter specify them in the stan-
dard manner [29,30] 
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Beside, as we consider the influence of baryonic mat-

ter on the background of phantom field, it is needed to 
take into account that last will contribute its additions at 
the pressure P  and at the mass density  . Hence, 
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That is why the variables in (34)-(37) may be repre-
sent as  

       0 0[1 exp exp ]m m f ft ik x t ik x         
  

 

                 (43) 

       0 exp expm m f fV v w t ik x w t ik x   
  

   (44) 

       0 0 exp expm m f fU U U U t ik x t ik x    
  

                   (45)  

0 0 f
f

P
P P P P 




    


 

       2
0 0 [ exp exp ]m m f fP b t ik x t ik x    

  
 

(46) 
where we assume that speeds of sound in a baryonic 
matter and in the quintessence field are equal each other, 
i.e., ~ 1m fb b b  . Beside, for next simplification let 

  0fw t   (in [31] it was considered the bi-velocities 
type of fluid with special nonzero components) and for the 
case of dust-like baryonic substance imply that 

0
0mP  . 

Whence it results 
0 00 m f    , 

00 fP P . 
Substituting (43)-(45) into (31)-(33) and making re-

quired transformations, we get the dynamical equation of 
two-component media. 

 

       

2
2

02

2

02

d
4

d

d
[ 4 ] exp ( )

d

m
m m

f
f f f m m f f f m

k G
t

t k k k k k G i k k x
t


 


 

   

         



       
             (47) 

 

where      2 2
04 4f f f f ft G t k G t k         

Later on, assuming that m fk k k 
  

 and accounting 
(46) the previous equation goes into  

 

   
2

2 2 2 2 2
0 0 02

d 32 1 8
4 4 1 0

9 2 3d
m

mk G k G H m Ht
t 


                   
  

            (48) 

 
The most attractive consequence of this equation, that 

has the evolutionary nature, we get after the omitting 
constant values in third term and replacing 

4

3
Ht  by 

4
sin

3
Ht

  
 

 

(due to minuteness Ht  here and after). Thus the stan-
dard equation of forced oscillations 

2
2

2

d
sin

d
m

m t
t


               (49) 

takes place, where 

 
1

2 2
04k G     

is the basic internal frequency,  

4

3
H   and  

2
2

0 2
0

4
m

k G  


    are the externals 

frequency and amplitude, accordingly. 

Now it should be pointed out that condition  

2
 
    

relates to the resonance case. Hence, the amplitude of 
baryonic matter’s density perturbations gets the strong 
short-time splash. This result is very significant, because 
the splash may be real macroscopic mechanism of an 
initial matter density perturbations appearance. Moreover, 
the above mention condition determines the resonance- 
case wave vector  

2

02
3 8r

H
k G     

 
. 

In other—nonresonance—cases (
2

 
   ) the am- 

plitude of oscillations, according standard theory [32], at 
times 1   (see Section 3) becomes growth linearly, 
i.e. ~m t . So, it stimulates the process of matter’s 
density perturbations increasing (see next Section 5). 

5. Effect of Stimulation the Baryonic Matter 
Density Perturbations Growing 

Point out that according to above considered behavior of 
field   (Equations (13) or (39)) it is necessary to gen-
eralize Equation (47) in the similar manner. The result is 
obvious  
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 

       

2
2

02

2

02

d d
2 4

dd

d d
2 [ 4 ] exp ( )

dd

m m
m m

f f
f f f m m f f f m

H k G
tt

H t k k k k k G i k k x
tt

 
 

 
 

    

          



       
        (50) 

where the Hubble constant is  

0

0

4

3

aa G
H m const

a a 


    


. 

The “friction term” in right side of (50) will alter the 
amplitude and frequency of forced oscillations in (49) 
owing to previous results, but don’t change the key con-
clusion of Section 4—the linear time-growing of bary-
onic matter’s perturbations. As for the “friction term” in 
left side of (50) it is necessary to say follow. 

The problem of baryonic matter perturbations growing 
in the dust-like Universe with nonvariable Hubble con-
stant was considered in number of recent articles (see, 
for example [33-38]). But their common result adequate 
to those in [29,30]—the amplitude of perturbations in-
creases as different powers of time, i.e., ~ l

m t , where, 
in particular, 

2
, 1

3
l   , 

etc. More complicate results take place when Hubble 
constant is the time-varying value [39]. For instance, in 
article [40] it was shown that then  

~
lnm

t

t



. 

Summarize, in all of these cases the “friction term” 
d

2
d

mH
t


 

at Jeans-like equation leads to main consequence—the 
growing of baryonic matter perturbations in the expand-
ing Universe. 

Hence, for baryonic Universe the matter density per-
turbation will develop in time more rapidly, namely as 

2

3
1 2m C t C t                (51) 

where 1C and 2C  are any suitable constants. 
That is why our result describes the effect of stimula-

tion the baryonic matter’s density perturbations growing 
by quintessence field. 
 
6. Conclusions 
 
Here it was shown that for deeper searching the process 
of baryonic matter evolution in the expanding Universe it 
is necessary to: 

1) know the physical property of concrete field (or 
fields) that represents the background of nonbaryonic 
substrate type of dark energy, and 

2) take into account the influence of such field on the 
continuous medium of baryonic matter. 

In our article these statements were realized for the 
quintessential field. As the result we describe quintes-
sence by two gravitating scalar fields. First of them is the 
invariable field ( )const  , while the second evolves as 
the space-wave with linearly growing amplitude (30). 
These fields give their contributions at the total pressure 
P  and at the total mass density   of baryonic matter. 
As a consequence the evolution of baryonic matter den-
sity perturbations obeys the standard equation of forced 
oscillations (49) and admits the resonance case, when 
amplitude of baryonic matter density perturbations gets 
the strong short-time splash. This splash was interpreted 
as the macroscopic mechanism of initial matter’s density 
perturbations appearance. 

In other—nonresonance—cases the amplitude of os-
cillations becomes growth linearly in time. That is why it 
also may stimulate the process of matter density pertur-
bations increasing accord the expression (51). 

As a result it is possible to say that quintessence field 
highly actively affects on the baryonic matter’s density 
perturbation growing in the Universe. 
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