
Intelligent Control and Automation, 2011, 2, 226-232 
doi:10.4236/ica.2011.23027 Published Online August 2011 (http://www.SciRP.org/journal/ica) 

Copyright © 2011 SciRes.                                                                                  ICA 

Nonlinear Multiple Model Predictive Control of Solution 
Polymerization of Methyl Methacrylate 

Masoud Abbaszadeh 
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada 

E-mail: masoud@ece.ualberta.ca 
Received December 29, 2010; revised June 10, 2011; accepted June 17, 2011 

Abstract 
 
A sequential linearized model based predictive controller is designed using the DMC algorithm to control the 
temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a 
parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a 
multiple model predictive control approach is taken in to track a desired temperature trajectory. The coeffi-
cients of the multiple transfer functions are calculated along the selected temperature trajectory by sequential 
linearization and the model is validated experimentally. The controller performance is studied on a small 
scale batch reactor. 
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1. Introduction 

The importance of effective polymer reactor control has 
been emphasized in recent decades. Kinetic studies are 
usually complex because of the nonlinearity of the proc-
ess. Hence, the control of the polymerization reactor has 
always been a challenging task. Due to its great flexibil-
ity, a batch reactor is suitable to produce small amounts 
of special polymers and copolymers. The batch reactor is 
always dynamic by its nature. A good dynamic response 
over the entire process is necessary to reach an effective 
controller performance. To do so, it is essential to have a 
suitable dynamic model of the process. Louie et al. [1] 
reviewed the gel effect models and their theoretical 
foundations. These researchers then modeled the solution 
polymerization of methyl methacrylate (MMA) and 
validated their model. 

Control of MMA polymerization processes has be-
come popular as a benchmark for advaced process con-
trol methods, since the dynamics of the methyl 
methacrylate polymerization process is well studied and 
several physical models of high fedility are readily 
avaliable. Methyl methacrylate is normally produced by 
a free radical, chain addition polymerization. Free radical 
polymerization consists of three main reactions: initia-
tion, propagation and termination. Free radicals are 
formed by the decomposition of initiators. Once formed, 

these radicals propagate by reacting with surrounding 
monomers to produce long polymer chains; the active 
site being shifted to the end of the chain when a new 
monomer is added. Rafizadeh [2] presented a review on 
the proposed models and suggested an on-line estimation 
of some parameters, such as heat transfer coefficients. 
The model consists of the oil bath, electrical heaters, 
cooling water coil, and reactor. Mendoza-Bustos et al. [3] 
derived a first order plus dead time transfer function for 
polymerization. Then, they designed PID, Smith predic-
tor, and Dahlin controllers for temperature control. Pe-
terson et al [4] presented a non-linear predictive strategy 
for semi batch polymerization of MMA. Penlidis et al. [5] 
presented an excellent paper, in which they reviewed a 
mechanistic model for bulk and solution free radical po-
lymerization for control purposes. Soroush and Kravaris 
[6] applied a Global Linearizing Control (GLC) method 
to control the reactor temperature. They compared the 
result of GLC and PID controllers. Performance of the 
GLC for tracking an optimum temperature trajectory was 
found to be suitable. DeSouza Jr. et al. [7] studied an 
expert neural network as an internal model in control of 
solution polymerization of vinyl estate. The architecture 
of their model predicts one step ahead. In their study, 
they compared their neural network control with a classic 
PID controller. Clarke-Pringle and MacGregor [8] stu- 
died the temperature control of a semi-batch industrial 
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reactor. They suggested a coupled non-linear strategy 
and extended Kalman filter method. They used energy 
balance approach for the reactor and jacket to estimate 
process parameters. Mutha et al. [9] suggested a non- 
linear model based control strategy, which includes a 
new estimator as well as Kalman filter. They conducted 
experiments in a small reactor for solution polymeriza-
tion of MMA. Rho et al. [10] reviewed the batch polym-
erization modeling and estimated the model parameters 
based on the experimental data in the literature. For con-
trol purposes, they assumed a model to pursue the con-
trol studies and estimated the parameters of this model 
by on line ARMAX model. 

Model predictive control (MPC), on the other hand, is 
a model based advanced control technique that have been 
proved to be very sussefull in controlling highly complex 
dynamic systems. It naturally supports design for MIMO 
and time-delayed systems as well as state/input/output 
constiants. MPC is generally based on online optimiza-
tion but in the case of unconstrianed linear plants, closed 
form solutions can be derived analytically. MPC usally 
requires a high computaional power; however, since 
chemical processes are typically of slow dynamics, they 
have been designed and implemented on various chemi-
cal plnat with great success. Therefore, MPC seems to be 
good candicate for controlling MMA polymerization 
based on physical (first-principle) modeling.  

This paper presents a mechanistic model of batch po-
lymerization. Sequential linearization, along a selected 
temperature trajectory, is conducted. Consequently, us-
ing a nonlinear model predictive approach, a controller is 
designed. A multiple model adaptive MPC controller is 
desined for the trajectory lineairzed model. Results show 
the better performance than the performance of adaptive 
PI controller [11]. 

2. Polymerization Mechanism 

Methyl methacrylate normally is produced by a free 
radical, chain addition polymerization. Free radical po-
lymerization consists of three main reactions: initiation, 
propagation and termination. Free radicals are formed by 
the decomposition of initiators. Once formed, these radi-
cals propagate by reacting with surrounding monomers 
to produce long polymer chains; the active site being 
shifted to the end of the chain when a new monomer is 
added. During the propagation, millions of monomers are 
added to 1  radicals. During termination, due to reac-
tions among free radicals, the concentration of radicals 
decreases. Termination is by combination or dispropor-
tionation reactions. With chain transfer reactions to 
monomer, initiator, solvent, or even polymer, the active 
free radicals are converted to dead polymer [1]. Table 1  

oP

Table 1. Polymerization mechanism. 
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gives the basic free radical polymerization mechanism. 

The free radical polymerization rate decreases due to 
reduction of monomer and initiator concentration. How-
ever, due to viscosity increase beyond a certain conver-
sion there is a sudden increase in the polymerization rate. 
This effect is called Trommsdorff, gel, or auto-accelera-
tion effect. For bulk polymerization of methyl methacry-
late beyond the  conversion, reaction rate and mo-
lecular weight suddenly increase. In high conversion, 
because of viscosity increase there is a reduction in ter-
mination reaction rate. 

20%

3. Mathematical Modeling of Polymerization 

Table 2 shows the mass and energy balances of reactor. 
The polymer production is accomplished by a reduction 
in volume of the mixture. The volumetric reduction fac-
tor is given by: 

p m

p

 




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The instantaneous volume of mixture is given by: 
 

Table 2. Mass and energy balances. 
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The parameter   is defined as: 
Similarly, termination rate constant, , is given by: tk

1
s

s

f

f
 


                 (3) 

0

01 1
t

t tk k D

                 (6) 

During the free radical polymerization, the cage, glass, 
and gel effects occur. For the cage effect, the initiator 
efficiency factor is used. The CCS (Chiu, Carrat, and 
Soong) model is used in this study to take into considera-
tion the glass and the gel effects. Therefore, propagation 
rate constant, pk , is changing according to: 

0t
 is changing as Arrhenius function. k p  and t  

are adjustable parameters related to propagation and ter-
mination rate constants, respectively. All the other nec-
essary parameters and constants for this model are given 
in the literature [1]. The Equations (7)-(10) are essential 
for dynamic studies. 
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0pk  is changing as Arrhenius function, and  is 

given by equation: 
D
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Equations (7) and (8) are mass balances for monomer 
and initiator, respectively. Long Chain Approximation 
(LCA) and Quasi Steady State Approximation (QSSA) 
are used in this study. Equations (9) and (10) show en-
ergy balances for the reactant mixture and oil, respec-

tively. In this study, heat transfer coefficients are esti-
mated experimentally [2]. Equations (7)-(10) are highly 
nonlinear and, using Taylor expansion series, these equa-
tions were converted to linearized form. The linearized 
state space form is given by: 
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Equation (11) and is converted to the transfer function 
form: 
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4. The Experimental Setup 

A schematic representation of the experimental batch 
reactor setup is shown in Figure 1. The reactor is a Bu-
chi type jacketed, cylindrical glass vessel. A multi-pad-
dle agitator mixes the content. A Pentium II 500 MHz 
computer is connected to the reactor via an ADCPWM- 
01 analog/digital Input/Output data acquisition card. The 
data acquisition software was developed in-house. The 
heating oil was circulated by a gear pump and its flow 
rate was about 15 minlit . The heating/cooling system 
of the oil consisted of two 1500W electrical heaters and a 
coolant water coil, which was operated by an On/Off 
Acco brand solenoid valve. Two Resistance Temperature 
Detectors (RTDs), were used with accuracy of . 
Methyl methacrylate and toluene were used as monomer 
and solvent, respectively. Benzoyl peroxide (BPO) was 
used as the initiator. The molecular weight of the pro-
duced polymer was measured using an Ubbelohde vis-
cometer. 

o0.2 C

5. An Overview of MPC 

Due to its high performance, Model predictive control 
method has recieved a great deal of attention to control 
chemical processes, in last few years. This approach is 
applicable to multivariable systems and canstrained sys-
tems. Monuverability in design, noise and disturbance 
rejection and robustness under model mismatch are the 
most important ability of this method. Cumbersome 
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Figure 1. The experimental setup. 

computation, lack of systematic rules for controller tun-
ing are some drawback of this method. Model predictive 
control is based on a process model. Although impulse or 
step responses have some limitation for nonlinear proc-
ess, they may be used to develop a model. During the the 
model predictive control following steps should be con-
ducted: 
 Explicit prediction of future output (prediction hori-

zon). 
 Calculation of a control sequence based on the mini-

mized cost function (control horizon). 
 Receding strategy. 

The Dynamic Matrix Control (DMC) is used in this 
research. Its cost function is: 
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where P, M and N1 are prediction horizon, control hori-
zon and pure time delay, respectively, ,M M PR Q P  are 
whigthing martices. The prediction horizon must be at 
least equal to the pure time delay. 
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where yp is the process output, ym is the model output and 
d is the process and model outputs diffrence, including 
noise, disturbance and model mismatch. yd(t) is the de-
sired output based on the refrence input. If ysp(t) is the 
refrence input, the following filtered form is used as the 
tracking trajectory: 
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  changes the first order smoothing filter pole place. 
The smaller   the faster output. It has been shown that 
system robustness can be decreased by the reduction of 
  and increment of the manipulated signal [12]. Figure 
2 shows the block diagram of DMC. 

The cost function in equation 10 can be rearrenged to: 
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without loss of generality, if N1 is assumed zero, then: 
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Figure 2. Block diagram of DMC. 
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reaching to steady state or equvalent impulse response 
steps which lead to zero; and gN is the system dc gain. 
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6. The Modified DMC 

If there is any pole close to origin, the step response will 

-
co

be very slow and the required N is very large. Then, a 
system including integrator never reaches to the steady 
state (this case exists in the set of linearized models of 
the MMA reactor) and N lead to infinity. Hence, unsta-
bility occurs. This is one of the DMC limitations [13]. 

Researchers have suggested some methods to over
me this problem, for example formulating DMC in the 

state space an then using an state observer [14]. Because 

of model mismatch this method doesn’t have proper per-
formance in real time applications. The alternative is: 
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where PastY  
utp

is “the effect of past input to the future 
system o uts without considering the effect of present 
and future inputs”. Consequently, PastY  can be calcu-
lated by setting the future “Δu”s equ  zero and solv-
ing the model P steps ahead. 
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As seen in equations 14 and 15, G+ and U  are inde-

pendent of N. G dimension is determined by N. There-
fore, the DMC culation is independent than N. YD is: 
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7. Results and Discussion 

Figure 3 shows the model validation results. The simu-
lation follows the experimental data very well. The DMC 
algorithm was applied to control a MMA polymerization 
reactor. The reactor temperature trajectory is known, 
hence, the refrence input is known for all times so the 
programmed MPC is used. The DMC controller gain 
defined as: 
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Figure 3. Model validation. 
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Figures 4 an ity to track the 
te

d 5 show the controller abil
mperature trajectory. The average error is 0.3˚C. Due 

to the controller robustness, switching between models 
causes no unstability in closed loop system. Furthermore, 
appropriate selection of controller parameters could pre-
vent the unstability. The selected sampling period is T = 
10s. Other parameters are 5P  , 2M  , 0.05  , 

5*5Q I , 3*3.05*R I . The ti ip l 
nsures the reactor temperature 

tracking error to with in 0.3˚C while the adaptive PI con-
trol in [11] has a 2˚C average error and the Generalized 
Takagi-Sugeno-Kang fuzzy controller proposed in [16] 
has a 1˚C average error; demonstrating the superior per-
formance of the MPC. 
 

 adap ve mult le mode
MPC designed here e
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Figure 4. Controller performance in the absence of distur-
bance and noise. 
 

0 5000 10000 15000
75

80

85

90

95

100
output

0 5000 10000 15000

0

100

200

300

control signal

Time(sec)  

Figure 5. Controller performance in the presense of ste

zed model based predictive controller 
based on the DMC algorithm was designed to control the 

. C. Carratt and D. S. Soong, “Modeling 
the Free Radical Solution and Bulk Polymerization of 

p 
disturbance (dashed line) and Guassian measurement noise. 

8. Conclusions 

A sequential lineari

temperature of a batch MMA polymerization reactor. 
Using the mechanistic model of the polymerization, a 
transfer function was derived to relate the reactor tem-
perature to the power of the heaters. The coefficients of 
the transfer function were calculated along the selected 
temperature trajectory by sequential linearization. The 
controller performance was studied experimentally on a 
small scale batch reactor. 
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