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Abstract 
This paper presents an application of the simulated annealing algorithm to solve level schedules 
in mixed model assembly line. Solving production sequences with both number of setups and ma-
terial usage rates to the minimum rate will optimize the level schedule. Miltenburg algorithm 
(1989) is first used to get seed sequence to optimize further. For this the utility time of the line and 
setup time requirement on each station is considered. This seed sequence is optimized by simu-
lated annealing. This investigation helps to understand the importance of utility in the assembly 
line. Up to 15 product sequences are taken and constructed by using randomizing method and find 
the objective function value for this. For a sequence optimization, a meta-heuristic seems much 
more promising to guide the search into feasible regions of the solution space. Simulated anneal-
ing is a stochastic local search meta-heuristic, which bases the acceptance of a modified neighbor-
ing solution on a probabilistic scheme inspired by thermal processes for obtaining low-energy 
states in heat baths. Experimental results show that the simulated annealing approach is favorable 
and competitive compared to Miltenburg’s constructive algorithm for the problems set considered. 
It is proposed to found 16,985 solutions, the time taken for computation is 23.47 to 130.35, and 
the simulated annealing improves 49.33% than Miltenberg. 
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1. Introduction 
Mixed Model Assembly Line (MMAL) sequencing is a problem of determining a sequence of the product mod-

http://www.scirp.org/journal/cs
http://dx.doi.org/10.4236/cs.2016.76078
http://dx.doi.org/10.4236/cs.2016.76078
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


S. Ramalingam, R. A. Subrananian 
 

 
908 

els whereby a major emphasis is placed on maximizing the line utilization. MMAL is a type of production line, 
in which variety of product models is assembled and many industries use MMALs for diversified small-lot pro-
ductions. In mixed model assembly, industrial scheduling is the most important concept, i.e., correct sequence is 
necessary of effective utilization of assembly lines. It addresses two key problems: i) Level scheduling and ii) 
Line balancing problem. The balancing problem is the reasonable distribution of the operation units and it is a 
long time decision problem. The scheduling is short time decision making problem. Level scheduling problem in 
a mixed model assembly line is a famous approach for resulting short term sequence to facilitate a just-in-time 
supply. In the past, research on sequencing problem in MMAL are considered with the objectives of optimizing 
minimum cycle time, constant rate usage of parts, minimum variable parts usage, minimum number of worksta-
tion and minimum total work over load time by using various methods like genetic algorithm, particle swarm 
optimization, mathematical models and many heuristic procedures. In a Just-in-Time (JIT) production system, 
only the necessary products at the necessary time, in the necessary quantity are manufactured and stock on hand 
is held to minimum. Assembly is the process of collecting the various parts from raw material and putting to-
gether to form a product. The assembly line is classified into single model assembly, multi model assembly, 
mixed model assembly. In the single, multi and mixed models, lines are shown in Figure 1. 

The single model assembly line has been used to produce single model only. In this production line, large 
quantity of products can be produced without changing the setup. In multi model assembly line, similar products 
are manufactured in one or more assembly lines. In mixed model assembly line, two or more products are pro-
duced in the same assembly line. 

In [1] it shows that the production sequence of introducing variety of product models to the mixed model as-
sembly line is different due to different objective goal of controlling the line. The problem of scheduling the se-
quence of products to be assembled by a line is:  

Leveling the load on each station on the line, 
Keeping constant rate of usage of every parts used by the line.  
The customers need the different models as per their necessity. According to the customers demand the need 

to produce the different model is must. In mixed model assembly line, the different models are produced as sim-
ilar product characteristics are assembled. The two main objectives are line balancing and scheduling. The line 
balancing is leveling the work load to each work station is uniform. The operation times at each station are not 
the same. The certain work station operation time is exceeding to cycle time. The assembly line is adjusted by 
this cycle time without line stoppage. However, the successive scheduling creates delays and it leads to line 
stoppage, so it is essential to minimize the line stoppage. 

The scheduling is much more important than line balancing. The quantity of each part used by the mixed 
model assembly line per unit time should be kept as constant as possible and always there will be little variation 
between the actual production and desirable production. To implement effective utilization of the mixed model 
assembly line the following objective functions are to be solved. 

 
Single Model Line 

 
(a) 

Multi Model 

 
(b) 

Mixed Model 

 
(c) 

Figure 1. (a)-(c) Single, multi and mixed model lines.                                                              
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Determination of line cycle times;  
Determination of the number and sequence of station on the line;  
Line balancing; 
Determination of sequencing scheduling for producing different products on the line. 
In mixed model assembly line, it requires production sequence to solve the following objectives;  
Determination of cycle time; 
Determination of work in process; 
Determination of effective utilization; 
Determination of setup time; 
Determination of make span. 
Determination of cycle time is the maximum time spent at any one work station. The amount of time is avail-

able at each work station to complete all assigned work. Work in process is the arrange number of units in the 
production system at any given time as the result of the production sequence. Effective utilization is the measure 
of the ability to keep the schedule level of evenly intermixed by keeping the raw materials for different products 
of arriving at the system as constant as possible. Setup is required when the different products are produced in 
the same assembly line. Makeup is the length of production run in the production sequence. 

Our objective functions are to minimize the both usage rate and required setups. Setup is required when the 
two consecutive products in the production sequence are different. The usage rate is a measure of the ability ar-
riving to keep the schedule level on evenly intermixed by keeping the raw materials for different products arriv-
ing at the system rate as constant as possible. Generally, the setup and utility are inversely proportional functions. 
When the utility is low the setup is high. When the utility is high the setup is more. So it has to be balanced be-
tween the setup and utility. The weightage of setup and utility has been used, for that the composite objective 
function value is required.  

As an enormous number of possible production sequence, it is difficult to find the optimal solution by using 
the traditional optimization methods like branch and bound algorithm, goal chasing algorithm, liner and non-li- 
near programming methods and dynamic programming algorithm. It is taking more computation time and also 
more complexity. Recent trend in solving the optimization problems is heuristic. The heuristic method is used to 
solve many big problems using simple formula. The algorithms are used to address this type of multiple objec-
tive sequencing problems. Many heuristic methods are used to solve the mixed model assembly line problem. 
The heuristic methods are Genetic Algorithm (GA), Ant-Colony Algorithm (ACA), Particle Swarm Optimiza-
tion (PSO), Simulated Annealing (SA) and Tabu Search (TS). 

It is proposed that the sequence obtained from Miltenburg algorithm is considered as seed. From this seed, the 
sequence has altered randomly. The utility and setup has been taken as objective function value to optimize the 
level schedules in JIT production sequence. For this objective function value, different weightages give utility 
and setup as E = WuU + Wss. The weights Ws and Wu used for the objective function values are to emphasize the 
importance of the setup and utility. The weights are determines as Ws = c/number of setups from initial solution, 
Wu = c/number of utility from initial solution, c = constant = 1000. Four types of heuristics are used as per vary-
ing the importance of setup and utility. 

The objective function value for different weightage has been found from heuristic 1 to 4. The simulated an-
nealing algorithm has utilized to find the optimum function value and optimum sequence. In Section 2, the lite-
rature survey of mixed model assembly line and simulated annealing has been presented. In Section 3, the de-
tailed description of the mixed model assembly line model and Miltenburg algorithm has been discussed. In 
Section 4, the simulated annealing procedure and algorithm have been discussed. Similarly in Section 5 and 
Section 6, the numerical example and experimental results are presented. Section 7 describes about the compu-
tational time and the conclusion is presented in Section 8. 

2. Literature Survey 
The Toyota production system discusses the leveling and balancing schedule. It shows that the sequence of 
models in mixed model assembly line is different due to different level of load and usage of parts [1]. The best 
production schedule by algorithm1 is discussed in [2], but this algorithm is not feasible for the same number of 
product. The feasible algorithm 2, algorithm 3 are discussed in [2], it also presents heuristics 1, 2. Finally the 
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optimal scheduling algorithm with low variation by heuristics 2 has discussed. An optimal sequence of units that 
minimizes total line stoppage is discussed in [3]. In [3] the branch and bound method to derive the lower and 
upper bounds of the total line stoppage time and idle time has been proposed. In [4], the technique utilized is 
Tabu search to find a sequence when minimization of both material usage rates and setup are of concern, this 
technique is applied to several problems and resulting sequences are simulated to determine production perfor-
mance measures of production make span, average work in progress of inventory level. The genetic algorithm 
provide formidable solution to the multiproduct JIT production sequencing problem with setup and compare fa-
vorable to those found using the search techniques of Tabu search and simulated annealing [5] [6]. In [7], an ap-
plication of the relatively new approach of Ant Colony Optimization (ACO) of address a production sequencing 
problem, when two objectives are preset, simulated the artificial intelligence agents of virtual ants to obtain de-
sirable solution to a manufacturing logistic problem is discussed.  

The two stage variation in mixed model sequencing problem reduces the part variation which is discussed in 
[8]. A transformed two stage heuristic using product level for reducing the par-level variation in sequencing 
mixed model assembly line is provided. The performance of genetic algorithm for sequencing problem in mixed 
model assembly line is investigated in [9]. The results of evaluation indicate that the genetic algorithm that uses 
the parents-stratum niche cubicle performs better than genetic algorithm with other selection mechanisms. In 
[10], a multi objective GA for MMAL on JIT assembly line problem where variation of production rates and 
number of setups are to be optimized minimization of the production rates variation and setup are discussed. The 
research in JIT sequencing and a Pseudo-polynomial binary search for a feasible B-bounded sequence obtained 
through perfect matching in bipartite graph solves the single-level min-max absolute-deviation problem are re-
viewed in [11].  

In [12] the major planning approaches in mixed model car assembly sequencing, level scheduling and pro-
vides a hierarchical classification scheme to systematically record the efforts in each field has been discussed. It 
also gives the structure of the vast field of assembly line balancing according to characteristic practical settings 
and highlights relevant model extension which is required to reflect real world problems. In [12], the reviews on 
important problem setting alternative buffer configurations, resulting decisions problems are described. The as-
sembly line balancing besides the advantage of genetic algorithm and soft computing and hybrid systems in-
creases the multi objective assembly line problems are studied in [13]. In [14], it presents an integer program-
ming formulation for sequencing problem in mixed model assembly lines where number of temporarily hired 
utility works and setup are to be optimized simultaneously through a cost function. In [15], it has been proposed 
to balance the product variety and manufacturing complexity by relative complexity method and find the best set 
of product variants to be offered while balancing market share and complexity. The multi objective ant colony 
optimization algorithm for smooth production has been discussed in [16]. The objective is to have minimum 
number of stations for given cycle time. 

The particle swarm optimization algorithm with negative knowledge to solve multi-objective two sided 
MMAL problems is discussed in [17]. The knowledge of poor solutions is also utility to avoid the pairs of adja-
cent tasks appearing in the poor solutions from being selected as part or new solutions in the next generation. In 
[18] it has been solve the balancing and sequencing problem in MMAL to minimize total utility by new mixed 
integer linear programming model is developed to provide the exact solutions of the problem with standard time. 
A new hybrid algorithm which executes ant colony optimizations in combination with genetic algorithm 
(ACO-GA) for MMALBP-1 (mixed model assembly line balancing problem) such as parallel workstations, 
zoning constraints, and sequence dependent setup times between tasks has been presented in [19]. The multiple 
colony hybrid bees algorithm for mixed model assembly line balancing problem for low, medium, high variabil-
ity of setup times and compared with single colony algorithm in terms of computation time and solution quality 
is discussed in [20]. 

From the above literature survey, Mondon find the sequence for mixed model assembly, Mitenberg develop it 
and find feasible algorithm for low variation parts, we use his algorithm as seed, McMullan derive five types of 
heustics and compare genetic algorithm, tabu, and ant colony algorithm, and from this we use heustics weigh-
tages. We study the various types mixed model assembly application, problems and solutions. 

3. Mixed Model Assembly Line 
The mixed model assembly line may vary from product to product, when large lots of parts assembly, the sche-
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duling is difficult. The usage rate is high or low which depends upon the product assembly. The just in time sys-
tem works for constant rate of usage for all parts. The small lot of sequence of products is minimizing the varia-
tion in the usage of each part that it can achieve a constant rate of part usage by considering only the demand 
rates for the products. 

Minimizing setup is also important in the production line. A set up is required each time two consecutive 
items in the production sequence are different. An objective function value for the production sequence is utility 
and setup, then determinate a composite measure of utility and setup. The main aim is to minimize the utility 
and setup which is combination natural problem. The weightage of each utility and setup has introduced for 
various weightages applied to utility and setup and find the optimum weightage of function value and sequence.  

3.1. Notations 

N products with demand 1 2, , , nd d d . Totally 
1=

= ∑ n
T ii

D d  units are to be produced. 1 =
i

T

dr
D

, is the proposi-

tion of product “I” demand to the total demand.  
The objective is to schedule the assembly line that the proportion of product “i” produced to the total produc-

tion is close to r1 as possible. 
Let Si,k, 1, 2, ,= i n , 1, 2, ,=  Tk D , where Si,k is either 0 or 1 be a production schedule.  
If Si,k = 1 then product i will be produced during stage k. 

,1
1

=
=∑ n

i ki
S , for all k, because only one product can be produced during each stage.  

Let, , ,1=
= ∑ k

i k i ki
x S  be the total production of product i over stages 1 to k. 

Clearly, ,i kx  is a non-negative integer and ,1=
=∑ n

i ki
x k , for all k. The objective might be one of the follow-

ing, 

( )2
,1 1

Minimize
= =

−∑ ∑TD n
i k ik i

x r                                  (1) 

,1
, 1, 2, ,

=
==∑ 

n
i ki Tkk Dx                                   (2) 

, =i k ix kr                                           (3) 

The objective function is equal to zero and constraints are satisfied.  

1 1 1,= = =
= ==∑ ∑ ∑n n n

i i ii k i ix kr rk k                               (4) 

3.2. Miltenberg Algorithm  
The flowchart of miltenberg’s algorithm is shown in Figure 2 and it finds the nearest point M to point X, where 

1 1= =
= =∑ ∑n n

i ii i
m x k   

1. Calculate 
1=

= ∑ n
ii

k x  

2. Find the nearest non-negative integer mi to each coordinate xi, that is, Find mi, so that 1
2

− ≤i im x , 

1, 2, ,= i n . 

3. Calculate 
1=

= ∑ iim
nk m  

a) If 0− =mk k  stop. The nearest integer point is ( )1 2, , ,=  nM m m m  
b) If 0− >mk k  go to step 5 
c) If 0− <mk k  go to step 6 
4. Find the coordinate xi with the smallest mi − xi increment the value of this mi; mi → mi + 1 Go to step 3 
5. Find the coordinate xi with largest mi − xi decrement the value of this mi; mi → mi − 1Go to step 3 
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Figure 2. Flowchart of Miltenberg’s algorithm.                                            

3.3. Objective Function 
3.3.1. Minimizing the Setups 
The number of setup  

1=
= ∑ TD

kk
S S                                       (5) 

where, k = Index of the position in the sequence if the product in position k is different from product in position 
k − 1, then setup is require and Sk = 1, 0 otherwise it is assumed here that initial setup is required regardless in 
sequence. It should be noted that the setup time are assumed to sequence independent, so that the machine does 
not depend on which other product preceded it on that machine. 

3.3.2. Minimizing the Utility  
2

,1 1= =

 
= − ⋅ 

 
∑ ∑TD n i

i kk i
T

dU x k
D

                             (6) 
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While keeping the usage of materials as constant as smooth as possible is of extreme importance when dif-
ferent products are to be made on an assembling line, this usage rate of material is especially sensitive to the 
production sequence. Because the material usage rate is sensitive to the production sequence, considerable effect 
has gone into development or techniques intended to minimize this material usage rate. 

3.4. Composite Objective Function Value 
An objective function value of the production sequence is then determined with composite measure of utility 
and setup, where Wu is the weight placed upon the usage rate and Ws is the weight place upon the number of se-
tups. The composite functions is  

Min s uE W S W U= +                                    (7) 

Sequencing Heuristics Used 
In [5], it derives the different heuristics according to different weightage of utility and setup. The different heu-
ristic are used to obtain the different objective function are  

Heuristic 1  
Min =E S                                       (8) 

This heuristic sequences the products in such a way that the required number of set ups is minimized. It does 
not require minimum setup, it does not require heuristics, it get from inspection. 

Heuristic 2 
Min =E U                                       (9) 

This heuristic minimizes the material usage rate and it is addressed in [21], which is simplification of Milten-
burgs sequence in [2]. 

Heuristic 3 
Min 14.2755 1= +E S U                                (10) 

This heuristic sequence produces in such a way that composite function of both utility and set up is minimized. 
The coefficients used for this objective function come from sampling in such a way that both utility and setups 
are gives equal contribution. The coefficient is derived in [4]. 

Heuristic 4 
Min 3 14.2755 1= × +E S S                              (11) 

In this heuristic, the number of setup is 3 times minimizing, so that the utility and setups are minimizing. The 
importance of setup time is three times more than utility but the utility importance is still considered.  

Heuristic 5 
Min 14.2755 3= +E S U                               (12) 

 In this the minimizing utility is 3 times as minimizing the number of setup. The utility and setup is consider 
but the importance of utility is three time than setup. 

For first two objectives, it does not require to minimize, because it comes directly from its own minimizes the 
number of require setups and utility rates. But other objectives to be minimize by using simulated annealing 
with respect of the weights Wu, Ws, it reflect the level of importance of setup and utility. Four objective functions 
were evaluated and for varying weightages can be placed to lower the number of setups and usage rates. The  
used four types of heuristics are = +E U S , 1 3= +E U S , 2 3 14.27= + ×E U S , 3 3= +E U S . 

3.5. Heuristic Methods and Proposed Algorithm 
A Heuristic is simply a rule of thumb, hopefully will find a good answer. Heuristic are typically used to solve 
complex, large, non-liner non-convex multivariate combinational optimization problems that rate difficult to 
solve to optimality. Many heuristic methods are simulated annealing, Genetic algorithm, particle swarm optimi-
zation, ant colony algorithm and Tabu search. 

A genetic algorithm is a search strategy. To implement GA, a representation of the parameters in the problem 
to be searched is developed first, several initial GA solutions are formed to make an initial populations of sever-
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al so called chromosomes, and then the GA operations selection, recombination and mutations are employed to 
improve the search repetitively as measured by a fitness or evaluation function. Particle optimization is devel-
oped from the behavior of bird and fish while searching for food, the birds are either scattered or go together 
before they locate the place where they can find the food while searching food they go from one place to another 
place where good food resource available. This information is transmitted and good information is equal most 
optimist solution. Ant colony optimization is the behavioral simulation of social insects such as Bees, ant, wasps. 
ACO simulate the collective forging habits of ants venturing out for food. A chemical substance deposited by 
ants as they travel, pheromone provides ants with ability to communicate with each other. Ants move randomly 
when they encounter a pheromone trail, they decide whether or not to follow it. The probability that an ant 
choose one path over another is governed by the amount of pheromone on potential path of interest. Tabu search 
setup that it utilities a short term memory component of previous solutions which presents cycling, which can be 
in turn result in being trapped at local optima thereby preventing finding an optimal solution. Tabu search takes 
initial solutions and makes changes to this solution during the iterative process. As changes are made, they are 
recorded on a Tabu list which is simply a listing of the recent changes or moves. It a move under consideration 
appears on the list, the move is forbidden unless its objective function value satisfies what known as aspiration 
criteria. The basic procedure is repeated until user specified stopping criteria are met. Any efficient optimization 
algorithm must use these techniques to find global maximum by exploration, new and unknown search space to 
make use of knowledge found at point previously visited. These two requirements are full filled by simulated 
annealing algorithm. SA can deal with highly now-liner models, chaotic and noisy data and many constraints. It 
is robust and general technique. The simulated annealing algorithm is better than local search methods in flex-
ibility and ability to approve global optimality. The algorithm is quite versatile since it does not rely on any re-
strictive properties of the model. The Figure 3 shows the structure of SA algorithm. 

 

 
Figure 3. Structure of SA algorithm.                              
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4. Simulated Annealing 
Simulated annealing is a random search technique which exploits an analogy between the ways in which a Meta 
cools into minimum energy crystalline structure. The simulated annealing method is for obtaining good solu-
tions to difficult optimization problems. In the early 80’s, the concept of annealing has been discussed in [22]. In 
simulated annealing, first melt the solid by increasing the temperature then slowly cool it so it crystallizes into 
perfect lattice. Solution considered as states of the physical system, objective function as energy and control pa-
rameter as temperature. 

In simulated annealing, the initial state of a thermodynamic system energy E, temperature T and the change in 
energy ∆E  is completed. If the change in energy is negative, the new state is accepted. If the change in energy 

is positive is accepted with e
∆

−
E

T , then the processes is then repeated sufficient times to give good sampling sta- 
tistics of current temperature and then temperature is decremented until the final temperature or number of itera-
tion or sufficient computational time is attain. In this, the parameter selection is very important. The parameters 
are initial temperature, final temperature and the number of iterations. If high initial temperature is chosen, it 
takes number of iterations for convergence. If a small initial temperature, the search is not adequate to the search 
space before finding the time optimum. The advantage of simulated annealing is the ability to move from local 
optimization thus the ability to find the global optimum is not related to the initial condition. The disadvantage 
of simulated annealing is the subjective nature of choosing the configuration parameters. 

4.1. Annealing Procedure 
4.1.1. Initial Temperature 
In [25], the initial and final temperature were determined by information obtained the trial to annealing process. 
In this trial, a certain number of random moves were performed to record the changes in results in the objective 
function. From this result, the minimum temperature is given by,  

( )0 min max min
1

10
= ∆ + ∆ − ∆T E E E                             (13) 

0 min= ∆T E                                     (14) 

4.1.2. Decrementing Temperature  
One of the major issues is related to the annealing schedule to cool the temperature during the annealing process. 
Various methods are used to reduce the temperature as shown in Table 1. 

The Connolly method is selected because it is clear that when the temperature is too high, a lot of uphill 
moves are accepted, when the temperature is too low, the probability is falling into a local minimum. The tem-
perature should be between these two extreme that the temperature is high but the cooling is low. The Connolly 
was designed based on this idea; hence this method has been adopted. 

In Connolly method, during these trials the initial temperature T0 and final temperature Tf are determined and 
M refers to the number of pair wise exchanges examined. 

1 1 β+ =
+

i
i

i

TT
T

, 0

0

β
−

= f

f

T T
MT T

                                (15) 

( )1
2
−

=
n n

M                                       (16) 

 
Table 1. Methods to reduce the temperature during annealing process.                                              

Wilhelm & War method [23] Golden & Skiscin method [24] Connolly method [25] Vilarinho & Simaria method [26] 

1 ,α+ =i iT T  

0 1α< <  

0
1 25+ = −i i

T
T T  

0, , 25= i  

1 1 β+ =
+

i
i

i

T
T

T
, 

0

0

β =
− f

f

T T
MT T

 

1  + = −k kT T T , 
Tk+1 = Temperature of next range  

Tk = Initial temperature 
T = reduction of temperature 
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In this equation parameter β  usually has a small value and there after the temperature reduction proceeds 
slowly and n is the number of demand. The algorithm perform depends upon the cooling rate than individual 
temperature for better result, reduction rate should be slower in middle temperature range. 

4.1.3. Random Number Generation 
A significant component of an SA code is the random number generator, which is used both for generating ran-
dom changes in the control variables and for the increase acceptance test. It is important, particularly when 
tacking large scale problems requiring thousands of iterations, so that the random numbers generator used have 
good spectral properties. The Microsoft excel VBA procedure method is inbuilt into the program for find the 
random number generation. 

4.1.4. Number of Iteration  
A constant number of iteration at each temperature is generally employed. Another method is only one iteration 
at each temperature but to decrease the temperature very slowly. The iterations at each temperature is propor-
tional to n = t/(t + 1). An alternative is to dynamically change the number of iterations as the algorithm progress. 
We use the number of iteration is total number product. 

4.1.5. Stopping Criteria 
A given total number of iterations have been completed or fixed amount of execution time, the stopping criteria 
can either be a suitably low temperature or when the system is “frozen” at the current temperature (i.e. no better 
or worse moves are being accepted). Once the final temperature has been attained, the process will stop.  

4.1.6. Parameter Set 
The initial and final temperatures were determined by information obtained in trail to the annealing process. In 
this trail certain number of random moves was performed to record the resulting changes in the objective func-
tion. From this result, the minimum value of ∆E min and maximum value of ∆E max are to be final. The initial 
temperature is set as 

( )0 min max min
1

10
= ∆ + ∆ − ∆T E E E                             (17) 

and the final temperature 0 min= ∆T E  
Another annealing schedule is how to cool the temperature during the annealing process 

1 1 β+ =
+

i
i

i

TT
T

, 0

0

β
−

= f

f

T T
MT T

, ( )
0

1
2
−

=
n n

M                       (18) 

where, M refers to the number of pair wise exchange examined, 
Ti +1 = next temperature to be set, n = no of demand.  

4.2. Simulated Annealing Algorithm 
Choose initial temperature, temperature reduction factor and final temperature; 
Select the objective function;  
Select the number of iteration;  
Find the initial energy state (E0); 
Find the randomizing, select the another energy state (E1); 
Find the difference between the two energy states 1 0∆ = −E E E ;  
Check whether ΔE < 0. If yes store the energy and find the randomly energy state. If no generate randomly X 

∈ U(0, 1) Check the whether e
∆

−
<

E
TX ; 

If yes store the energy state otherwise go for iteration. The above function is repeating until the all the itera-
tion and reduce the temperature according to reduction factor. Continue the above procedure until reach up to 
final temperature. 

Simulated Annealing Pseudocode 
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Generate initial sequence by Miltenberg algorithm and calculate objective function E. The flowchart for si-
mulated algorithm and proposed algorithm are shown in Figure 4 and Figure 5.  

Select an initial solution E0 and E1, E1 = E; 
Select an initial temperature Ti > 0; 
Select a temperature reduction function Ti+1 
Select an final temperature Tf ; 
Maximum iteration count Max IT; 
Repeat 
Set iteration count IT = 0; 
IT = IT + 1; 
Randomly generate sequence by VBA method and calculate E1; 
set ∆E = f(E1) − f(E0); 

 

 
Figure 4. Flowchart of simulated algorithm.                                                
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Figure 5. Flowchart of proposed algorithm.                                             
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If ∆E < 0; 
then set E0 = E1 (downhill move) else; 
generate random X uniformly in the range [0, 1]; 
If x < exp(−∆E/T) ; 
then set E0 = E(uphill move) ; 
If f(E0) < f(E) then E1 = E0. 
Until IT = Max; 
Set Ti = (Ti+1); 
Until stopping condition becomes true. 
Output E0 as an approximation to the optimal solution. 

5. Numerical Example 
5.1. Miltenberg Algorithm 
In Table 2, a test problem of 5 types of products A, B, C, D and E are to be produced and their demands of each 
type requires 2. The following steps will illustrate the working of Miltenburg algorithm. 

DT = A + B + C + D + E 
DT = 2+2+2+2+2 = 10 
d1 = 2, d2 = 2, d3 = 2, d4 = 2 d5 = 2 
r1 = r2 = r3 = r4 = r5 = 2/10 
K = No of stages = 2 + 2 + 2 + 2 + 2 = 10 
M = (M1, M2 ……M10) X = (x1, x2 ……x10) 
At stage K = 1 
X1 = K (r1, r2, r3, r4, r5) 
X1 = 1(2/10, 2/10, 2/10, 2/10, 2/10) 
X1 = (0, 0, 0, 0, 0) 
M1 = (0, 0, 0, 0, 0) 
Km = 0 + 0 + 1 = 1, k-km = 1 − 0 = 1 > 0 go to step 5 
Find the smallest coordinate of M 
Select m1 → m1 +1 = 0 + 1 = 1 
X1 = (1, 0, 0, 0, 0) 
Km = 0 + 0 + 1 = 1, k-km = 1 − 1 = 0 stop 
Schedule product-A 
At stage K = 2 
X2 = 2(2/10, 2/10, 2/10, 2/10, 2/10) 
X2 = (0, 0, 0, 0, 0) 
M2 = (0, 0, 0, 0, 0) 
Km = 0 + 0 + 1 = 1 k-km = 1 − 0 = 1 >0 go to step 5 
Find the smallest coordinate of M 
Select m1 → m1 + 1 = 0 + 1 = 1 
X2 = (1, 0, 0, 0, 0) 
Km = 0 + 0 + 1 = 1 k-km = 2 − 1 = 1 > 0 go to step 5 
Find the smallest coordinate of M 

 
Table 2. Test problem.                                                                                   

A 2 

B 2 

C 2 

D 2 

E 2 
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Select m2 → m2 + 1 = 0 + 1 = 1 
X2 = (1, 1, 0, 0, 0) 
Km = 0 + 1 + 1 = 2, k-km = 2 − 2 = 0 stop 
Schedule product-B 
At stage K = 3 
X3 = 3(2/10, 2/10, 2/10, 2/10, 2/10) 
X3 = (1, 1, 1, 1, 1) 
M3 = (1, 1, 1, 1, 1) 
Km = 1+ 1+1+1+1 = 5 k-km = 3 − 5 = −2 < 0 go to step 6 
Find the Largest coordinate of M3 
Select m5 → m5 -1 = 1 − 1 = 0 
X3 = (1, 1, 1, 1, 0) 
Km = 4, k-km = 3 − 4 = −1 < 0 go to step 6 
Find the Largest coordinate of M3 
Select m4 → m4 − 1 = 1 − 1 = 0 
X6 = (1, 1, 1, 0, 0) 
Km = 3, k-km = 3 − 3 = 0 stop 
Schedule product-C 
At stage K = 4 
X4 = 4(2/10, 2/10, 2/10, 2/10, 2/10) 
X4 = (1, 1, 1, 1, 1) 
M4 = (1, 1, 1, 1, 1) 
Km = 1 + 1 + 1 + 1 + 1 = 5, k-km = 4 − 5 = −1 < 0 go to step 6 
Find the Largest coordinate of M4 
Select m5 → m5 -1 = 1 − 1 = 0 
X4 = (1, 1, 1, 1, 0) 
Km = 4, k-km = 4 − 4 = 0 Stop 
Schedule product - D 
At stage K = 5 
X5 = 5(2/10, 2/10, 2/10, 2/10, 2/10) 
X5 = (1, 1, 1, 1, 1) 
M5 = (1, 1, 1, 1, 1) 
Km = 5, k-km = 5 − 5 = 0 Stop 
Schedule product – E 
At stage K = 6 
X6 = K (r1, r2, r3, r4, r5) 
X6 = 6(2/10, 2/10, 2/10, 2/10, 2/10) 
X6 = (1, 1, 1, 1, 1) 
M6 = (1, 1, 1, 1, 1) 
Km = 5, k-km = 6 − 5 = 1 > 0 go to step 5 
Find the smallest coordinate of M 
Select m1 → m1 + 1 = 0 + 1 = 1 
X6 = (2, 1, 1, 1, 1) 
Km = 6, k-km = 6 − 6 = 0 stop 
Schedule product-A 
At stage K = 7 
X7 = K (r1, r2, r3, r4, r5) 
X7 = 7(2/10, 2/10, 2/10, 2/10, 2/10) 
X7 = (1, 1, 1, 1, 1) 
M7 = (1, 1, 1, 1, 1) 
Km = 5, k-km = 7 − 5 = 2 > 0 go to step 5 
Find the smallest coordinate of M 
Select m1 → m1 +1 = 1+ 1 = 2 
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X7 = (2, 1, 1, 1, 1) 
Km = 8, k-km = 7 − 6 = 1 2 > 0 go to step 5 
Find the smallest coordinate of M 
Select m2 → m2 + 1 = 1 + 1 = 2 
X7 = (2, 2, 1, 1, 1) 
Km = 7, k-km = 7 − 7 = 0 Stop 
Schedule product-B 
At stage K = 8 
X8 = 8(2/10, 2/10, 2/10, 2/10, 2/10) 
X8 = (2, 2, 2, 2, 2) 
M8 = (2, 2, 2, 2, 2) 
Km = 10, k-km = 8-10 = −2 < 0 go to step 6 
Find the Largest coordinate of M4 
Select m5 → m5 − 1 = 2 − 1 = 1 
X8 = (2, 2, 2, 2, 1) 
Km = 9, k-km = 8-9 = −1 < 0 go to step 6 
Find the Largest coordinate of M4 
Select m4 → m4 − 1 = 2 − 1 = 1 
X8 = (2, 2, 2, 1, 1) 
Km = 8, k-km = 8 − 8 = −0 Stop 
Schedule product-C 
At stage K = 9 
X9 = 9(2/10, 2/10, 2/10, 2/10, 2/10) 
X9 = (2, 2, 2, 2, 2) 
M9 = (2, 2, 2, 2, 2) 
Km = 10 k-km = 9-10 = −1 < 0 go to step 6 
Find the Largest coordinate of M5 
Select m5 → m5 -1 = 2 − 1 = 1 
X9 = (2, 2, 2, 2, 1) 
Km = 9, k-km = 9 − 9 = −0 Stop 
Schedule product-D 
At stage K = 10 
X10 = 10(2/10, 2/10, 2/10, 2/10, 2/10) 
X10 = (2, 2, 2, 2, 2) 
M10 = (2, 2, 2, 2, 2) 
Km = 10, k-km = 10 − 10 = 0 Stop 
Schedule product-E 
Final sequence is A, B, C, D, E, A, B, C, D, E 
Set up: The number of setup require is 9 

Utility = 
2

,1 1
TD n i

i kk i
T

dU x k
D= =

 
= − ⋅ 

 
∑ ∑  

(1 −2/10)2 + (0 − 2/10)2 + (0 − 2/10)2 + (0 − 2/10)2 + (0 − 2/10)2 + (1 − 4/10)2 + (1 − 4/10)2 + (0 − 4/10)2 + (0 
− 4/10)2 + (0 − 4/10)2 + (1 − 6/10)2 + (1− 6/10)2 + (1− 6/10)2 + (0 − 6/10)2 + (0 − 6/10)2 + (1 − 8/10)2 + (1 − 
8/10)2 + (1 − 8/10)2 + (1 − 8/10)2 + (0 − 8/10)2 + (1 − 10/10)2 + (1 − 10/10)2 + (1 − 10/10)2 + (1 − 10/10)2 + (1 − 
10/10)2 + (2 − 12/10)2 + (1 − 12/10)2 + (1 − 12/10)2 + (1 − 12/10)+ (1 − 12/10)2 + (2 − 14/10)2 + (2 − 14/10)2 + 
(1 − 14/10)2 + (1 − 14/10)2 + (1 − 14/10)2 + (2 − 16/10)2 (2 − 16/10)2 + (2 − 16/10)2 + (1 − 16/10)2 + (1 − 
16/10)2 + (2 − 18/10)2 + (2 − 18/10)2 + (2 − 18/10)2 + (2 − 18/10)2 + (1 − 18/10)2 + (2 − 20/10)2 + (2 − 20/10)2 + 
(2 − 20/10)2 + (2 − 20/10)2 + (2 − 20/10)2  

U = 7.99 
E = WuU + WsS  = (1 × 7.99 +1 × 9) = 16.99 (Wu = 1, Ws = 1),  
E = 17 
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The obtained Miltenburg algorithm sequence is A, B, C, D, E, A, B, C, D, E. Now this seed sequence will 
generate the following five sequences randomly by using method of VBA Microsoft excel for the position of 
product to be produced like sequence-1 as A, C, E, B, D, C, D, A, E, B, sequence-2 as E, A, C, D, A, B, B, D, C, 
E, sequence-3 as B, C, C, B, A, E, A, D, D, E, sequence-4 as B, E, A, B, D, A, C, D, C, E, and sequence-5 as D, 
C, C, B, A, E, A, B, D. For initial trial, five random sequences as said above are generated and the correspond-
ing objective function values are calculated as E1 = 17, E2 = 18, E3 = 29, E4 = 23, E5 = 21.  

5.2. SA Algorithm 
Step 1: Find the initial temperature 
From initial trial, take Emax, Emin 

( ) ( )0 min max min 17 1 10 29.00 171
10

T E E E= ∆ + ∆ +− −∆ =  

T0 = 18.200 
Step 2: Final temperature, Tfinal = ΔEmin = 17.00 

Step 3: Temperature change 1 1
i

i
i

TT
Tβ+ =

+
 

( ) ( )1 2 10 10 1 2 45M n n= − = − =  

0

0

f

f

T T
MT T

β =
−

 318.200 17.001
45 18.200 17.0

2
01

.4 10fT −−
= =

× ×
×  

T1 = 18.2000, T2 = 18.1964, T3 = 18.1928 
T4 = 18.1892 as like T5 = 18.18 to Tn 
Step 4: 
Consider initial sequence obtained from Miltenburg algorithm and the initial energy state is its objective func-

tion value (E0) = 17. Now randomly generate sequences by VBA Microsoft excel method and calculate corres-
ponding energy state by its objective function value  

E1 = 19, E2 = 17, E3 = 20 
E4 = 26, E5 = 19, E6 = 32, ⋅⋅⋅, En 
ΔE = E1 − E0 = 19 − 17 = 2 

Step 5 
Check whether ΔE < 0, 2 < 0, No, generate random number X = 0.90  
Find 2 18.20e e 0.89E T−∆ −= =   
Check X < e−∆E/T, 0.90 < 0.89 No, the energy state is rejected.  
Go to step 4, generate another sequence by random method  
New sequence is 3425123145 and objective function value E2 = 17, 

2 0 17 17 0 0E E E∆ = − = − = < , yes, store the energy state, E0 = E2 
Go to step 4, generate another sequence by random method  
New sequence is 5341132425 and objective function value E3 = 20, 

2 0 19.99 17 2.99 0E E E∆ = − = − = < , NO, find 
2.99

18.20e e 0.84
E

T
∆

−−
==  

Generate random number X = 0.46, Check 0.46 < 0.84 then accept the energy state reset E = E2 then go to 
next iteration, up to 10 iteration, repeat procedure then reduce the temperature from 18.22 to 18.19 and continue 
the process. Up to reach of final temperature 17.00, the number of sequence generated is 3594. Finally, the ob-
tained sequence is E, D, C, B, A, D, A, C, B, E and objective value is 15.99 by simulated annealing, which is 
minimum compared with Miltenburg algorithm. The comparison of numerical results sequence is shown in Ta-
ble 3. 

6. Experimental Design and Discussion of Results 
The three problem sets are taken from [7] for analysis. The problem set 1 contains 7 types of problems with total 
demand is 10 each. The obtained results are tabulated in Table 4. The solution obtained is 2524 to 4104. The  
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Table 3. Comparison numerical results sequence.                                                              

Stage 1 2 3 4 5 6 7 8 9 10 

Product sequence 
miltenberg A B C D E A B C D E 

Product sequence 
random A C E B D C D A E B 

Product sequence 
Simulated annealing E D C B A D A C B E 

 
Table 4. Solution for problem set 1.                                                                         

Miltenburg algorithm Simulated annealing algorithm 

Problem Set Scheme u s z Sequence u s z Sequence RPT 

A (22222) 

W 7.99 9 17 1234512345 7.99 8 15.99 3254114235 5.94 

W1 7.99 9 136.47 1234512345 14.79 7 85.10 3324451215 37.64 

W2 7.99 9 393.43 1234512345 28.02 4 199.30 4433112255 49.35 

W3 7.99 9 152.47 1234512345 14 6 127.65 4522113345 16.27 

B (32221) 

W 5.69 9 14.69 1234152341 5.69 9 14.69 1243513241 0 

W1 5.69 9 134.17 1234152341 29.52 4 86.60 5223344111 35.45 

W2 5.69 9 391.13 1234152341 30.92 4 202.20 3352244111 48.30 

W3 5.69 9 145.57 1234152341 13.31 6 125.55 1354422311 13.75 

C (33211) 

W 5.4 9 14.39 1234125312 6.2 8 14.20 1322154312 1.32 

W1 5.4 9 133.07 1234125312 14.95 5 86.30 5244331112 35.14 

W2 5.4 9 434.08 1234125312 24.95 5 239.05 5244331112 44.92 

W3 5.4 9 144.67 1234125312 10.81 6 118.05 1223354112 18.40 

D (42211) 

W 4.9 9 13.9 1231451231 5.69 8 13.69 1235114321 1.51 

W1 4.9 9 133.37 1231451231 13.72 5 85.07 1142233511 36.21 

W2 4.9 9 390.33 1231451231 30.92 4 202.2 5422331111 48.19 

W3 4.9 9 143.179 1231451231 13.70 4 112.47 1143322511 21.14 

E (43111) 

W 5.8 9 14.80 1231241521 6.2 8 14.20 2113251421 4.05 

W1 5.8 9 134.27 1231241521 11.72 5 84.37 3115222411 37 

W2 5.8 9 391.23 1231241521 30.22 4 201.5 3452221111 48.49 

W3 5.8 9 145.87 1231241521 13.20 5 110.97 5112233411 23.92 

F (52111) 

W 5.4 9 14.40 1231241521 6.6 7 13.60 1251143211 5.55 

W1 5.4 9 133.87 1231241521 11.02 5 82.37 4111225311 38.4 

W2 5.4 9 390.80 1231241521 30.42 4 201.7 4352211111 48.38 

W3 5.4 9 144.67 1231241521 11 5 104.37 4111225311 27.85 

G (61111) 

W 7.00 7 14.00 1121341151 8 5 13.0 4521311111 70.1 

W1 7.00 7 99.92 1121341151 8.99 5 80.35 2111534111 24.8 

W2 7.00 7 306.78 1121341151 27.02 4 27.02 4523111111 35.3 

W3 7.00 7 120.377 1121341151 9 5 98.37 3111145211 18.64 

Sequence (A-1, B-2, C-3, D-4, E-5). 
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problem set 2 contains 9 types of problems with total demand is 12 each and the results are tabulated in Table 5. 
The solution obtained is 4300 to 5680. The problem set 3 contains 9 types of problems with total demand is 15 
each and the results are in Table 6. The solution obtained is 8524 to 11104.  

 
Table 5. Solution for problem set 2.                                                                         

Miltenberg algorithm Simulated algorithm 

Problem set Scheme u s z Sequence u s z Sequence RPT 

A (81111) 

W 7.94 8 15.94 112131141511 9.11 6 15.11 111421113511 5.2 

W1 7.94 8 122.10 112131141511 13.11 5 84.46 311111142511 30.82 

W2 7.94 8 350.42 112131141511 13.06 5 227.16 311111425111 35.17 

W3 7.94 8 138.01 112131141511 13.11 5 110.69 311111124511 19.79 

B (72111) 

W 6.77 9 15.77 121311451121 6.11 9 15.11 112114135121 0 

W1 6.77 9 135.20 121311451121 8.61 7 108.50 211134511121 19.74 

W2 6.77 9 392.15 121311451121 26.61 6 283.53 243511111121 27.6 

W3 6.77 9 148.76 121311451121 8.61 7 125.72 211113451121 15.48 

C (63111) 

W 6.66 11 17.66 121312415121 8.50 8 16.5 211152341121 6.56 

W1 6.66 11 163.63 121312415121 11.83 7 111.72 311122541121 31.72 

W2 6.66 11 477.68 121312415121 31.49 6 288.41 532241111121 39.62 

w3 6.66 11 177.00 121312415121 11.84 7 135.41 311122541121 23.49 

D (62211) 

W 6.30 10 16.30 121314511231 6.3 9 15.30 132115411231 6.13 

W1 6.30 10 149.00 121314511231 18.80 6 104.42 351111142231 29.91 

W2 6.30 10 434.50 121314511231 18.80 6 275.72 341111152231 36.54 

W3 6.30 10 161.61 1221314511231 3.38 9 138.57 121431115231 14.24 

F (53211) 

w 5.88 11 16.88 123141251321 6.38 10 16.38 213152411321 2.96 

W1 5.88 11 162.85 123141251321 20.05 6 105.67 522111143321 35.11 

W2 5.88 11 476.90 123141251321 20.05 6 276.97 522111143321 41.92 

W3 5.88 11 174.63 123141251321 8.72 8 140.32 311224115321 19.64 

G 
(52221) 

W 6.86 10 16.86 123141251321 6.86 10 16.86 123411521341 0 

W1 6.86 10 149.56 123411521341 20.69 6 106.31 451111223341 43.25 

W2 6.86 10 435.06 123411521341 20.69 6 277.61 451111223341 36.19 

W3 6.86 10 163.31 123411521341 14.86 7 144.49 431111225341 11.52 

H (43221) 

W 5.80 11 16.80 123412513421 5.80 11 16.80 124312513421 0 

W1 5.80 11 162.77 123412513421 21.80 6 107.42 221113354421 34.00 

W2 5.80 11 476.82 123412513421 21.80 6 278.72 221113354421 41.54 

W3 5.80 11 174.41 123412513421 20.97 6 148.554 522111334421 14.82 

J (44211) 

W 6.19 11 17.19 1234124512312 6.86 10 16.86 132215421312 1.91 

W1 6.19 11 163.16 1234124512312 23.19 6 108.81 511122243312 33.31 

W2 6.19 11 477.21 1234124512312 23.19 6 280.11 422211153312 41.30 

W3 6.19 11 175.553 1234124512312 10.69 8 146.2433 311222451312 16.69 

K (33222) 

W 7.08 11 18.08 123451234512 7.08 11 18.08 123451234512 0 

W1 7.08 11 164.05 123451234512 22.58 6 108.08 221133445512 34.04 

W2 7.08 11 478.10 123451234512 25.24 6 282.16 224411335512 40.98 

W3 7.08 11 178.22 123451234512 12.58 8 151.910 542211534512 14.76 

Sequence (A-1, B-2, C-3, D-4, E-5). 
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Table 6. Solution for problem set 3.                                                                          

Problem set 
Miltenberg algorithm Simulated algorithm RPT 

scheme u s z sequence u s z sequence  

A (10211) 

W 8.35 10 18.35 112131141511211 9.55 8 17.55 112411113511211 4.35 

W1 8.35 10 151.05 112131141511211 12.35 7 112.24 211111143511211 25.71 

W2 8.35 10 436.455 112131141511211 13.35 7 312.02 211111134511211 28.51 

W3 8.35 10 167.79 112131141511211 17.11 6 136.97 211111143511211 18.366 

B (11111) 

W 10.22 8 18.22 111211314111511 10.88 7 17.88 111211143111511 1.86 

W1 10.22 8 124.38 111211314111511 92.88 6 98.50 432111111111511 20.80 

W2 10.22 8 352.72 111211314111511 32.90 5 246.95 311111241111511 29.98 

W3 10.22 8 144.85 111211314111511 12.83 6 124.30 211114321151121 14.18 

C (93111) 

W 8.26 12 20.26 121131412151121 10.26 9 19.26 211114321151121 4.9 

W1 8.26 12 179.50 121131412151121 13.86 8 128.02 111223411151121 28.67 

W2 8.26 12 522.02 121131412151121 38.00 11 356.90 111212134151121 31.63 

W3 8.26 12 196.03 121131412151121 9.10 9 155.75 311411221151121 20.54 

D (75111) 

W 8.62 14 22.62 121231412512121 9.288 12 21.288 211241123512121 5.88 

W1 8.62 14 208.40 121231412512121 22.88 9 151.31 222111134512121 27.52 

W2 8.62 14 608.00 121231412512121 22.91 9 408.20 222111134512121 32.86 

W3 8.62 14 225.68 121231412512121 12.89 10 181.39 112221143512121 19.625 

E (73221) 

W 7.34 14 21.37 123141512134121 8.31 12 20.31 211431521134121 4.96 

W1 7.34 14 207.15 123141512134121 26.71 9 155.14 341112251134121 25.10225 

W2 7.34 14 606.75 123141512134121 29.13 9 414.42 345221111134121 31.69 

W3 7.34 14 221.92 123141512134121 12.44 10 180.04 411132251134121 18.87 

F (63221) 

W 7.55 14 21.55 123141523141231 7.81 13 20.82 132411532141231 3.38 

W1 7.55 14 207.33 123141523141231 14.75 1  0 157.45 411332251141231 24.71.07 

W2 7.55 14 606.89 123141523141231 33.95 9 419.24 453322111141231 30.82 

W3 7.55 14 207.37 123141523141231 5.06 10 157.88 114223351141231 23.86 

G (53331) 

W 8.35 14 22.35 123415213412341 8.35 14 22.35 123415213412341 0 

W1 8.35 14 208.13 123415213412341 28.35 9 156.78 331112254412341 24.672 

W2 8.35 14 607.79 123415213412341 28.41 9 413.7 221113354412341 31.92 

W3 8.35 14 224.88 123415213412341 13.96 11 198.86 411332251412341 11.59 

H (43331) 

W 8.35 14 22.35 123451234152341 8.35 14 22.35 124351243152341 0 

W1 8.35 14 208.13 123451234152341 30.88 9 159.31 224453311152341 23.45 

W2 8.35 14 607.69 123451234152341 28.22 9 413.51 522334411152341 31.95 

W3 8.35 14 224.84 123451234152341 18.35 10 197.76 153344221152341 12.04 

J (33333) 

W 11.9 14 25.99 123451234512345 12.49 12 24.99 133252441512345 3.8 

W1 11.9 14 211.77 123451234512345 32 9 160.43 441133225512345 24.24 

W2 11.9 14 611.34 123451234512345 32 9 417.29 114433225512345 31.74 

W3 11.9 14 235.77 123451234512345 18 11 210.97 154422331512345 10.5151 

Sequence (A-1, B-2, C-3, D-4, E-5). 
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The Miltenburg algorithm, Random generation algorithm and simulated annealing algorithm are coded in Mi-
crosoft Excel in macro and executed on an Intel processor at 2 GB under windows XP using 250 MB of RAM. 
The problem set 1 has solved with 7 types problem for all problems to all demand of product is equal but de-
mand of each product is different for each problem.  

The 4 types of heuristics have been solved. The Heuristics 1 has minimum weightage for both setups a usage 
rate. Heuristics 2 have a composite value of 14.755 for setup. The coefficient used from the sampling, so the se-
tup and material usage made equal contribution to the objective function. Heuristics 3 is weighted three times 
important of setup than minimum usage rate. Heuristics 4 is three times of usage rate than setup. So the impor-
tance of usage rate is three times than minimum setup. The all the problems with heuristics 1 to 4 are solved by 
Miltenburg algorithm and simulated annealing algorithm. The two methods are compared by RPT. 

As shown in Table 7, in Heuristics1 (Wu = 1, Ws = 1) the weightages of setup and utility are 1, denote as w. In 
Heuristics 2 (Wu = 1, Ws = 14.27) the weightages of setup is 14.27 and utility are 1, denote as w1. Heuristics3 
(Wu = 1, Ws = 42.81) the weightages of setup is 42.81 and utility are 1, denote as w2. Heuristics 4 (Wu = 3, Ws = 
14.27) the weightages of setup is 14.27 and utility are 3 denote, as w3. All the results obtained by heuristics 1 to 
4 are tabulated. For all the problem sets, the solutions obtained by Simulated Annealing heuristics shows mini-
mum compared with Miltenburg Algorithm.  

The number of setup is equal or small reduction. The comparison results of heuristics 1 to 4 are tabulated in 
Table 8. Heuristics 1 show RPT of 0% to 7.01% and number or setup is low in SA compare with Miltenburg. In 
SA number or setup is requires is 4 to 8 where as in Miltenburg are 7 to 9. The objective function in SA is 13 to 
14.69 where as in Miltenburg are 13.90 to 17. In this number or setup and usage rates is balance in SA compare 
with Miltenburg. 

In heuristics 2 shows RPT of 24 to 38.47% and number or setup is low in SA compare with Miltenburg. In SA 
number or setup is requires is 4 to 7 where as in Miltenburg are 9. The objective function in SA is 85 to 80.35 
where as in Miltenburg are 136.47 to 106.89. In this number or setup and usage rates is balance in SA compare 
with Miltenburg. 

In heuristics 3 the RPT is 49.35 to 35.45 Miltenburg the number or setup is 9. The objective function in SA is 
202.2 to 198.30 whereas in Miltenburg are 391.23 to 306.7. So the setup and usage rate is much balance in si-
mulated annealing but in heuristics 4, the RPT is 27.85 to 13.75 the objective function value in SA is 127.65 to 
98.67 but in Miltenburg is 152.47 to 104.37. 

In problem set 1, heuristic 3 shows high RPT. But the utility is more and setup is less. In heuristic 1 and 4 
shows low utility and setup is high. In heuristic 2, balancing the setup and utility as well as the RPT is high. The 
Problem type F (5 2 1 1 1) shows utility 11.02 and setup 5, objective function value is 82.37 RPT is 38.4. The  

 
Table 7. Heuristic weightages.                                                                              

Heuristic number WS WU 

1 1 1 

2 14.27 1 

3 3 * 14.27  =  42.81 1 

4 14.27 3 

 
Table 8. Comparison results of Miltenburg and simulated annealing for heuristic 1 to 4.                                 

Heuristics 
Problem set 1 Problem set 2 Problem set 3 

Miltenburg 
algorithm SA RPT Miltenburg 

algorithm SA RPT Miltenburg  
algorithm SA RPT 

Heuristic 1 13.90 13.00 7.01 15.77 15.11 6.13 18.22 17.55 5.88 

Heuristic 2 99.92 80.35 38.40 122.10 84.46 43.25 124.38 98.50 28.67 

Heuristic 3 306.78 239.05 49.35 350.42 227.16 41.92 352.72 246.3 32.86 

Heuristic 4 120.37 98.37 27.85 138.01 110.69 23.49 144.85 128.02 23.86 
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optimum sequence is D, A, A, A, B, B, E, C. In problem set 2 the heuristic 3 shows high RPT. But the utility is 
more and setup is less. In heuristic 1 and 4 show low utility and setup is high and RPT is low. But in heuristic 2 
shows the RPT is moderate as well as balancing the utility and setup.  

In problem type F (5 2 2 2 1) shows the utility 20.69 and setup 6 and objective function value is 106.31 and 
RPT is 43.25. So the obtained optimum sequence is D, E, A, A, A, A, B, B, C, C, D, A. In problem set 3 the 
heuristic 3 shows high RPT of 32.86, but the utility is more and setup is less. In heuristic 1 and 4 show low util-
ity and setup is high and RPT is low. But in heuristic 2 shows the RPT is moderate as well as balancing the util-
ity and setup. In problem type D (93111) shows the utility13.86 and setup 8 and objective function value is and 
RPT is 28.67. So the obtained optimum sequence is A, A, A, B, B, C, D, A, A, A, E, A, A, B, A. 

So it has been concluded that from the above problem sets analysis, RPT is high in heuristic3 for the problem 
set1. The simulated annealing solution is 49.35% improved then Miltenberg algorithm. The utility and setups are 
most minimized. The RPT is low in heustics 1 for problem set 3. The simulated annealing solution is only 5.88% 
improved then Miltenberg algorithm solution. From the above results, we conclude that setup is three times 
more important than utility. 

7. Computational Time  
The solutions for all the three problem sets are found and CPU time taken from each heuristic is presented. The 
details are presented in Tables 9-12 and the problem sets are mentioned in Annexure. In the computational 
problems, finding the CPU time is important because CPU time should be less. In the problem sets, the average 
cpu time is 70.66.and solutions is 5662. 

 In problem set 1, the average CPU time is 23.47 and solution is 2947. For problem set 2 average CPU time is 
58.16 and solution is 4820. For problem set 3 average CPU time is 130.35 and solution is 9218.  

The comparison of CPU time is shown in Figure 6. Among the all weightages, W3 have less CPU time of 
66.61, no of solution is 5229 and w2 take CPU time of 66.97 for 5342 solution, and w1 take CPU time of 81.12 
for 6288 solutions.  

 

 
Figure 6. Comparison of CPU time.                                                                          

 
Table 9. Computational time for problem set 1.                                                                

Problem 
W W1 W2 W3 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

No. of 
solution 

CPU time 
(secs) 

B (22222) 3594 20.10 2494 13.36 2734 19.10 2624 20.10 
C (32221) 4154 24.20 2784 14.36 3054 20.10 2534 14.10 
D (33211) 4104 30.24 3216 43.30 3293 15.20 2524 12.52 
E (42211) 3914 37.14 2604 35.00 2744 10.16 2544 33.10 
F (43111) 3174 42.10 2454 34.40 2494 09.39 2687 37.55 
G (52111) 2884 15.10 2764 35.10 2804 09.13 2664 21.16 
H (61111) 3354 25.10 3034 34.20 2914 09.01 2364 23.10 
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Table 10. Computational time for problem set 2.                                                               

Problem 
W W1 W2 W3 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time  
(secs) 

No. of  
solution 

CPU time 
(secs) 

B(81111) 4420 32 4432 58 4456 50 4372 50 

C(72111) 6556 89 4468 61 4780 55 4648 55 

D(63111) 5680 49 4756 70 4650 54 4768 54 

E(62211) 5200 90 4540 61 4200 53 4564 53 

F(53211) 5092 38 4672 56 4300 40 4564 40 

G(52221) 5836 70 5140 78 5080 45 4360 45 

H(43211) 5680 65 4884 65 5128 60 4492 60 

I(44211) 5560 58 5284 68 5668 64 4600 64 

J(33222) 5776 74 4144 60 4252 55 4329 55 

 
Table 11. Computational time for problem set 3.                                                                 

Problem 
W W1 W2 W3 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

No. of  
solution 

CPU time 
(secs) 

B (102111) 7500 92 9525 116 10264 85 8614 125 

C (111111) 10744 88 9600 117 9994 160 9034 132 

D (93111) 10579 180 8944 129 9154 140 8494 115 

E (75111) 9829 181 8674 87 9574 152 8404 110 

F (73221) 9285 170 8954 76 9484 144 8524 120 

G (63221) 11104 195 8615 118 8884 123 8569 130 

H (53331) 10984 180 9229 126 9574 150 8629 142 

I (43331) 10789 170 9159 115 7872 117 8449 124 

J (33333) 8600 120 8610 104 8929 143 8705 117 

 
Table 12. Total average number of solutions and CPU time.                                                       

Problem 
set 

W W1 W2 W3 Cumulative average  
of all heuristics 

Average no 
of solutions 

Average 
CPU time 

Average no 
of solutions 

Average 
CPU time 

Average no 
of solutions 

Average 
CPU time 

Average no 
of solutions 

Average 
CPU time 

Average no 
of solutions 

Average 
CPU time 

Problem  
set 1 3597 27.71 2764 29.96 2862 13.15 2563 23.09 2947 23.47 

Problem  
set 2 5333 62.77 4702 64.11 4723 52.88 4521 52.88 4820 58.16 

Problem  
set 3 9934 152.88 9034 109.79 9303 134.88 8602 123.88 9218 130.35 

8. Conclusion 
In this paper, the various heuristic methods based on simulated annealing have been studied for solving produc-
tion sequence in level schedule optimization problem. The Miltenburg algorithm has been used to find the se-
quence for scheduling. The sequence has been modified to obtain another sequence and to get utility and setup 
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estimations by giving different weightages. These weights are then adjusted to obtain the desired value. Ac-
cording to different weightages, the utility and number of setups are obtained for heuristics 1 to 4. These selec-
tive heuristics procedures are applied for both Miltenburg algorithm and simulated annealing algorithm. The 
proposed algorithm based on simulated annealing technique has been applied to find production sequences when 
objective function values of setup and usage rates are desired as minimum. The results obtained are found to be 
useful to take good managerial decisions on production sequences. Three problem sets up to 15 numbers of 
products are solved and the results obtained for all the heuristics and results are compared to obtain balanced 
setup and utility and minimize the objective function value.  
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Annexure 
Problem Set 1 

 
B 6 1 1 1 1 

C 5 2 1 1 1 

D 4 2 2 1 1 

E 4 3 1 1 1 

F 3 3 2 1 1 

G 3 2 2 2 2 

H 2 2 2 2 2 

 
Problem Set 2 

 
B 8 1 1 1 1 

C 7 2 1 1 1 

D 6 3 1 1 1 

E 6 2 2 1 1 

F 5 3 2 1 1 

G 5 2 2 2 1 

H 4 3 2 2 1 

I 4 4 2 1 1 

J 3 3 2 2 2 

 
Problem Set 3 

 
B 11 1 1 1 1 

C 10 2 1 1 1 

D 9 3 1 1 1 

E 7 5 1 2 1 

F 7 3 2 2 1 

G 6 3 3 2 1 

H 5 3 3 3 1 

I 4 3 3 3 2 

J 3 3 3 3 3 
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