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Abstract 
Multilevel inverters have gained much attention for its operation involving applications ranging 
values of high power rating. This paper proposes a switching topology for asymmetric multilevel 
inverter utilizing less number of power electronics components. When the number of the output 
level increases, it requires more switching states and eventually the number of switching compo-
nents. The increased number of switches results in higher switching losses which may lead to 
power loss, and reduction of efficiency of the overall conversion system. The salient feature of this 
proposed topology is that the module can be used as a sub multiple level structure and can be ex-
tended for any number of level with minimal increase in the switching components. 
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1. Introduction 
In the field of Power Electronics major applications require power conversion either from ac to dc or vice versa. 
Inverters, which convert dc to ac, were utilized in many applications both involving high- and low-level power 
ratings. The demand connecting a power semiconductor directly to a high-voltage circuit has drawn much atten-
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tion catered by the use of multilevel inverters (MLI) which can also be used for high power applications with 
low power switching devices. The functioning of multilevel inverters was introduced in the year 1975 [1] and 
three-level inverter concept was coined by Nabae et al. [2], which involves linking multi dc voltage sources with 
semiconductor switches to form a staircase waveform to a near sinusoidal waveform. Apart from a two-level 
conventional inverter, the multilevel inverters can be utilized for several edge features like, reduced voltage 
stress in switches, less harmonic distortion in the output, operation both at frequencies of fundamental switching 
and high switching frequency PWM, reduced electromagnetic interference and high efficiency. The sources in-
volved in a multilevel inverter can be any dc source involving renewable, non-renewable or capacitors. There 
are several configurations available for formulating the MLI. The most common topologies can be classified as 
1) Diode clamped MLI [2] 
2) Flying capacitor MLI [3] 
3) Cascaded H-Bridge MLI [4] 

In a diode clamped MLI, the requirement for the number of diodes for each phase can be given by (m − 1)(m − 2) 
for an “m” level inverter output. When the number of levels in the output becomes very high, the requirement 
for the number of diodes in the circuitry becomes impractical to implement. In a flying capacitor MLI topology, 
it requires a large number of bulky capacitors to clamp the voltage as in case of diode clamping. An “m” level 
converter requires about (m − 1)(m − 2)/2 numbers of per phase clamping capacitors and in addition to that the 
topology requires (m − 1) numbers of main dc-bus capacitors. 

The Cascaded H-Bridge Multi-Level Inverter (CMLI) has many advantages compared to other inverter to-
pologies in application at high power rating due to its modular nature of modulation, control and protection re-
quirements of each full bridge inverter [5]. A cascaded multilevel inverter does not need a large number of 
transformers, clamping diodes as in a diode-clamped multilevel inverters and requirements of the flying capaci-
tors, as by flying capacitor multilevel inverters. It also has the advantage of being more suitable to high-voltage, 
high-power applications, generates a multistep staircase voltage waveform approaching a pure sinusoidal output 
voltage by increasing the number of levels, and it does not require voltage balance devices. 

Multilevel inverters using independent dc sources can be classified in two types, both symmetric MLI with 
equal magnitude in dc voltages and asymmetric MLI with different dc voltage ratios. The symmetric MLI can 
synthesize an ac voltage with 2n + 1 numbers of output levels, where “n” denotes the number of dc sources. The 
asymmetric MLI can have different voltage ratios, either a binary configuration [6] with a ratio of 1:2:4 as pow-
ers of two or tertiary configuration [7], with voltage ratios of 1:3:9 as powers of three [8] can give an output 
voltage of “n” th power of 3 levels. 

The quality of the output power can be considerably increased with the increase of the number of the output 
voltage levels which leads to the involvement of large number switching semiconductor devices along with its 
gate devices. Lower the number of switches, lesser will be the switching losses associated with the circuit con-
figuration. It is equally true that when the number of switches is less, lesser will the level of the output and the 
magnitude of total harmonic distortion (THD) increases posing a severe threat to the quality of the power hence 
converted. 

So an increase in the number of output levels leads to the increase in cost and complicity of the circuit as well 
as leading to increased switching losses of all the switches being used in the circuit leading as a reduced overall 
efficiency of the system. The same is being compared for different output voltage levels as shown in Table 1. 
As per the comparison made [9] in Table 1, the necessity of switches for a 3 level output is less, which gives a 
higher THD. This may be a factor of advantage when the switching loss associated is less but is undesirable with 
respect to THD which ensures poor power quality. As the number of output levels increases slightly more, more 
switches have to be used which gives a moderate switching loss and a moderate distortion. The quality of the 
power improves as the level of the inverter output increases largely but the switches used and the switching 
losses becomes drastically high, resulting in less efficiency because of the large increase in the switching losses. 

In order to reduce the complexity of practical implementation, it is desirous in reducing the number of 
switches while having the availability to produce all odd and even levels at the output voltage. The structures 
with reduction in the number of switches consequently results in modularity and less switching losses. Hence it 
is desirable that irrespective of the level of the multilevel inverter output, if the switches used in the circuit con-
figuration can be reduced it is possible to compromise between the number of output levels and the number of 
switches used. There are several configurations which were proposed earlier [10]-[18] where reduction in the 
number of components was a primary concern. Reduction in the number of switches can not only make the circuit  
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Table 1. Comparison of different total harmonic distortion and switching.                                                    

S. No. Output level Total harmonic 
distortion 

Number of 
switches required 

1 3 High (Undesirable) Less (Desirable) 

2 15 Moderate (Desirable) Moderate (Desirable) 

3 63 Too low (Desirable) Too high (Undesirable) 

 
robust but also can reduce the number of driver circuits of each reduced switch and the number of antiparallel 
diodes, if necessary. This can also result in making the circuitry modular, leading to a compact circuit and a 
good economy. 

In this paper such a new topology is proposed for both symmetrical and asymmetrical configuration with ef-
fort of reducing the number of the components used in the circuit. This configuration can be visualized as a sub 
multiple level structure utilizing only the positive output voltage with an aid of single H-Bridge circuiting for its 
functioning. The paper is structured as follows. Section 2 presents the structure, the different modes of operation 
and the various switching states of the proposed topology. Section 3 describes about the losses incurred in the 
switches which is being derived mathematically. Section 4 discusses with the various results drawn out through 
simulation and experimental prototype developed from the proposed configuration and Section 5 summarizes 
the conclusions. 

2. Proposed Configuration 
The working of this circuit can be explained with two inputs dc sources Vdc1 and Vdc2. Figure 1 represents a ba-
sic unit of the first proposed topology for a unit fed by two dc sources. The voltage across AB denoted by VAB 
will generate a voltage only in the positive half cycle with a multilevel output. This has to be assisted by a con-
ventional H-bridge represented by switches T1 to T4 to produce a multilevel output both in the positive and neg-
ative cycles to feed the appropriate load connected shown by V0. 

The switches connected in series with the voltage source cannot be turned ON with its complementary switch 
connected across the voltage source to avoid short circuit. The circuit as shown in Figure 1 will be able to pro-
duce an output for nine different levels i.e., four positive and negative state and a zero state. Table 2 summarizes 
the different states of the switches and the corresponding output that each switching state will be able to produce 
across AB. Table 2 describes the various switching states and all possible output voltage levels that a basic unit 
of the proposed configuration can generate when fed by two voltage sources. 

The combination of the switches are tabulated for the generated output voltage of the proposed configuration of the 
multilevel inverter where 1 and 0 represents the ON and OFF states of the switching devices respectively. When dc 
voltage sources are chosen with equal magnitude (symmetric configuration), the number of output voltage level 
reduces and to increase the voltage levels unequal voltage sources (asymmetric configuration) are selected. The Table 
2 also represents all the possible positive levels of voltages which can be synthesized across AB. These voltages when 
fed to the H-Bridge can produce all possible output levels in positive and negative at Vo. 

The same basic unit proposed can be extended for any circuit with a general topology with a stipulated number 
of switches for a particular number of input dc sources. Let “n” represent the number of dc sources proposed to be 
used in a circuit. 

The number of required dc voltage sources required for the circuitry can be given by 

sourceN n=                                            (1) 

switch 4 2N n= −                                                 (2) 

driver switch  4 2N N n= = −                                            (3) 

For an asymmetrical MLI with a binary relationship with the dc voltage inputs, 

( )2 1dcn dcV i V= −                                                 (4) 

where 1,2,3, , .i n=   
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Figure 1. Proposed basic unit fed by two dc sources.                                                                                                       
 
Table 2. Switching state for a proposed unit fed by two voltage source.                                                    

Mode S1 S2 S3 S4 S5 S6 V0 

1 
0 0 1 1 1 0 

0 
0 1 0 1 0 1 

2 1 0 0 0 1 1 V1 − V2 

3 0 1 1 1 0 0 V2 

4 1 0 1 0 1 0 V1 

5 1 1 1 0 0 0 V1 + V2 

 
( )12 1n

stepN += −                                      (5) 

( )0max 2 1n
dcV V= −                                     (6) 

For an asymmetrical MLI with a ternary relationship with the dc voltage inputs, 
( )13 i

dci dcV V−=                                      (7)  

where 1,2,3, , .i n=   

3n
stepN =                                         (8) 

( )( )0max 3 1 2n
dcV V= −                                   (9) 

The same topology can be extended for a circuitry fed by three independent voltage sources as shown in Figure 
2. By extending the same configuration for an additional dc source only four switches namely S3, S7, S8 and S10 
more switches namely have to be increased. Considering three dc voltage sources as inputs, i.e., for n = 3 

source 3N =                                        (10) 

switch 10N =                                        (11) 

driver switch 10N N= =                                    (12) 

For an asymmetrical MLI with a binary relationship with the dc voltage inputs, 

step 15N =                                         (13) 

0max 7 dcV V=                                        (14) 

For an asymmetrical MLI with a tertiary relationship with the dc voltage inputs, 
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27stepN =                                        (15) 

0max 13 dcV V=                                      (16) 

The detailed operation of the proposed topology can be analyzed for its switching states as in the Figure 3 
which explains different modes of operation as stated by Table 3. Circuits shown from Figure 3(a)-(n) describes 
the different states of output voltages 0, V3, V2 − V3, V2, V2 + V3, V1 − V2 − V3, V1 − V2, V1 − V2 + V3, V1 − V3, V1, 
V1 + V3, V1 + V2 − V3, V1 + V2 and V1 + V2 + V3 respectively. Thus fourteen levels of the positive voltage outputs 
can be obtained across AB. The same positive voltage can be obtained across the load energizing the switches T1 
and T2 of the H-bridge excluding the zero output voltage, thirteen negative outputs of the same magnitude can be 
obtained with the use of the H-bridge with T3 and T4 energized. 

Table 3 represents all the possible positive levels of voltages which can be synthesized across AB for the pro-
posed topology fed by three dc sources. The switching states as shown in the table represent the different state of 
switches for different combinations of the switches where 1 and 0 represents the ON and OFF states of the 
switching devices respectively. 

 

 
Figure 2. Proposed basic unit fed by three dc sources.                                                                      

 
Table 3. Switching state for a proposed unit fed by three voltage source.                                                                                                        

Mode S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 V0 

1. 
0 0 0 0 1 1 1 0 0 0 

 
0 0 1 0 0 1 0 0 1 0 1 

0 0 1 0 1 1 0 0 1 1 
2. 0 0 1 1 1 1 0 0 0 0 V3 
3. 0 1 0 0 1 0 1 0 1 1 V2 – V3 
4. 0 1 0 1 1 0 1 0 0 0 V2 
5. 0 1 1 1 1 0 0 0 0 0 V2 + V3 
6. 1 0 1 0 0 1 1 1 0 1 V1 − V2 − V3 
7. 1 0 0 0 0 1 0 1 0 1 V1 − V2 
8. 1 0 0 1 0 1 0 1 1 0 V1 − V2 + V3 
9. 1 0 0 0 0 1 1 0 1 1 V1 − V3 
10. 1 1 0 0 0 0 0 1 0 1 V1 
11. 1 0 1 1 0 1 0 0 0 0 V1 + V3 
12. 1 1 0 0 0 0 1 0 1 1 V1 + V2 − V3 
13. 1 1 0 1 0 0 1 0 0 0 V1 + V2 
14. 1 1 1 1 0 0 0 0 0 0 V1 + V2 + V3 
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3. Loss Calculation 
There are two kinds of losses associated with switches and they are 
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Figure 3. Different switching states for various output voltages (a) 0, (b) V3, (c) V2 − V3, (d) V2, (e) V2 + V3, (f) V1 − V2 − 
V3, (g) V1 − V2, (h) V1 − V2 + V3, (i) V1 − V3, (j) V1, (k) V1 + V3, (l) V1 + V2 − V3, (m) V1 + V2, (n) V1 + V2 + V3.                                                    

 
1) Conduction loss; 2) Switching loss 
Conduction loss is the amount of energy lost across the switch due to the voltage drop by equivalent resistance. 

Switching loss across the switch is caused during the turn ON and turn OFF of the switches. 
To calculate the total losses initially the loss for a single switch is calculated and then the individual losses are 

then added together to get over all losses for the inverter [19] [20]. 
The conduction loss of the switch can be calculated by the following equation. 

( ) ( ) ( )ß
sw SWpc t V R i t i t = +                                          (17) 

where Vsw = switch forward voltage drops, RSW = switch equivalent resistance, ß = constant related to switch spe-
cification. 

Total conducting loss is given by 

( ) ( )
2π

0

1 d
2πC SWP N t pC t t= ∫                                 (18) 

where, NSW is the total no of switches. 
To calculate the switching losses of each and every individual switch during the switching period linear ap-

proximation of voltage and current are used.  
Energy loss during turn on is given by 
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( ) ( )
0

 dont
ONE v t i t t= ∫                                    (19) 

[ ] ( ){ }0
dont

sw on on onV t t I t t t t  = −  ∫
1
6 sw onV It=                         (20) 

where EON = turn on loss of the switch, ton = turn ON time of the switch, I = current in the switch after turning 
ON, Vsw = voltage to be blocked by the switch. 

Energy loss during turn off is given by 

( ) ( )
0

 dofft
OFFE v t i t t= ∫                                   (21) 

( ){ }0
dofft

sw off off offV t t I t t t t   = −    ∫
1
6 sw offV It=                        (22) 

where EOFF = turn OFF loss of the switch, toff = turn OFF time of the switch.  
By summing the energy loss both due to turn ON and turn OFF, the overall switching loss can be obtained.  
The total switching loss for “N” no of switch is given by 

( )1 1 6  N
s SW on off SWSWP V I t t f

=
 = + ∑                              (23) 

where fSW is the switching frequency of the switches. 
The total inverter losses can be given by 

losses c sP P P= +                                       (24) 

4. Simulation and Experimental Results 
Table 4 shows the different output voltage levels of the proposed configuration when it is operated at symmetric 
and asymmetric modes. The general formula for the number of output levels are discussed under Section 2I. 
Accordingly, when “n” number of independent dc sources is used, the number of output levels for symmetric 
and under asymmetric mode both binary and tertiary relations are tabulated in Table 4. 

The same is compared in all these three relationship with respect to the number of dc sources used as shown 
in Figure 4 for the proposed configuration. It is imperative that asymmetric mode yield the maximum number of 
output voltage levels under tertiary relationship of dc voltages. 

To verify the correctness and to evaluate the proposed configuration, a 27 level multilevel inverter hardware 
prototype is developed. Figure 5 shows the hardware setup for the proposed multilevel inverter where 10 num-
bers of IGBT (GN2470) switches with a voltage and current rating of 700 V and 3.5 A respectively are used. 
The proposed configuration is made to work in the asymmetrical mode with a tertiary relationship between the 
voltage sources employing three dc voltage sources. Voltages from three voltage sources with magnitudes 3 V, 9 
V and 27 V are given as voltage inputs for the hardware prototype and the output voltage The DSP controller 
TMS320F204 is used for generating the switching pulses for the same. Gate pulses for the different switching de-
vices from S1 to S10 are shown in figures from Figures 6(a)-(f) for developing 27 outputs levels obtained as be-
ing portrayed by Figure 7. 

 
Table 4. Comparison of the proposed configuration in symmetric and asymmetric modes.                                                    

S. No No. of Sources No. of Switches 
No. of Output Levels 

Symmetrical Asymmetrical Binary Asymmetrical Tertiary 

1. 01 02 03 03 03 

2. 02 06 05 07 09 

3. 03 10 11 15 27 

4. 04 14 19 31 81 
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Figure 4. No. of output levels for different configurations.                                                                                                       

 

       
 

Figure 5. Hardware prototype of the proposed model.                                                    
 

 
Figure 6. Gate pulses for switches (a) S9; (b) S1, S5; (c) S8; (d) S2, S6; (e) S4, S10; (f) S3; and S7.                                                     
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Apart from the developed hardware prototype, the proposed configuration is synthesized with simulation tools 
with MATLAB/Simulink (Version 7.12) and Proteus (Version 7.6). Based on the simulation made with 
MATLAB/Simulink, Figure 8 depicts the different gate pulses for the various switches from S1 to S10 with its 
timing sequences. Accordingly with the gate pulses applied, the voltage output across AB (VAB) as referred in 
Figure 2 is obtained with a 14 level output, which is the voltage taken across AB obtained before feeding the 
voltage to the H-bridge converter constituting switches T1, T2, T3 and T4. 

Taking V1, V2 and V3 as 45 V, 15 V and 5 V respectively in a tertiary relationship of asymmetrical mode as 
shown in Figure 9 yields a peak voltage of 65 V. For obtaining both the positive and negative level output vol-
tages of 27 level output, the voltage such synthesized is fed to switches T1 and T2 for getting positive level out-
put voltages and transferred to switches T3 and T4 for getting negative level output voltages. Accordingly, the 
voltage and current output for a resistive load of 1 KW is taken for analysis and the outputs thus obtained are 
shown in Figure 10 which can also be extended to various other loads. 

 

 
Figure 7. Output voltage waveform of hardware prototype.                                                    

 

 
Figure 8. Gate pulses for various switches-MATLAB.                                                                                                       
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Figure 9. Voltage output across AB (VAB).                                                                                                       
 

 
Figure 10. Output voltage and current across load.                                                                                                       
 
As seen in Figure 11(a) and Figure 11(b), the spectral analysis for the aforementioned resistive load were 

made with magnitudes of different harmonic order for its percentage of Total harmonic distortion(THD) and it 
was found that the THD of the output voltage and current results read 9.31% and 9.60% respectively. 

Analysis was made to observe the variation of the distortion caused by harmonics for a range of varying loads. 
The load was varied from 100 W to rated value of 1 KW. Figure 12 brings about the relationship between the 
variations of THD with respect to change in ranges of loads. 

It can be seen from Figure 12 that the THD of current was found to be very high when the system was oper-
ated below the 50% of rated load (1 KW) and hence the system provides better performance when operated 
above 50% of the rated load. To obtain better power quality of the output, it is imperative that the system be op-
erated at higher loads. 

Based on the simulation made with Proteus, Figures 13(a)-(c) indicates the different gate pulses train se-
quence for the various switches from S1 to S10. The voltage output across AB (VAB) as referred in Figure 2 is 
obtained with a 14 level positive output, which is the voltage taken across AB obtained before feeding the vol-
tage to the H-bridge converter is shown in Figure 14. The 27 level output voltage obtained gating the sequences 
as shown in Figure 13 is depicted as in Figure 15. 

5. Conclusion 
This paper proposes a new topology for a multilevel inverter which can be extended to “n” levels of output  
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Figure 11. THD analysis and magnitudes of different harmonics for a 27-level output (a) voltage, (b) current waveform.                                                    

 

 
Figure 12. THD variation for a range of loads.                                                                                                       

 

 
Figure 13. Gate pulses given to various switches (a) S1, S2, S3, S4; (b) S5, S6, S7; (c) S8, S9, S10.                                                     

 
voltages with all positive level voltages drawn across AB. The same configuration can be extended to draw both 
the positive and negative level output voltages utilizing an H-bridge. A good power quality in an inverter re-
quires more output levels in a multilevel inverter which necessitates the use of more number of switches which 
drastically bring about a high switching loss, resulting in reduced inverter efficiency. It is therefore required to 
reduce the number of switches even with a high multilevel to bring about modularity and less switching losses 
which eventually is taken care of in this paper. The topology also gives room to be operated with dc voltage  
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Figure 14. Voltage output across AB.                                                                                          

 

 
Figure 15. Voltage output across the load.                              

 
sources with equal magnitude (symmetric configuration) and also in unequal voltage sources (asymmetric con-
figuration) including binary and tertiary relationship between sources as in case of a conventional cascaded mul-
tilevel inverter but with an utilization of less number of switching devices and drivers. Thus the proposed confi-
guration has a good performance which can be observed from the results drawn and the effect of the use of re-
duced number of switches can unarguably increase the efficiency, modularity and a considerable reduction of 
the total cost. 
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