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Abstract 
In this paper we propose a new family of curve search methods for unconstrained optimization 
problems, which are based on searching a new iterate along a curve through the current iterate at 
each iteration, while line search methods are based on finding a new iterate on a line starting from 
the current iterate at each iteration. The global convergence and linear convergence rate of these 
curve search methods are investigated under some mild conditions. Numerical results show that 
some curve search methods are stable and effective in solving some large scale minimization 
problems. 
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1. Introduction 
Line search method is an important and mature technique in solving an unconstrained minimization problem 

( )min , ,nf x x R∈                                      (1) 

where nR  is an n-dimensional Euclidean space and 1: nf R R→  is a continuously differentiable function. It 
takes the form 

1 , 0,1, 2, ,k k k kx x d kα+ = + =                                  (2) 

where kd  is a descent direction of ( )f x  at kx  and kα  is a step size to satisfy the descent condition 

( ) ( ) , 0,1, 2,k k k kf x d f x kα+ < =                               (3) 
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One hopes that { }kx  generated by line search method converges to the minimizer *x  of (1) in some sense. 
Let kx  be the current iterate. We denote ( )kf x  by kf , ( )kf x∇  by kg , and ( )*f x  by *f , respectively. 

At the k-th iteration of line search methods, one first chooses a search direction and then seeks a step size 
along the search direction and completes one iteration (see [1]). The search direction kd  is generally required 
to satisfy 

0,T
k kg d <                                         (4) 

which guarantees that kd  is a descent direction of ( )f x  at kx  (e.g. [2] [3]). In order to guarantee the global 
convergence, we sometimes require kd  to satisfy the sufficient descent condition 

2 ,T
k k kg d c g≤ −                                      (5) 

where 0c >  is a constant. Moreover, the angle testing condition is commonly used in proving the global 
convergence of related line search methods, that is 

cos , ,
T
k k

k k
k k

g dg d
g d

η− = − ≥
⋅

                               (6) 

where 1 0η≥ > . 
In line search methods we try to find an α  to reduce ( )f x  over the ray { }0k k kS x dα α= + >  at the k- 

th iteration, while curve search method is to define the next iterate on the curve 

( ) ( ) ( ) ( ){ }1 1: , , 0 , 0 ,n
k k k k k k k kS y y R R y C y x y dα α+ ′= → ∈ = =  

where [ )0,nR+ = +∞  and ( ) 1
ky Cα ∈  means that ( )ky α  is continuously differentiable on [ )0,+∞ . It is 

obvious that line search method is a special one of curve search methods. In other words, curve search method is 
a generalization of line search methods. 

McCormick [4] and Israel Zang [5] proposed an arc method for mathematical programming, which is actually 
a special one of curve search methods. Similarly as in line search methods, how to choose a curve at each 
iteration is the key to using curve search methods. 

Botsaris [6]-[9] studied differential gradient method (abbreviated as ODE method) for unconstrained minimi- 
zation problems. It is required to solve differential equations at the k-th iteration 

( ) ( )d , 0 ,
d k
x g x x x
t
= − =  

or to solve 

( ) ( ) ( )d , 0 ,
d k
x H x g x x x
t
= − =  

where ( ) ( ) 12H x f x −= ∇  and ( ) ( ).g x f x= ∇  The ODE method has been investigated by many researchers 
(e.g. [10]-[14]) and is essentially a curve search method. 

However, it is required to solve some initial-value problems of ordinary differential equations to define the 
curves in ODE methods. Some other curve search methods with memory gradient have also been investigated 
and been proved to be a kind of promising methods for large-scale unconstrained optimization problems (see [15] 
[16]). Other literature on curve search methods have appeared in the literature [17]-[19]. To the best of our 
knowledge, the unified form of curve search methods has rarely been studied in present literature. It is necessary 
to study the general scheme of curve search methods and its global convergence. 

In this paper we present a new family of curve search methods for unconstrained minimization problems and 
prove their global convergence and linear convergence rate under some mild conditions. These method are 
based on searching a new iterate along a curve at each iteration, while line search methods are based on finding 
a new iterate on a line starting from the current iterate at each iteration. Many curve search rules proposed in the 
paper can guarantee the global convergence and linear convergence rate of these curve search methods. Some 
implementable version of curve search methods are presented and numerical results show that some curve 
search methods are stable, useful and efficient in solving large scale minimization problems. 

The rest of this paper is organized as follows. In the next section we describe the curve search methods. In 
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Sections 3 and 4 we analyze its global convergence and linear convergence rate respectively. In Section 5 we 
report some techniques for choosing the curves and conduct some numerical experiments. And finally some 
conclusion remarks are given in Section 6. 

2. Curve Search Method 
We first assume that 

(H1). The objective function ( )f x  is continuously differentiable on nR  and the level set  
( ) ( ) ( ){ }0 0

nL x x R f x f x= ∈ ≤  is bounded, where 0x  is given. 

(H1'). The gradient ( ) ( )g x f x= ∇  of ( )f x  is Lipschitz continuous on an open bounded convex set B that 
contains the level set ( )0L x , i.e., there exists M ′  such that 

( ) ( ) , , .g x g y M x y x y B′− ≤ − ∀ ∈  

Definition 2.1. Let kx  be the current iterate and B be an open bounded convex set that contains ( )0L x . We 
define a curve within B through kx  as follows 

( ) 1: ,n
ky y R Rα += →  

where [ )1 0,R+ = +∞  and ( )ky α  is continuously differentiable on 1R+  with ( )0k ky x=  and ( )0k ky d′ = . 
Definition 2.2. We call the one-dimensional function 1 1: R Rγ + +→  a forcing function if 

( ) 0 as 0,γ α α→ →  

where [ )1 0, .R+ = +∞  
It is obvious that the addition, the multiplication and the composite function of two forcing functions are also 

forcing functions. 
In order to guarantee the global convergence of curve search methods, we suppose that the initial descent 

direction kd  and the curve ( )ky α  satisfies the following assumption. 
(H2). The search curve sequence ( ){ }ky α  satisfies 

( ) ( ) ( )10 , ;k ky y kα γ α− ≤ ∀  

( ) ( )
( )

( )2

0
, ,

0
k k

k

y y
k

y
α

γ α
′ ′−

≤ ∀
′

 

where 1 1
1 : R Rγ + +→  and 1 1

2 : R Rγ + +→  are forcing functions. 
Remark 1. In fact, if there exist l  and l′  such that ( )0 ,k ky x=  and 

( ) ( )
( ) ( )

( )
0

0 , , 0,
0

k kp q
k k

k

y y
y y l l k

y
α

α α α
′ ′−

′− ≤ ≤ ∀ ≥
′

 

where ( ), 0, ,p q∈ +∞  then the curve sequence ( ){ })ky α  satisfies (H2). 
This kind of curves are easy to find. For example, 

( ) ( ){ }2
1k k k k k k kS y y x g g gα α α α −= = − −  

are curves that satisfy (H2) and so are the following curves 

( ) ( ){ }2
1k k k k k k kS y y x d d dα α α α −= = + −  

(for 1k ≥ ), provided that { }kg  and { }kd  are bounded for all 0k ≥ . 
Remark 2. If ( )= kx y α  is twice continuously differentiable and there exist M and M  such that  
( )ky Mα′ ≤  and ( ) ( )0k ky M yα′′ ′≤  for all 0k ≥ , then the curve sequence ( ){ }ky α  satisfies (H2) be-  

cause of 

( ) ( ) ( )0 0 0,k ky y M kα α α− ≤ → → ∀  

and 
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( ) ( )
( )

( )
0

0 0, .
0

k k

k

y y
M k

y
α

α α
′ ′−

≤ → → ∀
′

 

Remark 3. In line search methods, if we let ( )k k ky x dα α= +  and { }kd  be bounded for all k, then 
( ){ }ky α  satisfies (H2). As a result, line search method is a special one of curve search methods and its 

convergence can be derived from the convergence of curve search methods. 
In the sequel, we describe the curve search method. 
Algorithm (A). 
Step 0. Choose 0

nx R∈  and set : 0k = . 
Step 1. If 0kg =  then stop else go to Step 2; 
Step 2. Let ( )ky α  be defined by Definition 2.1 and ( )0k ky d′ =  satisfies (4). Set ( )1k k kx y α+ =  where 

kα  is selected by some curve search rule; 
Step 3. Set : 1k k= +  and go to Step 1. 
Once the initial descent direction kd  and the search curve ( )ky α  are determined at the k-th iteration, we 

need to seek a step size kα  such that 

( )( ) .k k kf y fα <  

For convenience, let ( )0k kd y′=  satisfy (4). There are several curve search rules as follows. 
(a) Exact Curve Search Rule. Select an kα  to satisfy 

( )( ) ( )( )
0

min .k k kf y f y
α

α α
>

=                               (7) 

(b) Approximate Exact Curve Search Rule. Select kα  to satisfy 

( )( ) ( ){ }arg min 0 .
T

k k kg y yα α α α′= =                          (8) 

(c) Armijo-type Curve Search Rule. Set 0L > , 10,
2

σ  ∈ 
 

, ( )0,1ρ ∈  and 2

T
k k

k
k

g ds
L d

= − . Choose kα   

to be the largest α  in { }2, , ,k k ks s sρ ρ   such that 

( )( ) .T
k k k kf f y g dα σα− ≥ −                               (9) 

(d) Limited Exact Curve Search Rule. Set 0L >  and 2

T
k k

k
k

g ds
L d

= − . Choose kα  to satisfy 

( )( )
[ ]

( )( )
0,

min .
k

k k ks
f y f y

α
α α

∈
=                            (10) 

(e) Goldstein-type Curve Search Rule. Set 10,
2

σ  ∈ 
 

 Choose kα  to satisfy 

( ) ( )( )1 T T
k k k k k k k k kg d f y f g dσ α α σα− ≤ − ≤                     (11) 

(f) Strong Wolfe-type Curve Search Rule. Set 10,
2

σ  ∈ 
 

 and ( ),1β σ∈ . Choose kα  to satisfy simul- 

taneously 

( )( ) ,T
k k k k k kf y f g dα σα− ≤                             (12) 

and 

( )( ) ( ) .
T T

k k k k k kg y y g dα α β′ ≤ −                           (13) 

(g) Wolfe-type Curve Search Rule. Set 10,
2

σ  ∈ 
 

 and ( ),1β σ∈ . Choose kα  to satisfy simultaneously  
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(12) and 

( )( ) ( ) .
T T

k k k k k kg y y g dα α β′ ≥ −                               (14) 

Lemma 2.1. Let ( )ky α  be defined in Definition 2.1 and ( )0k kd y′=  satisfies (4). Assumptions (H1) and 
(H2) hold and let ( ) ( )( )k kf yφ α α= . Then 

( ) ( )
( )

( )3

0
, ,

0
k k

k

k
y

φ α φ
γ α

′ ′−
≤ ∀

′
 

where ( )3γ α  is a forcing function. 
Proof. Assumption (H1) and Definition 2.1 imply that ( )g x  is uniformly continuous on B and thus, there 

exist 0M  and a forcing function ( )4γ α  such that 

( )( ) ( )( ) ( )( ) ( ) ( )( )0 4, 0 0 , .k k k k kg y M g y g y y y kα α γ α≤ − ≤ − ∀               (15) 

By (H2), Definition 2.1 and (15), noting that ( )0k ky d′ =  and ( )( )0k kg y g= , we have 

( ) ( )
( )

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )
( )

( )( ) ( )( ) ( )
( )

( )( ) ( ) ( )
( )

( )( ) ( )( ) ( )
( )

( )( ) ( ) ( ) ( )( )
( ) ( )( )

2 4

0 2 4 1

0 00
0 0

0 0 0 0

0 0

0 00
=

0 0

0 0 0

0 0

0

T T
k k k kk k

k k

T T T T
k k k k k k k k

k k

TT
k k kk k k

k k

k k k k k k

k k

k k k

g y y g y y

y y

g y y g y y g y y g y y

y y

g y g y yg y y y

y y

g y y y g y g y y

y y

g y y y

M

α αφ α φ

α α α α

αα α

α α α

α γ α γ α

γ α γ γ α

′ ′−′ ′−
=

′ ′

′ ′ ′ ′− −
≤ +

′ ′

  ′−′ ′−    
+

′ ′

′ ′ ′⋅ − − ⋅
≤ +

′ ′

≤ ⋅ + −

≤ +

( )3 .γ α=

 

□ 
Lemma 2.2. If (H1) holds and ( )ky α  is defined by Definition 2.1 and ( )0k kd y′=  satisfies (4), then kα  

is well defined in the seven curve search rules. 
Proof. Let ( ) ( )( )k kf yφ α α= . Obviously ( )0k kfφ = , ( )0 0T

k k kg dφ′ = < . The following limit 

( ) ( ) ( ) ( )
0

0
lim 0 0k k

k kα

φ φ α
φ σφ

α→+

−
′ ′= − > −  

implies that there exists 0kα′ >  such that 

( ) ( ) ( ) [ ]0
0 , 0, .k k

k k

φ φ α
σφ α α

α
−

′ ′≥ − ∀ ∈  

Thus 

( )( ) ( ) ( ) ( ) [ ]0 0 , 0, ,T
k k k k k k k kf f y g dα φ φ α σαφ σα α α′ ′− = − ≥ − = − ∀ ∈  

which shows that the curve search rules (a), (b), (c) and (d) are well-defined. 
In the following we prove that the curve search rules (e), (f) and (g) are also well-defined. 
For the curve search rule (e), (H1) and 

( )lim T
k kg d

α
σα

→+∞
= −∞  
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imply that the curve ( )( )k kz f y fα= −  and the line T
k kz g dσα=  must have an intersection point ( ),k kzα  

and thus 

( ) ( )( )1 ,T T
k k k k k k k k k kg d f y f g d zσ α α σα− ≤ − = =  

which shows that the curve search rule (e) is well-defined. 
For the curve search rules (f) and (g), (H1) and 

( )lim T
k kg d

α
σα

→+∞
= −∞  

imply that the curve ( )( )k kz f y fα= −  and the line T
k kz g dασ=  must have an intersection point and 

suppose that ( ),k kzα′ ′  is not the origin (0,0) but the nearest intersection point to (0,0). Thus 

( )( ) ,T
k k k k k kf y f g dα α σ′ ′− =                               (16) 

and 

( )( ) ,T
k k k k k kf y f g dθα θα σ′ ′− ≤                              (17) 

where [ ]0,1θ ∈ . Using the mean value theorem, there exists [ ]0,1kθ ∈  such that 

( )( ) ( )( ) ( ).T
k k k k k k k k k kf y f g y yα α θ α θ α′ ′ ′ ′ ′− =  

By (16) we have 

( )( ) ( ) ,
T T

k k k k k k k k k kg y y g dα θ α θ α α σ′ ′ ′ ′ ′=  

and thus, 

( )( ) ( ) .
T T T

k k k k k k k k k kg y y g d g dθ α θ α σ β′ ′ ′ = ≥  

Therefore, 

( )( ) ( ) .
T T

k k k k k k k kg y y g dθ α θ α β′ ′ ′ ≥                             (18) 

Obviously, it follows from (17) and (18) that k k kα θ α′=  satisfies (12) and (14) (also satisfies (12) and (13)). 
This shows that the curve search rules (f) and (g) are well-defined. 

□ 

3. Global Convergence 
Theorem 3.1. Assume that (H1), (H1') and (H2) hold, ( )ky α  is defined by Definition 2.1 and ( )0k kd y′=  
satisfies (5) and 

0 ,k kd c g≤                                     (19) 

where 0 0c >  is a constant. If kα  is defined by the curve search rules (a), (b), (c) or (d) and Algorithm (A) 
generates an infinite sequence { }kx , then 

lim 0.kk
g

→+∞
=  

Proof. Using reduction to absurdity, suppose that there exist an infinite subset { }1,2,3, ,K ⊆   and an 
> 0  such that 

, .kg k K≥ ∀ ∈                                    (20) 

(H1) implies that { }kg  has a bound, say 0M , i.e., 0 ,kg M k≤ ∀ , and thus 0 0 , .kd c M k≤ ∀  
Let 

{ }0 inf .kk K
η α

∀ ∈
=  

In the case of 0 0η > , for the curve search rule (c), there must exist 0 0η′ >  such that 
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0 , ,k ks k Kα η′> ∈                                    (21) 

because of 
2

2 2 2
0

0.
T

kk k
k

k k

c gg d cs
c LL d L d

= − ≥ ≥ >  

By (9) and (21) we have 

( )( )
2

0
0

22 2
20 0

2
0

, .

T
T T k k

k k k k k k k k k
k

k
k

k

g df f y g d s g d
L d

c g c g k K
L d Lc

η σα α σ η σ

η σ η σ

 ′
′− ≥ − ≥ − = −  

 

 ′ ′
 ≥ ≥ ∈
 
 

 

By (H1) we can obtain 
2

,
lim 0,kk K k

g
∈ →∞

=  

which contradicts (20). 
In the case of 0 0η = , there must exist an infinite subset 1K K⊆  such that 

1,
lim 0.kk K k

α
∈ →∞

=                                     (22) 

Therefore, for sufficiently large 1k K∈ , k ksα <  implies that ksα ρ ≤  and 

( )( ) ( )< .T
k k k k k kf f y g dα ρ σ α ρ− −  

Using the mean value theorem on the left-hand side of the above inequality, there exists [ ]0,1kθ ∈  such that 

( )( ) ( ) ( )( ) ( ) ,T
k k k k k k k k k kf f y g y yα ρ α ρ θ α ρ θ α ρ′− = −  

and thus 

( ) ( )( ) ( ) ( ) .
T T

k k k k k k k k k kg y y g dα ρ θ α ρ θ α ρ σ α ρ′− < −  

Hence 

( )( ) ( ) 1> , .
T T

k k k k k k k kg y y g d k Kθ α ρ θ α ρ σ′ ∈                       (23) 

By (22), (23) and Lemma 2.1, we have 

( ) ( )

( )( ) ( )

( ) ( )
( )

( )

2

0 0

3

1

1
1

<

0

0 , ,

T
k k

k
k

T T
k k k k k k k k

k

k k k k
k k

k

c g d
g

c M d

g y y g d
d

d

k K k

σ
σ

θ α ρ θ α ρ

φ θ α ρ φ
γ θ α ρ

−
≤ − −

′ −

′ ′−
≤ ≤

→ ∈ →∞

 

which also contradicts (20). 
In fact, we can prove that 0 0η >  for the curve search rule (c). If 0 0η =  then there exists an infinite subset 

1K  such that (22) holds and thus, (23) holds. By (19), (5), (H1'), the mean value theorem, (H2) and (22), we 
have 
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( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2 22
0 0

2 2

2 2

1

0
2

01 11 1

(0)

d )

T
k k k kk k k k

k k k k

T T
k k k k k k k k k k k k

k k

k k k k kk k k k k k k

k k

k k k k k k k k k k

k

c g c gc g d
c c g d d d

g y g y g y d

d d

g y dM y y y

d d

y t t y y

d

φ α θ ρ φσ σσ σ

α θ ρ α θ ρ α θ ρ

α θ ρα θ ρ α θ ρ

α θ ρ α θ ρ α θ ρ α θ

′ ′−− −− −
≤ ≤ ≤ − ≤

  ′− ′ −   = +

′ ⋅ −′ ′− ⋅ ≤ +

′ ′⋅ ′
≤ +

∫ ( )

( )10 , .

k k

k

d

c d

k K k

ρ − 

→ ∈ →∞

 

This contradiction shows that 0 0η > . 
For the curve search rules (a), (b) and (d), since 0 0η >  for the curve search rule (c), let kα  be the step size 

defined by the three curve search rules (a), (b) and (d), and let kα′  be the step size defined by the curve search 
rule (c), then we have 

( )( ) ( )( )
2

0 , .
T
k k

k k k k k k
k

g d
f f y f f y k

L d
η σ

α α
 ′

′− ≥ − ≥ − ∀  
 

 

This and (H1) imply that 

,
0

lim = 0
T
k k

k k K k
k

g dc g
c d∈ →∞

 
≤ −  

 
 

holds for the curve search rules (a), (b) and (d), which contradicts (20). The conclusion is proved. 
□ 

Theorem 3.2. Assume that (H1) and (H2) hold, ( )ky α  is defined by Definition 2.1 and ( )0k kd y′=  
satisfies (5) and (19), kα  is defined by the curve search rules (e), (f) or (g). Algorithm (A) generates an infinite 
sequence { }kx . Then 

lim 0.kk
g

→+∞
=  

Proof. Using reduction to absurdity, suppose that there exist an infinite subset { }0,1, 2,3,K ⊆   and an 
0>  such that (20) holds and let 

{ }0 inf .kk K
η α

∀ ∈
=  

For the curve search rules (e), (f) and (g), in the case of 0 0η > , by (11), (12) and (5), we have 

( )( ) 2
0 , .T

k k k k k k kf f y g d c g k Kα α σ η σ− ≥ − ≥ ∈  

By (H1) we have 
2

,
lim 0,kk K k

g
∈ →∞

=  

which contradicts (20). 
In the case of 0 0η = , there must exist an infinite subset 1K K⊆  such that (22) holds. For the curve search 

rule (e), by the left-hand side inequality of (11) and using the mean value theorem, there exists [ ]0,1kθ ∈  such 
that 

( ) ( )( ) ( )( ) ( ) ( )1 .
T T

k k k k k k k k k k k k k k kf y f g y y g dφ α α α α θ θ α σ α′= − = ≥ −  

Thus 
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( ) ( )( ) ( ) ( )1 .
T T

k k k k k k k k k kkg y y dφ θ α α θ θ α σ′ ′= ≥ −                      (24) 

By (22), (24) and Lemma 2.1, we have 

( ) ( )
( ) ( )3 1

0
0 , ,

T
k k k kk k

k k
k k

g d
k K k

d d
φ θ α φσ

γ θ α
′ ′−

− ≤ ≤ → ∈ →∞  

which contradicts (20). For the curve search rules (f) and (g), by (14), (22) and Lemma 2.1, we have 

( )
( ) ( )

( ) ( )3 1

0
1 0 , ,

T
k k kk k

k
k k

g d
k K k

d d
φ α φ

β γ α
′ ′−

− − ≤ ≤ → ∈ →∞  

which also contradicts (20). 
The conclusions are proved. 

□ 
Corollary 3.1. Assume that (H1), (H1') and (H2) hold, ( )ky α  is defined by Definition 2.1 with 

{ } ( ){ }0k kd y′=  satisfying (5) and (19), kα  is defined by the curve search rules (a), (b), (c), (d), (e), (f) or (g), 
and Algorithm Model (A) generates an infinite sequence { }kx . Then 

lim 0.kk
g

→+∞
=  

Proof. By Theorems 3.1 and 3.2, we can complete the proof. 
□ 

4. Convergence Rate 
In order to analyze the convergence rate, we further assume that 

(H3). The sequence { }kx  generated by curve search method converges to *x , ( )2 *f x∇  is a symmetric  
positive definite matrix and ( )f x  is twice continuously differentiable on ( ) { }* *

0 0,N x x x x= − <  , where  

0 0> . 
Lemma 4.1. Assume that (H3) holds. Then there exist 0 m M′ ′< ≤  and 0≤   such that 

( ) ( )2 22 *, , , ;Tm y y f x y M y x y N x′ ′≤ ∇ ≤ ∀ ∈                        (25) 

( ) ( ) ( )2 2* * * *1 1 , , ;
2 2

m x x f x f x M x x x N x′ ′− ≤ − ≤ − ∀ ∈                   (26) 

( ) ( )( ) ( ) ( )2 2 *, , , ;
T

M x y g x g y x y m x y x y N x′ ′− ≥ − − ≥ − ∀ ∈                 (27) 

and thus 

( ) ( ) ( )2 2* * * *, , .TM x x g x x x m x x x N x′ ′− ≥ − ≥ − ∀ ∈                    (28) 

By (28) and (27) we can obtain, from the Cauchy-Schwartz inequality , that 

( ) ( )* * *, , ,M x x g x m x x x N x′ ′− ≥ ≥ − ∀ ∈                       (29) 

and 

( ) ( ) ( )*, , , .g x g y M x y x y N x′− ≤ − ∀ ∈                         (30) 

Its proof can be seen from the book ([3], Lemma 3.1.4). 
Lemma 4.2. Assume that (H2) and (H3) hold and ( )ky α  is defined by Definition 2.1 and ( )0k kd y′=  

satisfies (5) and (19). Algorithm (A) generates an infinite sequence { }kx . Then there exist 0η >  and k ′  
such that 

2
1 , .k k kf f g k kη+ ′− ≥ ∀ ≥                                (31) 

Proof. We first prove that (31) holds for the curve search rules (c), (e), (f) and (g), and then we can prove (31) 
also holds for the curve search rules (a), (b) and (d). 
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By (9), (11), (12) and (5), we have 
2

1 .k k k kf f c gσ α+− ≥                                 (32) 

Since ( )*
kx x k→ →∞ , there must exist a k ′  such that 

( )*, , .kx N x k k ′∈ ∀ ≥                                 (33) 

By (4), Cauchy Schwartz inequality and (19), we have 

0 .k k kc g d c g≤ ≤                                  (34) 

Let 

{ }0 inf .kk k
η α

′∀ ≥
=  

If 0 0η >  then the conclusion is proved. If 0 0,η =  there must exist an infinite subset  
{ }, 1, 2, ,K k k k′ ′ ′⊆ + +   such that 

,
lim 0.kk K k

α
∈ →∞

=  

Letting 

, 1 ,k k k qα θ α ρ σ′ = = −  

for (23), 

, ,k k k qα θ α σ′ = =  

for (24) and 

, 1 ,k k qα α β′ = = −  

for (13), we have 

,
lim 0.kk K k

α
∈ →∞

′ =                                     (35) 

By (35), (23), (24), (14), (34) and Lemma 2.1, we have 

( ) ( )

( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )

( )( ) ( ) ( )( )( ) ( )

2 2

2 2 2 2 22
0 0

2 2

1

0
2 2

1 1

0 0

2

0

0 0 d

0 d

T
k k kk k k k

k k k k

T T
k k k k k k k k k

k k

T

k k k k k k k k k k k k k

k k

T

k k k k k k k k k

k

cq g cq g qg dcq
c c g d d d

g y g y g y d

d d

y y G x t y y ty g y d

d d

y t dt G x t y y ty

d

φ α φ

α α α

α α α α

α α α α

′ ′ ′−
= ≤ ≤ − ≤

 ′ ′ ′− ′ ′ −   = +

′ ′ ′ ′ ′ ′ − + − ⋅ − ≤ +

′ ′ ′ ′ ′ ′+ − ′
≤ +

∫

∫ ∫ ( )

( )0 , .

k k k

k

y d

c d

k K k

α′ − 

→ ∈ →∞

 

The contradiction shows that 0 0η =  does not occur and thus 0 0η > . By letting 0cη ση′= , where 

0 0
1< min , ,

cm
η η ′  ′ 

                                   (36) 

we can obtain the conclusion. 
For the curve search rules (a), (b) and (d), let *

kα  denote the exact step size and kα  denote the step size 
generated by the curve search rule (c). By the previous proof, we have 
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( )( ) ( )( ) 2* .k k k k k k kf f y f f y gα α η− ≥ − ≥  

All the conclusions are proved. 
□ 

Theorem 4.1. Assume that (H2) and (H3) hold and ( )ky α  is defined by Definition 2.1 and ( )0k kd y′=  
satisfies (5) and (19). Algorithm (A) generates an infinite sequence { }kx . Then { }kx  converges to *x  at least 
R-linearly. 

Proof. By Lemmas 4.1 and 4.2 we obtain 

( )
222 2 * *

1
2 , .k k k k k

mf f g m x x f f k k
M
ηη η+

′
′ ′− ≥ ≥ − ≥ − ≥

′
 

By setting 

2 ,m
M
ηθ ′=
′

 

we can prove that 1.θ <  In fact, by the definition of η  in the proof of Lemma 4.2 and (36), we obtain 
22

2 0
0

22 1.m cm cm
M M

σηηθ η
′ ′′

′ ′= ≤ ≤ <
′ ′

 

By setting 

21 ,ω θ= −  

and knowing 1ω < , we obtain from the above inequality that 

( ) ( )
( )

( ) ( )

* 2 *
1

2 *

2 *
1

1

.

k k

k

k k
k

f f f f

f f

f f

θ

ω

ω

+

′−
′+

− ≤ − −

= −

≤

≤ −



 

By Lemma 4.1 and the above inequality we have 

( )

( ) ( )

2* *
1 1

*
12

2

2
,

k k

kk k

x x f f
m

f f

m
ω

+ +

′+′−

− ≤ −
′

−
≤

′

 

thus 

( )*
1*

1

2
.kk k

k

f f
x x

m
ω

′+′−
+

−
− ≤

′
 

i.e., 

( )
( )

*
1*
2 1

2
.kk

k k

f f
x x

m
ω

ω
′+

′+

−
− ≤

′
 

Therefore, 

{ }
1

*
1 lim ,k

k kk
R x x x ω

→∞
= − ≤  

which shows that { }kx  converges to *x  at least R-linearly. 
□ 
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5. Some Implementable Version 
5.1. How to Find Curves 
In order to find some curves satisfying Definition 2.1 and (H2), we first investigate the slope and curvature of a 
curve. Given a curve ( )kx y α=  satisfying ( )0k ky x= , if it is twice continuously differentiable, then the slope 
of the curve at 0α =  is ( )0ky′  and the curvature is ( )0ky′′ . We hope that the curve is a descent curve at 

0α = , i.e. ( )0 0T
k ky g′ < . Generally, we require ( )0ky′  to satisfy 

( ) ( )2
00 , 0 ,T

k k k k ky g c g y c g′ ′≤ − ≤  

where 0 1c< ≤  and 0 1c > . Moreover, we expect the curves to satisfy 

( ) ( ) ( ), 0 , .k k ky M y M y kα α′ ′′ ′≤ ≤ ∀  

It is worthy to point out that many convergence properties of curve search methods remain hold for line 
search method. In fact, the line ( )k k ky x dα α= +  satisfies Definition 2.1 and (H2), provided that { }kd  is 
bounded for 0.k ≥  For example, we take ( ) ( )k k ky x dα α α= +  with 

( ) ( )( )1 1
12 2

, if 1;

1 , if ,

k

m mk i i i i
k k k k ii i

g k m
d

s g s d k m
α

α α− −
− += =

− ≤ −= − − + ≥ ∑ ∑
               (37) 

where m is a positive integer and 

( )

2

2
1

, 2,3, , .
1

ki
k T

k k k i

g
s i m

m g g d

ρ

− +

= =
 − + 

  

We can prove that ( )ky α  satisfies Definition 2.1 and (H2) under some mild conditions. Numerical results 
showed that the curve search method was more efficient than some line search methods [16]. 

Another curve search method is from [15] with the curve defined by ( ) ( )k k ky x dα α α= +  where 

( )
1

, if 1;

1 , if 2,
1 1

k

k k k
k k

g k
d s sg d k

α α α
α α −

− =
=    − − + ≥   + +  

                    (38) 

and 

2 2
1

1, if 1;

, if 2.k T
k k k k

k
s

g g g d k−

==   + ≥  
                        (39) 

This curve also satisfies Definition 2.1 and (H2) with ( )0k ky d′ =  satisfying (5) under certain conditions and 
has good numerical performance. 

Moreover, many researchers take 

( ) 21
2k k k ky x d zα α α= + +  

and ( )0k kd y′=  satisfies (4) [20]. Certainly, we can obtain some curves by solving initial problems or boundary- 
value problems of ordinary differential equations and sometimes by using interpolation technique. Lucidi, Ferris 
and Roma proposed a curvilinear truncated Newton method which uses the curve 

( ) 2 ,k k k ky x s dα α α= + +  

with ks  being the quasi-Newton direction and kd  being the steepest descent direction. This method also has 
good numerical performance [18] [19] because it reduces to quasi-Newton method finally and avoids some 
disadvantages of quasi-Newton method at the initial iterations. We guess that there may be many curve search 
methods which are superior to line search methods in numerical performance. 

For example, if we take k kd g= −  and suppose that { }kq  and { }kp  are uniformly bounded for k, then the 
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following curve 

( ) 2 31 1
2 6k k k k k k k ky x g g p g qα α α α= − + +  

satisfies (H2), provided that { }kg  is bounded. In the following we shall test some curve search methods. 

5.2. Numerical Experiments 
In this subsection, some numerical reports are prisented for some implementable curve search methods. First of 
all, we consider some curve search methods with memory gradients. The first curve search method is based on 
the curve 

( ) ( ) 11 , 1,k k k k ky x g g g kα α α α − = − − + ≥                       (40) 

The second curve search method is to use the curve 

( ) ( ) 11 , 1,k k k k ky x g g d kα α α α − = − − + ≥                        (41) 

and the third curve search method searches along the curve at each iteration 

( ) 2 3
1 2

1 1 , 2.
2 6k k k k k k k ky x g g g g g kα α α α− −= − + + ≥                   (42) 

We use respectively the Armijo curve search rule and the Wolfe curve search rule to the above three curves to 
find a step size at each step. Test problems 21 - 35 and their initial iterative points are from the literature [21]. 
For example, Problem 21 stands for the problem 21 in the literature and so on. 

In the curve search rules (c) and (g) we set the parameters 0.25, 0.75, 1Lσ ρ= = =  and 0.38β = . 
Numerical performance of the three curve search methods is reported in Table 1 and a pair of numbers means 
that the first number denotes the number of iterations and the second number denotes the number of functional 
evaluations. “P” stands for problems, n is the dimension of problems and T denotes total CPU time for solving 
all the 15 problems. We denote A1, A2 and A3 the curve search methods with the curves (40), (41) and (42) 
respectively. A1(c) and A1(g) means the A1 algorithm with the curve search rule (c) and the A1 algorithm with  
 
Table 1. Iterations and function evaluations.                                                                            

P n A1(c) A1(g) A2(c) A2(g) A3(c) A3(g) 

21 104 193/1089 118/673 168/1982 132/982 145/869 156/1421 

22 104 254/2736 212/1983 316/1572 247/2195 231/1673 238/1965 

23 104 121/689 128/513 98/1034 122/832 117/968 146/872 

24 104 316/1863 235/1493 356/1987 234/1392 198/1326 168/1628 

25 104 119/628 121/892 126/916 115/1639 179/1473 105/1034 

26 104 178/2134 192/2075 169/1935 142/1432 128/1732 126/1728 

27 104 127/982 134/763 133/1772 152/1827 109/913 118/1471 

28 104 153/918 217/1528 145/1463 143/1367 135/1731 129/1862 

29 104 183/2156 137/1985 163/3721 169/2176 165/2191 127/1632 

30 104 152/962 123/1891 106/2732 136/1472 145/1569 113/1528 

31 104 117/1465 109/1394 127/1528 137/1647 134/1841 152/1378 

32 104 98/1275 126/1763 129/972 104/1166 111/1634 94/982 

33 104 129/863 116/1872 162/1798 181/1744 148/1825 116/1872 

34 104 67/862 95/962 86/739 74/763 88/1267 85/1621 

35 104 432/3721 269/2964 195/1267 342/2374 253/1288 317/1268 

T - 653s 436s 548s 463s 553s 414s 
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the curve search rule (g) respectively, and so on. The stop criteria is 
810 .kg −≤  

It is shown in Table 1 that curve search methods with memory gradients converge to the optimal solutions 
stably and averagely. In addition, curve search methods with the Wolfe curve search rule are superior to the 
methods with the Armijo curve search rule. This shows that L = 1 seems to be an inadequate choice in the 
Armijo curve search rule and we can take L variably at each step similarly as in the literature [16]. 

Moreover, many line search methods may fail to converge when solving some practical problems, especially 
when solving large scale problems, while curve search methods with memory gradients always converge stably. 
From this point of view, we guess that some curve search methods are available and promising for optimization 
problems. 

6. Conclusions 
Some curve search methods have good numerical performance and are superior to the line search methods to 
certain extent. This motivates us to investigate the general convergence properties of these promising methods. 

In this paper we presented a class of curve search methods for unconstrained minimization problems and 
proved its global convergence and convergence rate under some mild conditions. Curve search method is a 
generalization of line search methods but it has wider choices than line search methods. Several curve search 
rules were proposed and some approaches to choose the curves were presented. The idea of curve search 
methods enables us to find some more efficient methods for minimization problems. Furthermore, numerical 
results showed that some curve search methods were stable, available and efficient in solving some large scale 
problems. 

For the future research, we should investigate more techniques for choosing search curves that contain the 
information of objective functions and find more curve search rules for the curve search method. 
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