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Abstract

In this paper, based on classical Lie group method, we study multi-dimensional Landau-Lifshitz
equation, and get its infinitesimal generator, symmetry group and new solutions. In particular, we
build the connection between new exact solutions and old exact solutions. At the same time, we
also prove that the initial boundary value condition of the three-dimensional Landau-Lifshitz equ-
ation admits a unique solution and discuss the stability of the solution.
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1. Introduction

In 1935, the famous Landau-Lifshitz equations were proposed by Landau and Lifshitz [1] to describe the
evolution of spin fields in continuum ferromagnet [2]. In this paper we study two important equations as follows

u, = uxaAu, 1)

U, = AU xAu+ ,uxuxAu, (2

where x denotes the vector cross-product in R®, u= (u,v, W) ‘R"xR* — R® is the spin density, A, <0 is
a damping parameter. Emphasizing its parabolic character, (2) can also be considered as a quasilinear pertur-

bation of the heat flow for harmonic maps by the (conservative) precession term —ux Au. The n-dimensional
cylindrical symmetrical form of (1) is
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n
u =uxu, + uxu,, (3)

where 1= x2+ X+ + %2 .

For the multidimensional case. Zhou and Guo proved the global existence of weak solution for the
generalized Landau-Lifshitz equations at absence of Gilbert term [3]. Chang et al. considered the initial value
problem for the 2-dimensional cylindrical symmetric Landau-Lifshitz equation without external magnetic field
[4]. The soliton solutions to the Landau-Lifshitz equations with and without external magnetic field have been
studied by many physicists and mathematicians [5]-[7]. For the Equation (3), when n=2, Guo and Yang have
constructed an exact solution in unit sphere [8]. In [9] and [10], Guo and Han as well as Yang have also obtained
an exact blow up solution for the n-dimensions form. In [11] and [12], Yang considered the relations between (1)
and (2).

It is of great importance to find exact solutions of Landau-Lifshitz equations. But it is difficult to solve
Landau-Lifshitz equations. As is known, the symmetry group technique is one of the powerful tools for solving
a nonlinear differential equation (see [13]-[22]): the classical Lie group method [15] [16], the non-classical Lie
group method [17] [18]. Xu and Liu have studied n-dimensional radial symmetric Landau-Lifshitz equation with
external magnetic field in [19].

In this paper, the symmetry group of the n-dimensional Landau-Lifshitz equation is obtained by using the
classical method in Section 2. The transformations leave the solutions invariant. In Section 3, we give the new
solutions of Landau-Lifshitz equation from the known solutions [10]. Finally, the uniqueness and stability of the
Landau-Lifshitz equation and the Landau-Lifshitz-Gilbert equation are given [20], respectively, in Section 4 and
5.

2. Lie Symmetry Group of the Landau-Lifshitz Equation

Here are four independent variables x :(x, Y, z) being spatial coordinates and t the time, together with four
dependent variables, the velocity field u = (u,v, W) . In vector notation, the system has the form
U, = VAW — WAV,
V, = WAU — UAW, (4)
W, = UAV —VAU.
According to the method of determining the infinitesimal generator of nonlinear partial differential equation
[16], we take the infinitesimal generator of equation as follows:
0

v—§i+ —+ i+r£+ i+ 3+ 9
x Tyt a P w  aw

where &,---, y are functions of x,t,u, (1) is of second order n=2. Applying the first prolongation pr(z)v,

we find
pr(l)V:V+¢)Xi+¢)yi+¢zi+¢)t£+wxi+l/lyi
ou, ou, au, ou, ov, ov,
IS L s S A R S N S
Vo, e e e, aw, F aw
@y — @y, g0 w O u 0 w0 w O y O n 0
r®v = priv + + + Ft ™ — Y~y —
P v s a,  a a a w, Y A,
5 5 5 8 8 0 0
+tt_+ XX + yy +ZZ +tt_+ xt +yt
Vo aw, T aw, Y o t? au,,
R R R S - I
Uy, OV vy Vy OWyq Wy Wy

Applying pr(z)v to (4), we find the following system of symmetry equations
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¢ =V(}(XX + 7 Jr;(“)—w(://XX +yV +1//“)+(wXX +W,, +sz)'//—(Vxx +V,, +vzz);(,

y' =W(¢XX +¢” +¢5“)—u(;(XX + Y +;(ZZ)+(uXX +U,, +uzz);(—(wXx +W,, +wu)¢, (5)
Z=u(y ) (8 + 67+ (Ve + Yy, )= (U Uy, U, )y,

which must be satisfied whenever u satisfy (1). Here ¢',w*, etc. are the coefficients of the first order

RSN )
derivatives ——,——, etc. appearing in r( V.
Y ppearing in p

X X

According to the formula ¢ (x, u(”)) =D, (¢a AT ) +ZEUS;, we have

¢* = D{¢—u,D;¢é—u,Din —u,Dfs —u,Dfr —2u, D& —2u, D,y —2u,,D,c - 2u, D, 7.

Similarly, we can get ¢',w", 1*, 8", 0" W w” w?, ¥ 2", 1"
we find the determining equations for the symmetry group of the (1) Equation (5) to be the following:

V(Zxx T Xy +Zzz)_w(l//xx ¥y +l//zz)_¢t =0,

W(r, —2&,)+ 2 =0,v(r, —2& )+ =0,u(r, — 2&,) + ¢ =0,

V(z/’{wx _gxx _éyy _ézz)zo'v(z/’{wy M — Ty _UZZ):O’V(Z/‘KWZ S TSy _gzz)zo’
UN :_gylgx :_éz'gy =1,

Since we have now satisfied all the determining equations, we conclude that most general infinitesimal
symmetry of (1) has coefficient functions of the form:

E=CX+CY+CZ+Ce,
n=—C,X+CY+C,Z+Cg,
¢ =—CX—C,Y+CZ+Cy,

T=Ct+C,

¢ =cu,

Y =aqV,

X =CW,

where c,,---,C; are arbitrary constants. Thus the Lie-algebra of infinitesimal of the Landau-Lifshitz equation is
spanned by eight vector fields:

Vv, = X0, + Y0, + 120, +10, +Ud, + Vo, + W0,
V, = Y0, —X0,,

V, =120, — X0,,

vV, =120, —-Y0,,
Vg =0,,
Vg =0,,
vV, =0,,
Vg =0,

so we have
V=CV, +C,V, +--+ CVs.

The one-parameter groups G, generated by the v, . The entries give the transformed point
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exp(ev;)(x,y,z,t,u,v,w) = (X,y,Z,T,1,

2
G, :(ex.e’y, ez, et e’u,ev,e‘w),
G, :((x+ey,y—ex,z,t,u,v,w),
G, :(x+&z,y,2-6XL,U,V,W),
G, (X y+ez,z—€y,t,u,v,w),

s (x+ey,z,tuv,w),

G
G (X y+e&,z,t,u,v,w),
G, :(xy,z+&,tu,v,w),
G, ( )

g - X, Y, Z,t+&,uU,v,w),

where G, is a Galiean transformation, G,,G,,G,,G,,G¢,G, are space translations, G, is a time translation.
& s an arbitrary constant.

Theorem 1. If u=f(xy,zt),v=9(xV,zt),w=h(xy,zt) are known solutions of (1), then by using
the symmetry groups G; (i =1,2,--,8), so are the functions

u =ef(exe’yezet),
=e‘g(e“xe’y.e“zet),
=e‘h(e“x.ey,e z,et),

uzzf(x gy 8X+y,z,tj,v2 g(x £y &x+y z,t), - h[x—gy 5X+y,z,tj,

1+&% "1+¢° "1+£2 1+&% "1+&°
" = f(x—gz g, EX+2 EX+1 ) ( ex+1 tj w _h(x—gz y EX+1 t]
3 1+e2 1+ g’ METUERL 1+ 142 )
u4=f(x,y &7 gy+z’j ( — &2 gy+z,tj’w4=h(x,y—gzz’gy+zz’tj’
1+&* "1+é&° 1+¢° 1+&° 1l+e

U= f(x—ey,2t),vs=g(x-¢y,2,t),w =h(x—-¢&,y,2,1)

1+
g(x
U =f(x,y-s&12t)v=Ff(xy-6z1)w="f(xy-g11)
=f(xy,z-et),v, =f(x,y,z-&t)w, = f(X,y,2-¢&1)
=f(xyzt-e)vy=f(xyzt-¢)w="Ff(xyzt-¢),

where & is any real number.

For the known solutions u = f (x,y,z,t),v=g(xy,zt),w=h(xy,zt), by using one-parameter symmetry
groups G, (i :1,2,--',8) continuously, we can obtain a new solution which can be expressed as the following
form:

. s 1 1 &, &
u=eif|le™ >+ > | X— Y- > 1— &g,
1+ l+g 1+ 1+&;
e 12+ 12 y+ gzzx— g“zz—ge,
1+ l+g 1+&5 l+g

s 1 1 &, &,
e >+ > |2+ > X+ 2y &,8 Mg |,
1+& 1l+g 1+ ¢ l+¢

668
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v=elg|le™ CHPE S PR y-—2_7-¢
1+e 1+é& 1+é&l 1+é&k o

1 1 & &
=+ jy+ Z_x——24—7-¢,

1+gl 1l+é&l 1+el l+éf

- 1 1 & £ -
efl[ =+ S |2+ =5 Xx+ 5y —g,e Mg |,
l+e 1l+g 1+ ¢ l+¢,

_ 1 1 & &
g4 >+ = [ X——5y-—51-¢,
1+e& 1l+g 1+ 1+ ¢

e‘gl( 1 1 ]y+ b2yt Z-¢&,

1+&l 1+é 1+l 1l+é

_ 1 1 & & _
g4 =+ S|+ x+— oy —¢,e Mg |,
l+e l+g 1+g 1+g,

where ¢, (i =1, 2,‘--,8) are arbitrary constants.
In vector notation, the system has the form

U =—UxAU—AUux(uxAu), (6)

when 4, =-14,=-1(4>0) in(2).
In view of the vector identities

ux(uxAu)=(u-Au)u—|uf® Au,
Equation (6) can equivalently be written as
ut:—uxAu—/l[(u~A,u)u—|u|2Au] )
We transformed equations as follows:
U, = WAV — VAW — 1 (uvAv + UWAW — V2AU — WZAU) ,
V, = UAW — WAU —ﬂ(uvAu +vaw—u2Av—W2Av), (8)
W, = VAU — UAV — /I(uwAu + VWAV — U?Aw — VZAW).
Applying pr(z)v to (8), we find the following system of symmetry equations
¢ =W(l//xx +y +WZZ)+;(AV—V(;(XX + 7 +;g“)—y/Aw
- A[qﬁvAv +WUAV + UV(!//XX +y? +yp” ) + PWAW + yUAW + uw(;(XX + 7 + ;{ZZ)
— 2pVAU —V* (¢XX + oY +¢* ) — 2 yWAU —W* (¢XX + oV +¢* )]
w' = u(;(xx + +;(ZZ)+¢AW—W(¢XX + ¢ +¢ZZ)—;(AU
- ﬂ[qﬁvAu +WwUuAu + uv(¢XX + @7 + 9% ) + VAW + i WAW + WV(;(XX + 7+ ;(“) 9)
— 2¢uUAvV —u® (1,1/XX +yY +WZZ)—2;(WAV—W2 ((//XX +y? +y” )]
Fa :v(qﬁXX +¢V +¢“)+1//Au —u(l//XX +yY +1//“)—¢Av
-A |:¢WAU + JUAU + uw(¢XX + ¥ +¢* ) + W WAV + yVA + vw(n//XX +y? + y/“)

—2¢UAW—U2(,’{XX+ZW+}(ZZ)—21//VAW—V2(}[XX+,{’W+,’{ZZ):|.
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Then use the same method, we can find most generated infinitesimal symmetry of (6) has coefficient
functions of the form:

=0,
n=_C,
¢ =03
T=C¢,,
$=0s,
v =Cg,
x=C

where c,,---,c, are arbitrary constants. Thus the Lie-algebra of infinitesimal of the Landau-Lifshitz-Gilbert
equation equation is spanned by seven vector fields:

So we have
V=CV, +C,V, +CV; +C,V, +CsVg +C,V, +C, V-,

where G,,G,,G, are space transformations, G, is a space translation, G,,G;,G, are Galiean translations,

& is an arbitrary constant.
Theorem 2. If u=f(xy,zt),v=g(xY,zt),w=h(xy,zt) are known solutions of (6), then by using
the symmetry groups G, (i =1, 2,---,7), so are the functions

u="f(x—eyzt)vy=9(x-¢vy,zt),w=h(x-gy,zLt),
g(xy—¢2t),w,=h(x,y-¢1,t),

( ),

( 9 ( )W,
u=f(xy,z-61),v,=9(x,y,2-¢&t),w, =h(x,y,z2-¢1),

( 9( )Wy = h(

)

)
u=f(xy.zt-¢)v,=g(xyzt-e)w,=h(xyz,t-¢),
us = f (X y,2,t)+ &V, =9 (X v, 2,t), W =h(x,y,z,t),
U= f (X y,21),v5 =9(x, ¥, 2,t)+& W, =h(x,y,21),

u,=f(xy.2t),v;, =g(xy.zt),w, =h(xy,zt)+¢

where & is any real number.
For the known solutions u = f (x,y,z,t),v=g(xy,zt),w=h(xy,zt), by using one-parameter symmetry
groups G, (i :1,2,~--,7) continuously, we can obtain a new solution which can be expressed as the following

form:

u="f(x-&,y-&,2-&,t-¢g)+e,

V=g(Xx-&,y—&,7-&,t—¢&)+&,
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W:h(x—gl,y—82,2—6‘3,t—6‘4)+571

where & (i=1,2,---,7) arearbitrary constants.
Remark If u:(u,v,w) is a known solution, we can get v=Au is a new solution through Lie group
method, where A is arbitrary constant orthogonal matrices.

3. Exact Solutions of the Landau-Lifshitz Equation

In this section, we choose the known blow-up solutions and explicit dynamic spherical cone symmetric solutions
from [10] and [14] to get the relevant group invariant solutions.

According to [10],

has a blow-up solution:

where ueC”(R*x[0,T)).
Case 1 Using u, in Theorem 1, we get the new blow-up solutions of (1) as follows:

u(x,O):(kl(x+ y+1),k, cos

U, =uxAu,ueR’teR",

X+Y+12
3T 3T

u(x,y,z,t) =k (x+y+2z),
X+Yy+12

v(x,y,2,t) =k, coswy_t),

X+Yy+2

w(x,y,z,t)= —kzsinm,
1

u(x,y,z,t)=ke* (x+y+z),

e’ (x+y+2)
3k, (T —t)
e’ (x+y+2)
3k, (T -t)

v(x,y,z,t)=k,e’ cos

W(X,Y,z,t)=—k,e"sin

where ueC”(R*x[0,T)) satisfying the following initial value:

Case 2 Using u, in Theorem 1, we get the new blow-up solutions of (1) as follows:

u(xy,z,0)=ke’ (x+y+z),
e’ (Xx+y+2)
3K,T
e’ (x+y+2)
3K,T

v(x,Y,2,0) =k,e’ cos

w(x,Y,z,0)=-k,e’ sin

u(x,y,z,t)=3k =3
l+¢ +1—g y+2
1+e® 1+é°

3k1(T —t)
1+¢ l-¢

1+¢° 1+ &°
3kl(T —t)

1+gz(l+g l-¢ y+zj
1+ &2 1+ &2 '

v(x,y,z,t) =k, cos

y+z

w(x,y,z,t)=-k,sin

where ueC” (R3 x[0,T )) satisfying the following initial value:

,—kzsin—x+y+zjeC“(R3),

(10)

(11)

(12)

(13)

(14)
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1+&% (1+¢ 1-¢
u(xy,z,0)=3k X+ +2 1,
( y ) 152+3(1+52 1+£2y )
l+e& l-¢
1+6‘2 +1+82y+z 15
vV(X,Y,2,0)=k, cos )
(x.y.2,0)=k, % (15)
l+¢ l-¢
X+ y+12
w(x,y,2,0)=—k,sinlte"_1+e
3k,T
According to [10],
n_
u =uxu, + , uxu,,
. rn+2 rn+2
u(x,0)=r"|k;,k, cos———, -k, sin————— |, (16)
(x0) VT K (ne2) T T K (n+2)'T
uxu|_ =kZ+k3 uxu|_, =27 (kf + kzz)

for r=4x*+y?+2z°, has ablow-up solution:
u(r,t)=r"(k,k,cosd,-k,sin9),
r"? 17
k (n+2)°(T-t)

Case 3 Using u, in Theorem 1, we get the new blow-up solutions for the cylindrical symmetric Landau-
Lifshitz Equation (3), typically n=3 as follows:

u(r,t)=e* (klr‘3, k,r % cos @, —k,rsin 9),
e (18)
25K, (T -et)’
for r=./x*+y?+z?, satisfying the following initial value:
—5&,.5 56,5
u(x,0)=e*r? (kl, k,coso— 'k, sinS L ]

25kT " ° 25KT 19)
uxul, =e* (k2 +Kk2),uxul_, =e*2° (k2 +k2).
According to [14],
U, =UuxAu,Qx(0,T),
2 2 2

Cl(X=Y) +(x=2) +(z-Yy (20)

u(x,0) =(cosb,,sin6,,0),6, = l[( J+(x-7) +(z2-y) ]

121+¢2
has the explicit dynamic spherical cone symmetric solutions:
u =;(cosa,sin f.ct+c,),
1+(ct + cz)2
(21)
&[0y - 2oy
121+ (ct+c, )’

Case 4 Using u, in Theorem 1, we get the new explicit dynamic spherical cone symmetric solutions of (1)
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as follows:
1

u= _ (cosd,sin0,cet+c,),
\/1+ (cet+c,)

e[y s (-2 4 2y *
12\/1+ (cle‘gt +c, )2 |
satisfying the following initial value:
u(x,0)=(cosb,,sin6,,0),
cle’z‘g[(x—y)z+(x—z)2+(z—y)2] (23)

9 =
’ 121+¢

Case 5 Using u, in Theorem 1, we get the new explicit dynamic spherical cone symmetric solutions of (1)
as follows:

u=;(cose,sin6’,clt+cz),
Jl+(clt+cz)2
2 2 2 2 2 2 2 (24)
cl[g (x+y) +(x=y) +(x=2) +(z-y) +ex’(e-2)+¢ey (e+2)+2.9xsz
9: l
12(1+8%) YL+ (ct+c,)
satisfying the following initial value:
u(x,0)=e’(cosf,,sin6,,0),
cle‘zg[(x—y)z+(x—z)2+(z—y)1 (25)

9 =
’ 121+¢

Remark Similarly, we can utilize the different seed solutions of [10] [14], repeatedly using u; (i =1, 2,---,8)
to obtain different group invariant solutions, so extend the known exact solutions in [9] [13].
4. Uniqueness and Stability of the Landau-Lifshitz Equation
In this section, we study the uniqueness and stability of the initial boundary value problem for (1) and we have
the following results and it should be results that matter instead.
4.1. Uniqueness

Theorem 3. There exists Qe R® is a bounded domain and kj (j =1, 2) are nonzero constants. Then we the
following initial value problem:

U =uxAu,ueR®teR",

U(X,O): kleg(X-i- y+ Z),kzeg Coswl_kzes SIHM ,
3k,T 3k,T

(26)

£ ¢ e’ X+y+Z £ i e’ X+y+z
u(x,t):[kle (x+y+2),ke cosﬁ,—kze smﬁ}

on oQx[0,T),

has a unique smooth blow-up solution u eC°°(R3x[O,T) .
Proof. To prove the uniqueness we consider two smooth solutions u,UeC“"(R3x0£t<T). Let their
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difference be p=u-0, where p=(p,p, p;),u=(u,v,w),u=(T,V,W). Then, subtracting the equations
each other in (1), we have

2, :pru+UxAp,inQ><(0,T),

p(x,0)=(0,0),inQ, @7)
plocy=(0,0).
Multiplying the first equation of (27) by —Ap, integrating over Q, and using the Gauss formula [23], we
obtain
1d 2
(P —Ap)= Ea”vp"LZ ' (28)
(p—Ap)=(pxAu+TUx p,—Ap) = IQVp-(px AVU)dx, (29)

for Vu=(Vu,Vv,Vw),Au=(Au,Av,AW),Vp =(Vp,,Vp, Vp;). By using u(xy,z,t)=ke’(x+y+z),

v(X,y,z,t)=k,e’ cosw, w(X, y,z,t)=—k2e‘sinM in case 1, we obtain
3k, (T -t) 3k, (T —t)
ke’ ke’ ke’
k . k . k .
Vu=|-——2 _sing ——2 singd -—2_sing 30
B B oy e P Ty Ay cowry (30)
K, k k
—_—— 9 ——2 6 - 2 91
W (Tt 0 TamTo) Y T (T
where gzw
3k (T -t)
. K, . K,
|AVu, = max<3Ake*, A| - sind |,A| - cos @
” k (T —t) k (T —t)
(31)
—Zskz
=sup m S|C2 (t)|
Inserting (31) into (29), it follows that
1d

> IVoliz = (pxAu+Txap,~Ap) @)

<[avul VAl <le. O]V -

Thanks to the Gronwall inequality [23], we have the following:
[Vellz < exp(f,2fe (r)ae) Vo (x.O)f =0

therefore we can prove the uniqueness of the solution in the sense of C” (]R3 x[O,T )) .
In a similar way, by using

u(r,t)=e* (kr k,r°cosd,~k,rsing),

—5¢ .5

I
25k, (T —e~t)’

in case 3, we obtain
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-3ke*xr®  —3ke*yr® -3ke*zr?

vu=| M, M, M, | (33)
Nl Nl Nl
: _err sl 5 ek r°x . B k,
which 6= —25k1(T —e‘ft)’Ml =-3e"k,r xcose+—5kl(_|_ _t)sm O.N, = —3k Tt )cose
|avuy|, =supe® 15k r +30k,r 7 x+y + 2 +105Kk,r° [x + y + 2
+ﬁ(6r‘8 X+ y+2z[+12r2 |x+y+z|+12r | x+ y + z|3) (34)
< |c3 (t)|
Inserting (34) into (29), it follows that
Sl <lavul. Vol <les ]IV A (35)

2dt

Thanks to the Gronwall inequality, we have the following:
Vol <exp(f;2[e. () de | Vo (x O)ff; =0,

therefore we can get the uniqueness of the solution from this.

Theorem 4. There exists QeR® is a bounded domain. Then we the following initial boundary value
problem:

U =UuxAu,Qx(0,T),

ce’ [(x— y) +(x—2) +(z- y)ZJ

u(x,0)=(cosé,,sing,,0),6, =
(x,0)=(cos6y,5in 6, 0). 121+

1
\/1+(cle"'t + cz)2
ce [ (x-y) +(x-2)"+ <z—y)1

12\/1+ cle ‘t+ c2

u(x,t)=

(cos@,sind,cet+c,),0n Q% (0,T), (36)

0=

has a unigue explicit dynamic spherical cone symmetric solution

ueCH([0.T);C*(R*))nCH([0,T):H* (R*)).

Proof. To prove the uniqueness we consider two solutions U,T € C1<[0 );C? ( ))mCl([O,T); H? (R3)).

Let their difference be p=u-T, where p=(p,p,,p,),u=(u,v,w),u=(T,V,W). Then, subtracting the
equations each other in (1), we have

Py =pxAU+TxAp,in QX(O,T),
p(x,0)=(0,0),inQ, (37)
p|6Q=(0,0).

Multiplying the first equation of (37) by —Ap, integrating over Q, and using the Gauss formula, we obtain



J.L.Yuetal

1d 2
(po-tp) =5 Vol (38)
(P=Ap)=(pxAU+TxAp,~Ap) = Vp-(pxAVU)dx, (39)
for Vu=(Vu,Vv,Vw),Au=(Au,Av,AW),Vp =(Vp,Vp,, Vp;).

ce [(x— y) +(x-2)° +(z- y)ﬂ

By using U= 1 _ (coso,sind,cet+c,), 0= _ in case
\/1+ (cet+c,) 12\/1+ (cet+c,)
4, we obtain
M,(2x-y-2) M,(2y-x-2) M,(2z-x-Y)
Vu=| N,(2x-y-z) N,(2y-x-z) N,(2z-x-y)|. (40)
0 0 0
where M, = — e‘c,sing N, =- e “c,cosé .
6(1+(c1e’5t+c2) ) 6(1+(c1e"ft+cz) )
5.3
|avul|, = sup € 4 —~ [G(XS +y3 4 23)—9(xy2 —xz? —zy® —2x* — yx* — yzz)+36xyz]
36(1+(cle’€t+cz) ) (41)
<le, (1),
Inserting (41) into (39), it follows that
1d _
Ea||v,o||i2 =(pxAu+UxAp,~Ap)
<[avul. Vol (42)

< |C4 (t)|||VP||fz '

Thanks to the Gronwall inequality, we have the following:
[Vl < exp([;2[e. (7)|az [V (x O)f =0

therefore we prove uniqueness of the solution in the sense of C' ([O,T);C2 (R3)) NC ([O,T); H? (R3)).

4.2. Stability

In this section we discuss the stability of the solution, in C*(Q) and L*(Q) for the problem (1), respec-
tively.
Let u=(u,v,w) is a solution of (1), where ueC”n Hl(Rax[O,T)) from case 1, U=(T,V,W) denote

the solution of a little disturbance, where ueC” mHl(ZR3><[0,T) . Let p=u-T, be the difference of
uand T, with initial value p,(x)—0 in the sense of L*(€) and boundary value u— U in the sense of
L* (6Q) N L” (6Q2),Vt €(0,T]. Then, subtracting one equation from the other, we can get

P =pxAU+TxAp,inQx(0,T),
p(x,0)=py(x),inQ, (43)
ploQ=p(xt),

for QeR? isabounded domain. Multiplying this by —Ap, integrating over Q, and using the Gauss formula,
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we obtain
1d 2
(P =Ap) ZEEHVP"LZ’
(P, —Ap)=(pxAu+TxAp,—Ap) = —_[pr Au - Apdx
=—[ _Vp-(pxAu)-nds+ [ Vp-V(pxAu)dx,

‘_.[agvp (pxAu)- nds‘ < ||Au”L°°(aQ) ”Vp"LZ(BQ) "p||L2(aQ) -0,
J.v0- 9 (pxsu)ax|< |aVul,. o [V

e’ (x+y+2)

By using u(x,y,z,t)=ke’ (x+y+2z), v(x,y,z1t)=k,e cos 3T -1

e’ (x+y+2)

in case 1, we obtain
3k (T —t)

w(x,Y,z,t)=—k,e"sin

, K, . k
AVl = max {SAkle ,A(_ c (Tz—t) sin 0],A£—W2_t)cos 9}}

—Ze'k
2
3

3k} (T -t)

<le, (1),

=sup

Hence

d
11Vl <26 OV Al *+ 2180l V4]

(o) ||p| L2(o) !

since u—T inthe sense of L*(8Q)L"(8C2), we can make, for every given & >0
"Au"L”J(BQ) "Vp"LZ(aQ) ||'0||L2(6Q) <é

Using the Gronwall inequality in (44)-(47) for every te(0,T):

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Vol < exp(J';2|c2 (z’)|dr)|:||Vpo (x, 0)||i2 + Zgj'; exp(—j;2|c2 (z')|dr)ds} —0 as u—>T inthe sense of

L* (0Q)nL"(0Q2),vt (0, T] and ||p0 (x, 0)||i2 — 0. So we reach the stability of the solution in finite time.

In a similar way, by using

u(r,t)=e* (kr,k,r*cosd,~k,r*sing),

—5¢ .5

_ e’r
25k, (T —e~t)’

in case 3, and by using

1

o \/1+(cle’5t+c2)2
ce’ [(x— y) +(x-2)° +(z- y)ZJ
12\/1 +(cet+, )2 ,

(cos@,sind,cet+c,),

0=

in case 4, we can get the same conclusions.
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5. Uniqueness and Stability of the Landau-Lifshitz-Gilbert Equation

Because of the Landau-Lifshitz-Gilbert equation u, =—uxAu— Au x (u x Au) in director fields

=(0,00)xR" —>S* with values, in the unit sphere S? « R® where typically n=3, we find the Gilbert
dampmg term —Aux (u X Au) A{Au +|Vu| , it would be easier and the stability of it has been done. We can
see it in [20]. In this section, we study the uniqueness and stability of the initial boundary value problem for the
Landau-Lifshitz-Gilbert equation below:

U =-UxAu—Aux(uxA,u),ueR’teR", (51)

observe that u ><(u xAu) = (u Au |u| Au, and we have the following results and it should be results that
matter instead.

5.1. Uniqueness

Theorem 5. There exists Q eR? is a bounded domain. Then we the following initial value problem:
V,=-VxAV-Avx(VxAv),ve R’ teR",
Vo = AV, = Au(x, Y,2,0) e H' (R®), (52)
v=Au(xy,zt),onoQx[0,T),

has a unique smooth solution v = Aue H* (]R3 X [O,T)) :
Proof. Let their difference be p=v—-V, where p=(p,p,,p;), V=Au=A(U,V,W)e Hl(]R3 x[O,T)),
V=AU=A(U,V,W)eH" (R3 x [O,T)) . Then, subtracting the equations each other in (52), we have

o :—v><AV+\_/><AV—ﬂ[vx(vav)—Vx(VxAV)},QX(O,T),
p(x,0)=(0,0),inQ, (53)
p|o©r=(0,0),

we obtain that if v,v are known solutions, we can get v,veL” ((O,T);R”) . Multiplying the first equation of

(53) by —Ap integrating over Q, and using the Gauss formula, we obtain

Lo,
:.[Q(VXAV+V><Ap—V><AV)-Ap+/1[V><(V><Av)-i-Vx(VxAp)—Vx VxAV)]-Ade
‘[ p><AV Ap+ﬁ,[v>< p><AV)+V><(V><Ap)+p>< VXAV:' Apdx (54)
S_[ PXAV) Ap+1[v>< p><Av)+p><(V><AV)]~Ade
< ”AV"L”(Q) "v:D"Lw(Q) + ’1”AV"LW(Q) "v/)"Lw(Q) + "V"me) ||AV||L°°(Q) "v/)"iw(g)
<(L+2+2() eIVl
As
Ap-[Vx(VxAp)]:Ap-[(v Ap)V |V| Ap} (Ap- V |V| |Ap| <0,

for Vv=AVu=A(Vu,VV,VW),Av = AAu = A(AU,AV,AW),Vp =(Vp,,Vp,,Vp,).
Thanks to the Gronwall inequality, we have the following:

||Vp||2L2 < exp(_[;2|c(r)| (1+2 +C(r)dr))||Vp(x,O)||i2 =0,
therefore we can prove the uniqueness of the solution in the sense of H* (R3),v 0<t<T.

5.2. Stability
In this section we discuss the stability of the solution, in CZ(Q) and LZ(Q) for the problem (51), respec-
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tively.
Assume v =Au=A(u,v,w), where veH"'(R*x(0,T)). Let V=Av=A(T,",
a little disturbance, where Ve H'(R°x(0,T)). Let p=v-V be different of
p,(X)—0 inthesense of L?(Q) and boundary value v —V in the sense of
L (6Q) N L” (6Q2),Vt €(0,T]. Then, subtracting one equation from the other, we can get
o :—VxAV+\7><AV—/l[Vx(VxAV)—VX(VXAV)],QX(O,T),
p(x,0)=(0,0),in Q, (55)
p|6§2:go(x,t),

for QeR? isabounded domain. Multiplying this by —Ap , integrating over Q, and using the Gauss formula,
we obtain

W) denote the solution of
v,V , with initial value

1d 2
SqlvAle

:IQ(VXAV+VxAp—VxAV)-Ap+/1[v><(v><AV)+V><(V><Ap)—Vx(VxAv)]-Apdx
:IQ(pxAv)-Ap+/1[v><(p><Av)+V><(\7><Ap)+p><(V><Av):|-Apdx
SIQ(pxAV)-Ap+ﬂ[v><(p><AV)+p><(V><AV)]-Ade (56)

+ (||Av||L°°(Q) + ||V"L°°(ag) "AV||L°°(aQ) + "v”w(m) ||AV||L°°(OQ) )||Vp| o]

<(1+4 +€(t))|c(t)

L2(e) IIF112(00)

IVl +:
since v —V inthe sense of L*(8Q)L” (), we can make, for every given &> 0:

(7 Y PO ) X By |7

where Vv = AVU = A(VU, Vv, VW), Av = AAU = A(AU, AV, AW),Vp =(Vp,,Vp,,Vp,).
Thanks to the Gronwall inequality, we have the following:

ol <exp(f;2le(e)(2+ 2+ 8 (r)ae) | [Vo (O]

+ ng; exp(—J';2|c(r)|(l+ y) +E(r))dr)ds -0,

|p||L2(OQ) <€

2(e0)

therefore we prove the stability of the solution in the sense of H* (R3 x(O,T)) .

6. Conclusion

In this paper, we study the symmetry reductions and explicit solutions by means of classical Lie group method.
First, we get the infinitesimal generator and group invariant solutions to multidimensional Landau-Lifshitz
equation. Then, we build the relations between new solutions and olds have been found. Finally, via these
explicit solutions,we study the uniqueness and stability of initial-boundary problem on multidimensional Landau-
Lifshitz equation.
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