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Abstract 
This work presents new round of the author’s pursuit for consistent description of the finite sized 
objects in classical and quantum field theory. Current paper lays out an adequate mathematical 
background for this quest. A novel framework of the matter-induced physical affine geometry is 
developed. Within this framework, (1) an intrinsic nonlinearity of the Dirac equation becomes 
self-explanatory; (2) the spherical symmetry of an isolated localized object is of dynamic origin; (3) 
the auto-localization is a trivial consequence of nonlinearity and wave nature of the Dirac field; (4) 
localized objects are split into two major categories that are clearly associated with the positive 
and negative charges; (5) of these, only the former can be stable as isolated objects, which explains 
the global charge asymmetry of the matter observed in Nature. In the second paper, the nonlinear 
Dirac equation is written down explicitly. It is solved in one-body approximation (in absence of 
external fields). Its two analytic solutions unequivocally are positive (stable) and negative (unstable) 
isolated charges. From the author’s current perspective, the so for obtained results must be de-
veloped further and applied to various practical and fundamental problems in particle and nuc-
lear physics, and also in cosmology. 
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1. Introduction 
This work addresses the long-standing puzzle of how the physical Dirac field of real matter becomes a finite- 
sized particle. This puzzle successfully withstood several major attacks undertaken since early 1930s in both 
classical and quantum contexts, for realistic fields of matter and for the ad hoc constructed effective field 
theories. The importance of a definitive conclusion goes far beyond the purely academic area. The present 
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uncertainty of an answer affects numerous studies in theoretical and experimental physics (e.g., quantum colli- 
sions of finite-size ultrarelativistic nuclei [1]) and reaches as far as the origin of the observable matter in the 
Universe. A dramatic difference between the charge asymmetry of the visible Universe and an apparent charge 
symmetry observed in transformations of elementary particles has never received a rational explanation. In mid- 
1960s, A.D. Sakharov [2] made an attempt to connect the cosmological charge asymmetry with the violation of 
the CP-invariance and nonequilibrium processes in the early hot Universe, but this hypothesis cannot be veri- 
fied by a laboratory experiment. More specified (and exotic) scenarios were considered by A. Dolgov [3] [4], 
partially in connection with the problem of baryogenesis. For an extensive review with further references see 
Ref. [5]. 

The present study concludes that, for the Dirac field, C and P do not exist separately, and that both are inti- 
mately connected to inevitable localization of the Dirac field into finite-sized particles. Furthermore, it appears 
that only positive charges are capable of stable auto-localization in real world. The time scale and relative 
weight of all the underlying processes and/or mechanisms are not yet clear, but the Universe definitely had 
enough time to conduct such an experiment. Moreover, experimental studies of the last decade [6] revealed a 
surprising excess of positrons (and no excess of antiprotons) in the cosmic rays, which can be an indication that 
creation of the charge-asymmetric matter in the Universe is an ongoing process. 

The present work was supposed to correct and augment the author’s paper [7], which was focused mainly on 
the transient processes with localized particles. The accents have changed with the initial progress. In this work 
and then in paper [8], we pursue a somewhat narrower goal to find an exact auto-localized solution (a realistic 
Dirac particle), which could serve as an input for the study of transient processes. The problem is posed and 
solved in a novel framework of the matter-induced affine geometry, which deduces geometric relations in the 
space-time continuum from the dynamic properties of the Dirac field. 

Framework is set in Section 2 by reviewing well-known algebraic identities between the bilinear Dirac forms 
(the Fierz identities). At any point in spacetime continuum (the principal differentiable manifold  ), there 
exist four fields of quadruples of these forms (the Dirac currents), which are linearly independent and Lorentz- 
orthogonal, and can serve as local algebraic basis for any four-dimensional vector space, including the infini- 
tesimal displacements in coordinate space 4 . 

In Section 3 we use this basis of four Dirac currents as the Cartan’s moving frame in spacetime and develop 
the technique of covariant derivatives for the vector and spinor fields. 

Relying on results of Section 2 and Section 3, we meticulously derive in Section 4 various differential iden- 
tities from the Dirac equations of motion. These identities are shown to be imperative for the geometry of the 
objects associated with the Dirac field to have a covariant form and be independent of coordinate background. 
We discover that coordinate lines and surfaces cannot be chosen by a fiat—the Dirac field cannot be embedded 
into a coordinate basis ( )xµ∂ ∂  (this observation had triggered the present work starting from [7], where the 
key argument regarding localization was found). In Section 5 the differential identities for the divergences and 
curls of the Dirac currents are written down in terms of components, and properties of the congruences of the 
Dirac currents are analyzed. All components of the connections are found as functions of the Dirac field. These 
two steps finalize the formal design of the physical affine geometry. There are only a few digressions regarding 
physical meaning of some equations, the most important of which is related to the existence of the matter- 
defined world time τ  and the local time slowdown. The latter is the main physical mechanism behind the auto- 
localization. It appears that, in order to be compatible with the Dirac equation, its coordinate basis indeed cannot 
be holonomic. 

The known connections made it possible to examine the properties of the admissible coordinate systems. 
Among four tetrad vector fields, we find in Section 6.1 two integrable subsets of three PDEs for the coordinate 
lines (two hypersurfaces with the corresponding normal congruences) and two two-dimensional surfaces. In 
Section 6.2 we study the internal geometry of these surfaces as submanifolds of  . It appears that the two- 
dimensional surface of the constant “world time” and “radius” can be only spherical, which seems to be in- 
evitable for an isolated stable object. 

The general properties of coordinate surfaces in   (like their spherical symmetry and inherent stability) are 
discovered in the present paper without any assumptions on the nature of an ambient space or Dirac field. It 
appears that the main qualitative characteristic of the stationary Dirac object is the direction of the axial current, 
which can point only outward or inward. It must be clearly understood that the locally defined notions of out- 
ward and inward are prerequisites for any reasonable discussion of the localization phenomenon. The frame- 
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work of the matter-induced affine geometry not only ideally fits this goal but also explains the auto-localization, 
as it is seen in the real world, as an intrinsic property of the Dirac field. 

This paper is continued in Ref. [8], where the capabilities of the matter-induced affine geometry are employed 
to address a specific problem of existence of the auto-localized Dirac waveforms. We begin with writing down 
the nonlinear Dirac equation and putting it in a practically solvable form. The localized configurations of the 
Dirac field are found analytically in the absence of external electromagnetic field. They require the Dirac spinor 
to have only up- or only down-components, when the axial current is pointing outward or inward, respectively. 
The up-mode is stable, has a bump of invariant density and the negative energy E m= − , while the down-mode 
is unstable, has a dip and the positive energy E m= + . At large spatial distances the invariant density has a 
universal vacuum unity value. Therefore, the two modes were (by a fortunate coincidence!) properly inter- 
preted as positive and negative charges. The decay of unstable mode is due to the charged Dirac currents that 
naturally oscillate as 2e imτ , such a decay requiring only the presence of an external electromagnetic field. 
Possibly, these facts explain the vivid global charge (eventually, baryonic one) asymmetry in the Universe. Last 
section of paper [8] summarizes ideas, methods, current results and perspectives. 

2. Vectors at a Point. Algebra of the Dirac Currents 
1. Mathematical framework. We consider, as usually, the mathematical spacetime as a smooth four- 

dimensional manifold   so that every point P of   has an open neighborhood that can be mapped one-to-  
one onto an opened subset of points ( )0 1 2 3 4, , ,x x x x ∈ . From the viewpoint of the differential topology, one  

has to start with scalar functions ( )( )Pf λ ⊂  on the curves ( )P λ  (determined by a map 1 →  , 
1λ ∈ ) in order to build at each point P∈  the linear space ( )pT   of tangent 4-vectors  

( ) ( ) ( )
( )P

P d d hµ
λ µ λ

λ= = ∂ = ∂hh                                  (2.1) 

with the components hµ  with respect to the linearly independent vectors ( )
P

xµ∂ ∂  of the coordinate basis in 
4 . 
Being defined via the mapping 1 →  , a curve and its tangent vectors are invariant objects; only the 

components hµ  of a vector explicitly depend on a particular choice of coordinates in 4 . Action of operator 
(2.1) on the functions ( )f x xν=  yields the system of ODEs for the unknown xµ , ( )d dx h xν νλ = . It is said 
that uµ  are components of a vector if they are transformed as components dxµ  of a displacement dx . 

Any four linearly independent vectors d d , 0,1, 2,3a
a ah aµ

µλ= = ∂ =h , (with the non-degenerate matrix  

ahµ , det 0ahµ ≠ ) can be used as the basis. Then there also exists the inverse matrix ahµ  of the 1-forms ah  so  

that a
ah hµ µ

ν νδ=  and b b
a ah hµ µ δ= . Since any quadruple u  of numbers can be expanded over the basis ah , we 

have a a
a au u h uµ µ

µ µ= = ∂ = ∂u h . Therefore, a a au h uµ
µ= =uh  and d da ah xννλ = , but in general, d aλ  are not 

the total differentials of any independent variables. 
2. Physical framework. Basis of Dirac currents. In physical spacetime of special relativity points P are 

associated with events. The clocks of the net that register these events are synchronized by light signals; this 
results in Lorentz transformations between the coordinates of events measured by the nets of different inertial 
observers. Special relativity is based on independence of all physical processes from a particular choice of an 
inertial frame, and thus from the coordinate basis that is used to parameterize the events. As a matter of fact, the 
coordinate basis is built into a material reference frame, and thus is an invariant object. 

All mathematical treatments of affine or Riemannian geometry start with an assumption of the independent 
tangent space with an arbitrarily oriented normal basis at every point of the continuum (differentiable manifold). 
While invariance with respect to the choice of coordinates xµ  is trivial, there cannot be absolute freedom of 
choosing tetrad vectors at every point—the components ( )ah xµ  of tetrad vectors must be continuous functions 
of the coordinates. Is there a way to endow the principal manifold   with basis of vector fields that would be 
invariant objects without reference to curves and/or derivatives at a point? For the physical four-dimensional 
spacetime the answer is affirmative, because there exists a matter field, the Dirac field ( )Pψ , a coordinate 
scalar, that provides such a basis at each point P of the manifold   and assigns the latter the status of a phy- 
sical object. The algebraic descendants of the Dirac field are the vector-like objects, the so-called Dirac currents, 

[ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( )30 3 1 2P P ,   P P ,   P P ,    P P ,a a a a a aj Jψ α ψ ψ ρ α ψ+ += = = = = Θ = ΦJ J J J     (2.2) 
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of which the last two are the real and imaginary parts of the complex “matrix element” between the two charge- 
conjugated configurations, ( ) ( )a a a aiψ α ψ+

+Λ = = Θ + Φc  and ( ) ( )a a a aiψ α ψ+
−Λ = = Θ − Φc , where ψ c  is the 

charge-conjugate spinor. 
The components a

AJ  of the currents ( ) ( )PAJ  depend only on the Dirac field and on a particular choice of 
the matrices aα  at the point P. The numbers [ ] ( )0 PJ  are the coordinate scalars but are dubbed components of 
the “vector current”. Another four real numbers, [ ] ( )3 PJ , are associated with the components of the “axial 
current”. The idea to use aΘ   and aΦ   as the tetrad vectors was first spelled out in Ref. [9]. 

In these definitions, an explicit form of the Dirac matrices ( ) ( )31, 1,a i iα α ρ σ= = , iρ  and iσ  (a = 0, 1, 2, 
3; 1, 2,3i = ), is not specified; it is only required that they satisfy commutation relations, 

2 ,   0,a b b a ab a aα βα α βα βη α β βα+ = + =  

and, in general, they are not just numeric matrices. One can resort to a particular set of numerical matrices aα  
and β  only in conjunction with the corresponding tetrad basis ah 1. 

3. Fierz identities. Completeness of the basis. It appears that the four quadruples, ( )PAJ  ( 0,1, 2,3A = ), 
along with the scalar   and pseudoscalar  , satisfy the following identities2, 

2 2 2

2

,

,

0,

a a a a
a a a a

a b a b a b a b ab

a a a a a a
a a a a a a

j j

j j
j j j

η

≡ = − = −Θ Θ = −Φ Φ = +

− −Θ Θ −Φ Φ =

= Θ = Φ = Θ = Φ = Θ Φ =

    

  

  

                      (2.3) 

where ( )diag 1, 1, 1, 1abη = − − −  is the Minkowski tensor (which was not contemplated to be here) and 
b

a abj jη= ,... The Dirac currents ( )PAJ  are almost always linearly independent3. In what follows, unless  
stated otherwise, we will consider only “regular” domains where 2 0>  and use, instead of ( )AJ , the nor-  

malized currents A A=V J  . The matrix a
AV  is not degenerate and thus has an inverse matrix A

aV , 

,   .a B B a A a
A a A A b bV V V Vδ δ= =                                   (2.4) 

By virtue of Equation (2.3), at every point P of the basic manifold   the currents AV  form a complete (in 
the sense of linear algebra) system of orthogonal (with respect to the “ metric” abη ) unit “vectors”, 

,   .a b AB a b ab
ab A B AB A BV V V Vη η η η= =                                (2.5) 

The vector 0V  is timelike while the other three are spacelike. It is also straightforward to check the following 
identities, 

,  ,a ab B A AB b
A AB b a ab BV V V Vη η η η= =                                (2.6) 

 

 

1Employing the Dirac matrices, we can define the four components of the “ vector current”, a a aj ψ α ψ ψγ ψ+= ≡ , the four components of 

the “axial current”, 5
3

a a aJ ψ ρ α ψ ψγ γ ψ+= ≡ , two “charged currents”, ( ) ( )a a a aiψ α ψ+

+Λ = = Θ + Φc  and ( ) ( )a a a aiψ α ψ+

−Λ = = Θ − Φc , the 

“scalar” 1ψ ρψ ψψ+= ≡  and “ pseudoscalar” 5
2 iψ ρψ ψγ ψ+= ≡ − . Well-known are the six components of the skew-symmetric “ten-

sor” ( ) 1 11 2ab a b b aψ α ρα α ρα ψ+Σ = −    (or its dual, ( )1 2 cd
ab abcdΣ = Σ



 ). All of them are interconnected by the so-called Fierz relations 

[10]. The charge-conjugated spinor is defined as *
cψ ψ= C  with a real-valued matrix C  (e.g., 2

2ρ σ=C ). 
2This is a small subset of the Fierz identities that includes 28 basic relations and hundreds of derivable from them. They were studied in de-
tails in Ref. [10] as the basis for the mathematical reconstruction theorem [11] that states that Dirac spinor field can be uniquely restored via 
the Dirac currents (without any account for the dynamics). Within this approach it is possible to replace tetrad vectors of any coordinate 
system by an equivalent Dirac field thus simplifying various calculations [12]. Among the objects connected via the Fierz identities is 
present the skew-symmetric abΣ . The abΣ  appears to be a combination of the skew-symmetric products [ ]a bj   and [ ]a bΘ Φ  and scalars. 
The author was not aware of this fact and wrongfully tried [7] to employ abΣ  to build a substitute for the aΘ  and aΦ .  
3Indeed, the necessary and sufficient condition for the linear independence is that the system of linear equations, 0A

AA
c =∑ J , has only a 

trivial solution, 0Ac = ; the latter is possible if and only if matrix that has these quadruples as its columns has a nonzero determinant, 
det 0a

AJ ≠ . The determinant of the 4 4×  matrix a
AJ  equals 4det a

AJ = , where 2  is the squared module of the complex number, 
22 i= +   . When 2 0>  the four vectors ( )PAJ  are linearly independent and can serve as a basis of vector space over  . The 

condition 2 0=  is equivalent to two real equations, 0= =  , which determine a singular two-dimensional surface in 4  (and thus 
on  ). 
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and also that the B
Ab AB bV Vη=  is the solution of the linear system, A

a Ab abV V η= . Therefore, all indices are 
moved up and down by the Minkowski abη  or ABη , which is nothing but a consequence of the Fierz identities. 
At every point P∈ , any quadruple of scalar fields ( )PaU , regardless of its origin, can be presented as a 
linear combination of the basic quadruples ( )Pa

AV  determined by the Dirac field ( )Pψ , 

( ) ( ) ( ) ( ) ( ) ( )P P P ,   P P P ,a A a A a A
A aU u V u U V= =                     (2.7) 

where Au  are the components of the aU  with respect to the basis a
AV . 

4. An intermediate tetrad basis. The components ( )Pa
AV  of a quadruple ( )PAV  clearly cannot be asso- 

ciated with a tangent vector like (2.1) simply because the former are defined only in terms of the invariant com- 
ponents straight in the principal manifold 4  (!), while definition of the latter requires a reference to an arith- 
metic 4 , and its components are not invariant. Despite being complete, the system a

AV  cannot immediately 
serve as a basis for the tangent vectors (2.1). Its completeness is purely algebraic by nature, while linear in- 
dependence and completeness of the system a ahµ

µ= ∂h  is analytic and is always traced back to linear in- 
dependence of the vectors of the basis ( )xµ∂ ∂  (the linear vector space over ( )1 1 : , x xµ µ λ λ= ∈  ). 

An invariant representation of vector s  is possible only together with a system of the basic vectors ah ; then 
it can be replaced by scalars, the tetrad components of the vector s, , a a a

a s s h sµµ= =s h . Now, one can use (2.7) 
to expand the four scalars as  over the system a

AV   

,  a A A A A a
a A A aV s s s V h sµµ= = =s h e                              (2.8) 

and interpret the quantities a
A a Ae h Vµ µ=  as the components of such a vector A Aeµ

µ= ∂e  in coordinate basis that 
the scalars a a

A AV e hµ µ=  are the components of Ae  in the basis ah . The system of ODEs for the unknown xµ , 
d d A

Ax s eµ µ= , defines the integral lines of the vector fields Ae . It is also clear that the matrix A A a
ae V hµ µ=  is 

the inverse of matrix Aeµ , viz. A
Ae eµ µ

ν νδ= , and B B
A Ae eµ µ δ= . 

Let s  in Equation (2.8) be one of the vectors of the basis ah  (or of the basis Ae ). Then a A
b a A bh h V hµ µ=  and 

A a
B A a Be e h Vµ µ= , which results in  

,  .A a a a A A
b A b B a Bh V V hδ δ= =                                   (2.9) 

Since det 1a
AV = , the inverse matrix A

aV  is uniquely defined; therefore, 

( ) ( ) ( ) ( )P P ,  P P .A A a a
a a A Ah V h V= =                             (2.10) 

The components of the tetrad vectors ( )Pah  with respect to the basis ( )PAe  must have invariant values 
(2.10). These equations together with normalization conditions (2.5) and unitarity, det 1a

AV = , allow one to 
interpret ( )Pa

AV  as the matrix of a local Lorentz rotation between the bases ( )PAe  and ( )Pah  with para- 
meters that are determined by the Dirac field ( )Pψ 4. So far, as long as we are confined to a point, we must 
refrain from associating this rotation with the physical Lorentz transformations of special relativity. 

Since ( )a
AV ψ  are immediately defined as the fields over entire manifold  , we expect that if two systems, 

( )PAe  and ( )Pah , do exist, they are isomorphic not only in tangent pT  but even as fields over  . The 
question is whether the integral lines of the vector fields ( )Pah  and/or ( )PAe  can form a coordinate net. 

5. An auxiliary fundamental tensor (not a metric). It takes simple algebra to verify that at the point P∈  
the objects 

,   ,a b A B ab AB
ab AB a b A Bg h h e e g h h e eµν µ ν µ ν

µν µ ν µ νη η η η= = = =                      (2.11) 

can be used to move the coordinate (Greek) indices up and down. Indeed, .c a c
b ca b cb bg h h h h h hν ν

µν µ ν µ µη η= = =  

 

 

4Long ago, E. Cartan [13] pointed to a difficulty, i.e. there are no representations of the general linear group of transformations ( )4GL  that 
are similar to spinor representations of the Lorentz group of rotations. From the physical standpoint this argument is marginal since Lorentz 
transformations are between the reference frames of inertial observers and not between different differentiable mappings 4→  . Cartan 
stated the following theorem, which vetoed spinors in Riemannian geometry: 

“With the geometric sense given to the word ‘spinor’ it is impossible to introduce spinors into classical Riemannian technique; i.e., 
having chosen an arbitrary system of co-ordinates xµ  for space, it is impossible to represent spinor by any finite number of components 

iψ  such that iψ  have covariant derivatives of the form ;
j

i i i jµ µ µψ ψ ψ= ∂ + Γ , where j
iµΓ  are determinate functions of xµ .” Of these two 

underscored reservations of Cartan, the first one was investigated by Ne'eman et al. [14], who proposed to overcome the veto by resorting to 
the infinite-dimensional representations of the Lorentz group. The present study explores the window, which is left open by the second 
reservation. 
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With gµν  thus defined, we also have the formal relations 

,   ,a b ab A B ABg h h g e eµ ν µ ν
µν µνη η= =                              (2.12) 

which can be interpreted as orthonormality relations for the tetrad bases ahµ  and Aeµ  if we postulate that this 
gµν  determines a metric in coordinate basis. Indeed, by virtue of the identities (2.11) the equation, 

2d d d d d d d ,a b A B
ab ABs g x x S Sµ ν

µν η λ λ η= = =                         (2.13) 

determines an interval which is Euclidean locally and invariant with respect to the choice of the coordinate basis 
within a domain where 0≠ . Most likely, this is not the metric that governs propagation of signals at a larger 
scale. It is remarkable that Fierz identities determine a system of unit vectors even before a notion of length is 
introduced. 

Finally, when gµν  is defined according to (2.10) and 2 0R =  then all four vectors a
A A aV=e h , regardless 

of the tetrad ( )a xh , which obviously does not have this property, also become lightlike on a two-dimensional 
surface, 0= =  , in spacetime 4 . Obviously, in this case matrix a

AV  has no inverse. 

3. Vector and Dirac Fields in Spacetime. Analytic Preliminaries 
From now on, we look at the ( )Pσψ  as the physical Dirac field over four-dimensional manifold  . The 
points P∈  are mapped onto points ( )0 1 2 3 4, , ,x x x x ∈ . The components σψ  are thought of as smooth  
functions of the arbitrarily parameterized points ( )0 1 2 3, , ,x x x x xµ =  of the spacetime. So far, we have verified  

that the algebraic structure of bilinear forms of the Dirac field naturally contains an orthogonal quadruple of unit 
(with respect to Minkowski metric) vectors at a generic point. By the argument of algebraic completeness, this 
quadruple must be isomorphic to a basis of any four non-complanar tangent vectors ( )Pah  in  . In a 
coordinate space 4 , the latter are transformed as dx , while the former are scalars. In 4 , for a given fixed 
λ , we can consider constxλ =  as the equation of a coordinate hypersurface and the lines along which all 
coordinates, but xλ , are constant as coordinate lines. Tangent vectors of these lines (which are gradients of the  
linear function ( )x xλϕ = ) are ( ) ( )h x xµ µ λ µ

λ λδ= ∂ ∂ = . Their covariant counterparts, ( ) ( )h x xλ λλ µ
µ µδ= ∂ ∂ = , are  

the gradient vectors and the system of equations ( ) ( ) ( )x h xλ λ
µ µ∂ =  is integrable, but there is no metric and no 

way to determine if its coordinate lines are orthogonal. One may replace xµ  by smooth functions of other 
coordinates yµ , ( )x f yµ µ= , thus redefining coordinate lines and surfaces, but such a change does not alter 

( )( )x yψ  and has nothing to do with “Lorentz rotations”. 
Thus, we have to account for two different kinds of invariance. One of them is the covariance, a trivial mathe- 

matical independence from the coordinate system. The second one is the invariance of the Dirac field as the 
matter, and it is dominant on every account, because any conceivable measurement requires the presence of the 
localized physical objects. In this section, we consider the Dirac field as a known function of coordinates and do 
not employ its equation of motion. 

3.1. Dirac Currents as a “Moving Frame” in Spacetime 
The Dirac field ( )Pψ  is a coordinate scalar, but it naturally generates an affine centered vector space (spanned 
by the Dirac currents ( )PAe ) at P, which is similar to the tangent space pT  of the four-dimensional manifold 
  at P (spanned by the vectors 

Pµ∂  or ( )Pah ). These currents constitute a complete basis, they are of unit 
length and orthogonal in the sense of Equation (2.5). The continuous field of tetrad ( )PAe  is embedded into 
 . Therefore, an infinitesimal change of the a

AV  (and, eventually, of the Ae ) from point P to point P′  is 
predetermined as, 

( ) ( ) ( ) 
 d PP PP P .a B a

A A BV Vϖ′ ′=                                (3.1) 

Also predetermined is the derivative of the scalars a
AV , ( ) ( ) ( )  

 P P Pa B a
A A BV Vµ µω∂ = , and it has a very simple 

meaning. For a given displacement dxµ  in 4 , the total change ( )d P da a
A AV V xµ

µ= ∂  can be expanded over 
a complete system ( )PBV  with the coefficients ( ) ( )   

  PP P dB B
A A xµ

µϖ ω′ = . More precise is the directional deri- 
vative, 

( ) ( ) ( )  
 P P P ,a B a

A A BV Vω∇ =h h                                  (3.2) 
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along an arbitrary vector h  in  . By taking D=h e , we immediately recognize the connections ( )  
 
B

A D Pω , 
with the directional derivative, D Deµ

µ∂ = ∂ , along D ∈e  , as objects in principal manifold  ,  

( ) ( ) ( ) ( ) ( ) ( )    
  P P P ,   P P P .a B a A A B

D A A D B D a B D aV V V Vω ω∇ = ∇ =                     (3.3) 

Then ( ) ( )  
 
A A a a A

B D a D B B D aV V V Vω = ∇ = − ∇ . Since ( )d 0A a
a BV V =  A a A

a B BV V δ =   we immediately conclude that  
  
 ,C

BC A D ABD BADη ω ω ω= = −                                  (3.4) 

viz., the ABDω ∈  is skew-symmetric in the first two indices. 

3.2. Covariant Derivatives at a Point in  
In what follows, we compute the covariant derivatives of the vector and spinor components with respect to 
different bases and establish their interrelation. 

1. The Dirac tetrad. Starting from Equations (2.7) and (3.3) and following the Cartan’s idea of a moving 
frame [15], we can compute the covariant derivative of the components of any vector ( ) ( ) ( )P P PA

Au=u V , 

( ) ( ) ( ) ( ) ( )  
 P P P P P ,A A B

D A D B Du uω ∂ = ∂ + u V                     (3.5) 

or, in terms of components with respect to the basis Ae ,  
  
 ,A A A B

D D B Du u uω∇ = ∂ +                               (3.6) 

where d dA A D
Du u S= ∂  are the relative changes of the components and dA D

Du S∇  is their total change. We 
explicitly see that the presence of the physical Dirac field over the principal manifold   immediately endows 
  with an affine connection. It also provides a natural definition of parallel transport as a transformation that 
leaves the components Au  of a vector unchanged with respect to a local basis, even when the local tetrad (or a 
coordinate hedgehog) changes its orientation from point to point. Equation (3.3) is a special case of Equation 
(3.6) when A A

au V= . Taking for Au  the components of the vector current, A A a A
aj V j ψ α ψ+= = , one can 

define the covariant derivative of the Dirac field without leaving the principal manifold  . Indeed, assuming 
that 

,A A AD ψ ψ ψ= ∂ −Γ                                   (3.7) 

and comparing with Equation (3.6) one readily obtains the equation that determines the connection AΓ  [16],  

( )  
 ,A A A B a A B

D D B D B D aV Vα α ω α α+Γ + Γ = − = ∇                      (3.8) 

where A A a
aVα α=  and these matrices Aα , depending on ψ , must be considered as primary objects in  . 

2. Arbitrary tetrads. Knowing the affine connection in the basis of vectors AV , we can find it in any other 
basis ( )a Ph . Indeed, starting from Equation (3.6) we rewrite covariant derivative in terms of the basis vectors 

ah ,  

( ) ( )  
 P ,a D A a a b a

A d D d b d dV V u u u uγ∇ = ∂ + ≡ ∇                        (3.9) 

where d dhµ
µ∂ = ∂  and   

 
a

b dγ  stands for the expression,     
  
a a B A a B D

b d B d b B D A b dV V V V Vγ ω= ∂ + . By virtue of Equations  
(2.9), we have   

 
a D B a D B a

b d d D b B d D b BV V V h h hγ    = ∇ = ∇    . Using Equation (3.3), we obtain (by definition, b
D BV∂  =  

0; b
BV  is a matrix of Lorentz rotation), 

    
   .a A a B D

b d B D A b dV V Vγ ω=                                 (3.10) 

These invariants are nothing but the coefficients of rotation of the basic vectors ah  with respect to the basis 
Ae . Conversely, the equation,  

( ) ( )    
  ,A d A a A b d b A d b A

B D D d b b d a B D d B b D d B bh h h h h h h V V Vω γ = − ∂ − ≡ ∇ = ∇                  (3.11) 

gives the coefficients of rotation   
 
A

B Dω  of the basic vectors AV  with respect to the basis ah . 
3. Coordinate basis. In the coordinate picture, the basis vectors ( )a xh  are assumed to be known in advance. 
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In this case, one can derive the covariant derivative as 

( ) ,d a
a dh h u u u uν ν ν σ ν

µ µ σµ µ∇ = ∂ + Γ ≡ ∇                          (3.12) 

where ν
σµΓ  stands for  

( )  
 .b a d b d b

b b d a d bh h h h h h h hν ν ν ν
σµ µ σ µ σ µ σγΓ = ∂ + ≡ ∇                        (3.13) 

and (because of the term with bhµ σ∂ ) it is transformed as a connection under a change of the coordinates. Alter- 
natively, we could start with ( )D A

A Du e e uν ν
µ µ∇ = ∇  (or just substitute   

 
a

b dγ  from Equation (3.10)) and obtain 
another representation of the same connection ν

σµΓ , 

( )  
 ,B A D B D B

B B D A D Be e e e e e e eν ν ν ν
σµ µ σ µ σ µ σωΓ = ∂ + ≡ ∇                        (3.14) 

which is now expressed via quantities that explicitly depend on the physical Dirac field. Finally, using Equations 
(12), we can invert the last two equations to obtain, 

( ) ( )    
  ,  ,a a A A

b d d b B D D Bh h h e e eµ ν µ ν
µ ν µ νγ ω= ∇ = ∇                          (3.15) 

which is normally taken as an ad hoc definition of the coefficients of rotation of tetrad vectors when one prefers 
to stay in 4 . Notably, Equations (3.15) and (3.3) determine the same   

 
A

B Dω , although Equation (3.3) app- 
arently belongs to 4  and has nothing to do with the 4 . This may be considered as an evidence that the 
vectors ahµ  and the connections   

 
a

b dγ  are the auxiliary quantities. 
When hµ  is a vector and ( )g xνµ  is a tensor (not necessarily determining a metric) then the covariant 

derivative hµ
ν∇  with respect to gνµ  is also a tensor [17]. Using Equations (3.12) and (3.15), it is straight- 

forward to check that if ( )g xνµ  has the form (2.10) then 0gλ νµ∇ = . Indeed, since bad abdγ γ= −  we have  

( ) 0.ab a b d
a b b a bad abdg h h h h h h hλ νµ µ λ ν ν λ µ µ ν λη γ γ ∇ = ∇ + ∇ = + =   

An idea of how to find this gνµ  practically, will become clear only in the next paper [8], where a concrete 
solution ψ  is found. Starting from there, one can take the following path,           a

A ABC abc a AV h eµ µψ ω γ→ → → → →  
and, eventually, explicitly determine the ( )( )g xµν ψ . 

4. Connections for the Dirac field. Starting from Equation (3.9) for the vector current a aj ψ α ψ+= , 
    
  ,  .a a a c a c

b b c b b b a b a a b c b aD j j j j D j j j jγ γ= ∂ + ≡ ∇ = ∂ − ≡ ∇                  (3.16) 

or translating Equation (3.8) into the basis ah , it is straightforward to obtain the following equation for the 
matrix aΓ

5: 
    
  , ,b a a a b

d a a d a d b d d b dα α γ α α α γ α+ +Γ + Γ = Γ + Γ = −                       (3.17) 

where D
d d DVΓ = Γ , and nothing implies that aα  must be numerical matrices6. If we introduce a

ahν να α= =  
A

Aeνα  and d D
d Dh eµ µ µΓ = Γ = Γ  and use (3.15), then Equations (3.8) and (3.17) can be rewritten entirely in 4 ,  

,ν ν ν
µ µ µα α α+Γ + Γ = −∇                                  (3.18) 

Equations (3.17) and (3.18) indicate that the Dirac matrices aα  are covariantly constant with respect to the 
“connection” aΓ  of the Dirac field, 0a

bD D µ
µα α= = . The same is true for other representations as well. 

Either of Equations (3.8), (3.17) and (3.18) can be solved (algebraically) for the corresponding κΓ . The most 
general solution reads as  

( )3 1 11 4 ,a b
d d d abdieA igρ γ ρ α ρ αΓ = + +                        (3.19) 

where, so far, e and g are arbitrary constants. The term dieA  in the connection (19) (or the field Aµ ) is 

 

 

5Indeed, multiplying both sides by D a
d AV V  we will have in the r.h.s. ( ) ( ) ( )D a h A B D a A h B D a B b

d A B D h d A h D B d D B bV V V V V V V V V V Vα α α∇ = − ∇ = − ∇
 

  
 
a b

b dγ α= . 

6This is straightforward to show, ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

  
 

  
 

a a a a a a a a
b c b b b b b b

a a a a a a c
b b b b b c b

D D D Dψ α ψ γ ψ α ψ ψ α ψ ψ α ψ ψ α ψ ψ α ψ ψ α ψ

ψ α ψ ψ α α ψ ψ α α γ α ψ

++ + + + + +

+ + + + +

∂ + ≡ ∇ = = + +

= ∂ − Γ + Γ + Γ + Γ +  
,  

where   
 

a a a a a c a a a
b b b b c b b b bDα α α α γ α α α α+ += ∂ + Γ + Γ + = ∇ + Γ + Γ . 
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unquestionably interpreted as the electromagnetic potential. The term 3 digρ   (or field µ ) could have been 
interpreted as another field that interacts with the axial current J µ 7. The connection (3.19) commutes with the 
matrix 3ρ , so that Equation (3.17) remains the same when 3a aα ρ α→ . So far, it neither commutes nor anti- 
commutes with 1ρ  and 2ρ , viz. 

1 1 2 2 2 12 ,    2 .b b b b b bg gρ ρ ρ ρ ρ ρ+ +Γ + Γ = Γ + Γ = −                         (3.20) 

Similar formulae arise for the charge-conjugated connection. Since 1
1 1ρ ρ− = −C C  and 

*1i iα α−  = C C ,  

    
  2 ,   2 .d d

b a a b a b d b a a a b a b d b ab
ieA ieAα α γ α α α α γ α α

++  Γ + Γ = − Γ + Γ = + 
c c              (3.21) 

The commutation relations for the Dirac matrices a
ahµ µα α=  and A A a

aVα α=  are 

1 1 1 1 1 12   and  2A B B A ABgµ ν ν µ µνα ρ α α ρ α ρ α ρ α α ρ α ρη+ = + =  

in 4  and  , respectively. We assume that the matrices aα  are associated with the basis ah  in the tan- 
gent pT , while matrices Aα  belong to the principal manifold  . In what follows, we consider Dirac field as 
the primary matter field; covariant derivatives of its bilinear functions will be computed only using Equations 
(3.17)-(3.19). 

5. Connections in different bases. Equations (3.10) and (3.11) are nothing but the well known formulae for 
transformation of a linear connection between two non-coordinate (anholonomic) bases. In these bases, all 
quantities are functions of the point P in the principal manifold  , and thus independent of the coordinate 
basis in the 4 . For example, we readily have the coordinate-independent equation of the parallel transport of a 
vector u  along a vector d dλ=v , viz. ( ) ( ) ( )P P P 0.A a

A av v∇ = ∇ = ∇ =v u u u  
If we omit indices and use the notation   for matrix a

AV  (as well as 1−  for A
aV , κΓ  for   

 
a

bκγ  and 
κΩ  for   

 
A

Bκω ) then Equations (3.10) and (3.11) read as  
1 1 1 1 ,    ,κ κ κ κ κ κ
− − − −Γ = Ω − ∂ Ω = Γ − ∂                              (3.22) 

which are the universal expressions8 for all kinds of connections associated with local transformations. Equ- 
ations (3.6) and (3.9), augmented by definition of the derivatives, d dhµ

µ∂ = ∂  and d
D D d DV eµ

µ∂ = ∂ = ∂ , are fix- 
ing the components of any vector with respect to the (moving) tetrads Ae  and ah . The existence of the field of 
unitary matrix of the Lorentz transform a

AV=  (and then of an affine connection   
 
A

B Dω ) appears to be an 
amazing consequence of the Fierz identities for bilinear forms of the Dirac field. Finally, it is straightforward to 
check that, once ahµ  and Aeµ  are the components of vectors and badγ  and BADω  are scalars, the connection 

ν
σµΓ  transforms under a further change of the coordinates as  

2

,x x x x
x x x x x

ν σ µ ν
ν ν
σ µ σµν σ µ σ µ
′
′ ′′ ′ ′ ′ ′

∂ ∂ ∂ ∂
Γ = Γ +

∂ ∂ ∂ ∂ ∂
 

which guarantees that the derivative uν
µ∇  transforms as a tensor. Transformations (3.10) and (3.11) are re- 

duced to this formula when the tetrads are formed by the gradient vectors. 
By definition, ( )abd d a bh hκ

κγ = ∇ , were index κ  can belong to any of the bases. Therefore, Equation (3.19) 
has the required general form (3.22) and can be rewritten as ( ) ( )3 1 11 4 a b

d d d d a bieA ig h hκ
κρ ρ α ρ αΓ = + + ∇  in 

 

 

7In the early days of the Dirac theory, it was firmly established that 1ψ ρψ+=  and 2ψ ρψ+=  are Lorentz scalars, which, however,  

does not guarantee that they are scalars with respect to the general coordinate transformations of the group ( )4GL . V. Fock [16] resorted 

to a specific choice of the Dirac matrices to demonstrate that 1 1S Sρ ρ+ =  and 2 2S Sρ ρ+ =  under special Lorentz transformations S. For 

now, we shall refer to the differential identity (4.4), 2mµ
µ∇ =  ; since µ  is a vector and µ

µ∇   is a coordinate scalar, so are   

and then   (due to the Fierz identity (2.3)). This argument is not geometric in its nature, because it relies on the equation of motion. Intri-
guing is that   and   are the coordinate scalars only due to equations of motion. At the moment, we have no convincing argument that 
would allow one to reject the presence of d  in the dΓ  except that we have no experimental evidence that   exists as a physical field. 
Here, such an argument is reached later (with the reference to the equations of motion) from the physical (and then mathematical) require-
ment that nothing in physical manifold   or in coordinate space 4  can depend on a tetrad basis ah . For the sake of clarity, some equ-

ations will be ending with “ { }0, a= =  ”, until we reach Equations (4.16) and (4.21) and then prove that 0a = .  
8In general, κ is not a tetrad index. 
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tetrad basis and as ( ) ( )3 1 11 4ieA ig ν
µ µ µ µ νρ ρ α ρ αΓ = + + ∇  in the coordinate 4 . 

6. Symmetry of the connection Γν
σµ . If we naively assume that the Minkowski signature abη  in Equations 

(2.4) and (2.5) determines the local metric of an inertial reference frame at point P (with local coordinates ay ) 
and that ( )Pgνµ  of Equations (2.10) is obtained by a local coordinate transformation of the abη  then, being a 
tensor, the skew-symmetric part [ ]

σ
µνΓ  of the connection (the tensor of torsion) should be zero. This argument 

would require, in its turn, that the covariant tetrad vectors be the gradient vectors, ( )
P

Pa ah y xµ
µ = ∂ ∂ , which is 

by no means self-evident. 
There is, however, another reason for the symmetry of σ

µνΓ , which is hinted by the Cartan’s method of 
moving frame. The field of tetrad ( )PAe  belongs to   and can be used as a “ moving frame” for all vectors 
∈s  , including the vectors dx  of infinitesimal displacements. Consider now a closed path 1 ⊂   

through the point 0P  and attach the “ natural” tetrad ( )PAe  to its points. Then every next point of the path has 
a position with respect to the tetrad of the previous point. Since the tetrad ( )PAe  is changing from point to 
point, we have no other choice but to specify the transport of a vector as the parallel Fermi transport (in the 
sense that the components of a vector with respect to the local tetrad do not change) along the chosen path. We 
will be able to get back to 0P  (the image of the path in the moving frame will be closed) with the same ( )0Pψ  
and, therefore, with the same tetrad ( )PAe  and matrix ( )0Pa

AV , which is imperative, if and only if the 
components σ

µνΓ  of the connection, as they are defined in the coordinate basis xµ∂ ∂  of the 4 , are sym- 
metric in their subscripts. Then the torsion tensor vanishes, and only then will we be able to contract the entire 
path to the point 0P ∈ . Consequently, the following formulae, 

( ) ( ) ( ) ( )        
    ,   .d d D D

a b b a a b b a d A B B A A B B A Dψ γ γ ψ ψ ω ω ψ∂ ∂ − ∂ ∂ = − − ∂ ∂ ∂ − ∂ ∂ = − − ∂          (3.23) 

can be confidently used for any coordinate scalar ( )xψ . 

4. Differential Identities for the Dirac Currents 
As it was pointed out above, Equations (3.6) and (3.9) with the predetermined coefficients of rotation fix the 
components of a vector with respect to an a priori arbitrary tetrad basis. One might expect that these equations 
can be trivially used to fix the components of any tensor field. However, the coefficients of rotation of the “geo- 
metric tetrad” ahµ  and those of the tetrad aeµ  of the normalized Dirac currents are interconnected by Equation 
(3.10). Hence, the dynamic can potentially limit a feasible choice of the basis ahµ . The coordinate system 
(coordinate lines) can be not arbitrary; not all coordinate variables can even have the meaning of coordinates. 
Therefore, it seems appropriate to postpone, for as long as possible, explicit use of any coordinate basis and treat  
the tetrad ( ) ( )Ae xµ ψ    as an orthogonal moving frame [15]. An affine geometry will be constructive if and only  

if all the coefficients   
 
B

A Cω  of rotation of the tetrad Ae  can be determined from the equations of motion. 
In this section we show that this is indeed possible. There appears to be sufficient number of identities for the 

Dirac currents to completely determine the coefficients   
 
B

A Cω  and the connections BΓ  in the covariant deri- 
vative ( )B B BD ψ ψ= ∂ − Γ . Therefore, from now on we are dealing with the physical material Dirac field that 
satisfies the Dirac equations of motion, 

1 1,    ,a a
a aD im D imα ψ ρψ ψ α ψ ρ+ + += − =                          (4.1) 

with the derivative a a aD = ∂ − Γ , connection aΓ  defined by Equation (3.19), and the mass parameter m. The 
latter is, for now, real, arbitrary and stands for the rate of mixing between the right and left components of the 
Dirac spinor. The equations of motion for the charge-conjugated spinor are 

[ ]1 1,  [ ] ,a a
a aD im D imα ψ ρψ ψ α ψ ρ++ += − =c c

c c c c



                      (4.2) 

where ( )a a aD ψ ψ= ∂ − Γc c c c  is the covariant derivatives of the charge-conjugate Dirac field, and aΓ
c  is given 

by Equations (3.21). 

4.1. Divergences of the Dirac Currents 
From the equations of motion (4.1) one immediately derives two well-known identities. Multiplying the Dirac 
equation by ψ +  from the left and its conjugate by ψ  from the right and taking their sum we readily obtain 
that 
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0.a
aD j jµµ= ∇ =                                     (4.3) 

This equation clearly indicates conservation of the timelike vector current (of probability) of the Dirac field. 
The second identity is obtained from the Dirac Equation (4.1), which is multiplied by 3ρ  from the left (and its 
conjugate from the right, and noting that 3 1 1 3 2iρ ρ ρ ρ ρ= − = ). It indicates that the  spacelike axial current is 
not conserved,  

2 ,a
aD mµ

µ= ∇ =                                    (4.4) 

and has the pseudoscalar density as a source. Since   is localized not less than  , and the vector µ  is 
spacelike, it defines the radial direction. The existence of such a direction is a distinct characteristic of any loca- 
lized object. 

Similar identities can be derived for the vectors aΘ  and aΦ  of Section 2. Using Equations (3.21) and (4.2), 
we immediately arrive to covariant derivatives of the matrix elements ( )

a
±Λ  as  

( ) ( ) ( ) ( ) ( ) ( )  
 2 2  .d

b a b a a b d b a b a b aD ieA ieAγ± ± ± ± ± ±Λ = ∂ Λ − Λ Λ ≡ ∇ Λ Λ                     (4.5) 

Though these vectors are complex and explicitly depend on the phase of ψ , this dependence is compensated 
in the covariant derivative (4.5) by the gauge transformation of the vector potential. The derivatives of Θ  and 
Φ  become  

2 , 2 .b a b a b a b a b a b aD eA D eAΘ = ∇ Θ + Φ Φ = ∇ Φ − Θ                         (4.6) 

The fields of complex currents a aiΘ ± Φ  look like being “charged” with a charge 2e. From the equations of 
motion (4.2) and using Equation (4.6), it is straightforward to get ( ) 0a

aD ±Λ =  and, consequently, 

2 ,    2 .eA eAµ µ µ µ
µ µ µ µ∇ Θ = − Φ ∇ Φ = Θ                             (4.7) 

Similarly to the vector of axial current, these vectors are not conserved due to electromagnetic potential Aµ . 

4.2. Curls of the Dirac Currents 
In order to access the differential identities for the curls of the Dirac currents one has to compute, using the 
equations of motion, the derivatives of the objects , , , a a a a

a a a aT P Θ Φ , which are traces of tensors (objects), 
a a

b bT Dψ α ψ+= , 3
a a

b bP Dψ ρ α ψ+= , ( )a a
b bDψ α ψ

+
Θ = c  and ( )a a

b bDψ α ψ
+ +Φ = c c


, respectively. These ten- 
sors are neither real nor symmetric, and we are not concerned here about their physical interpretation. 

1. T µ
ν —a tensor or not? One would expect the absolute differential of  

a
bT , being computed according to 

the Leibniz rule, be as follows,  
    

       =  .a a a d d a a
c b c b d c b b c d c bD T T T T Tγ γ∂ + − ≡ ∇                             (4.8) 

and this expression would fix, similarly to Equations (3.9) and (3.12), the components of the tensor   
b a

a bT h h Tσ σ
µ µ=  

with respect to the tetrad ah . If this expectation turns out justified then the usual covariant derivative will be 
immediately reproduced as  

     .c b a
a c bT T T e e e T Tσ σ ν ν σ σ σ

λ µ νλ µ µλ ν λ µ λ µ∂ + Γ − Γ = ∇ = ∇                          (4.9) 

Contrary to the expectation of (4.8), the answer reads  

  
 ,

a a a a
c b c b c c b

a a d
c b d c b

D D D D

D D

ψ α ψ ψ α ψ ψ α α ψ

ψ α ψ γ ψ α ψ

+ + + +

+ +

     = ∂ − Γ + Γ    
 = ∂ + 

  

 

                 (4.10) 

with the last term of Equation (4.8) missing, and no hope to recover the full geometric expression (4.9) of the 
covariant derivative of the tensor! Contracting here indices a and c and using equations of motion we would 
arrive at [7] 

      
       .a a c c a c a a

a b c a b b a c a b c abT T T T iγ γ γ ψ α ψ+∂ + − = − −                          (4.11) 
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with the normal covariant derivative in the l.h.s. The ab  and an abnormal term   
  
c a

a b cTγ  in the r.h.s. originate  
from the commutator of the covariant derivatives, ,a bD D 

 
 

. Its real part is the Lorentz force,  
a a

ab abRe i ej Fψ α ψ+  =   [7] [16]9. 
2. Abnormal terms and how they restore the GL(4) covariance. The abnormal term enters another identity 

that follows from the Dirac equation, which arises after contracting indices a and b in Equation (4.10). On the 
one hand, we formally have (Cf. footnote7. The 1S ψ ρψ+=  must be a scalar and the last term in the r.h.s. must 
be absent.) 

    
 1  .a a a b a b

c a c a b c a c b c aD D D D im Dψ α ψ ψ α ψ γ ψ α ψ ψ ρψ γ ψ α ψ+ + + + +     = ∂ + = − ∂ +    
   

         (4.12) 

On the other hand, by virtue of the Dirac equation, the first term on the r.h.s. of (4.12) becomes  

1c imψ ρψ+ ∂ −  . Alternatively, one can immediately use the equations of motion on the l.h.s. and only then  

differentiate, 

1 1 1 1  .a
c a c c c cD D imD im imψ α ψ ψ ρψ ψ ρψ ψ ρ ρ ψ+ + + + +       = − = − ∂ + Γ + Γ      



           (4.13) 

Comparing the last two equations and using (3.20), we finally find that the abnormal term 

( )( ) ( )  
   

ac a
a b c b aT h h h Tλ ν σ

λ σ νγ = ∇  vanishes (or at least can be expressed via abnormal field b )  

{ }  
  0,   2 ,c a

a b c aT mgγ− ⋅ = =                                (4.14) 

thus restoring the covariance of Equation (4.11). Remarkably, the usual covariance in coordinate space is re- 
stored due to equations of motion. Equation (4.14) yields two nontrivial conditions on the structure of the Dirac 
currents as follows. The Ricci coefficients are real-valued and skew-symmetric in the first two indices. The r.h.s. 
of Equation (4.14) is real. Therefore, the imaginary part of Equation (4.14) reads as 

( ) ( ) ( ) ( )Im 0.acb ac ca acb c a a c acb c a a cT T D D j jγ γ ψ α ψ ψ α ψ γ+ + − = − = ∇ −∇ =               (4.15) 

In order to facilitate further analysis of the real part of Equation (4.14), let us rewrite its l.h.s. in terms of the 
axial current. Using the dual representation of the axial current as 1 1

stua s t u
a iψ α ρ α ρ α ψ+=  , ( ), , ,s t u ≠  and 

employing the equations of motion we obtain, 

 ,stua s t t s
u a t s s tD i D i D i D i Dψ α ψ ψ α ψ ψ α ψ ψ α ψ+ + + + + += − + − +

   

   

where the r.h.s is four times the anti-symmetric Hermitian part of the energy momentum tensor. Therefore, the 
real part of Equation (4.14) reads as  

( ) ( ) { }1 4 1 2 0   2 .acst
acbacb s t c a bmgγ γ⋅ ⋅∇ = ∇ = =


                    (4.16) 

3. More non-tensors and abnormal terms. Next, consider the stress tensor  3
a a
b bP i Dψ ρ α ψ+= , mostly 

following the same protocol and starting from its covariant derivative. We find that 
  

3  3 .a a a d
c b c b d c bD D D Dψ ρ α ψ ψ α ψ γ ψ ρ α ψ+ + +   = ∂ −   

  

                  (4.17) 

Once again, the last term of Equation (4.8) is missing, and thus we have no confidence that the covariant 
derivative is a tensor. For the immediate purpose of this work, we only need the equations that emerge after 
contracting indices a and b in Equation (4.17),  

  
3 3  3 .a a a b

c a c a b c aD D D Dψ ρ α ψ ψ ρ α ψ γ ψ ρ α ψ+ + +   = ∂ +   
  

                 (4.18) 

By virtue of the Dirac equations, the first term in the r.h.s. becomes 2c mψ ρ ψ+ ∂   . Alternatively, one can 
immediately use the equations of motion in the l.h.s. and only then differentiate (matrices 3ρ  and aα  com- 
mute), 

 

 

9Three remarks are to be made here: 1) the Lorentz force in the r.h.s. allows one to associate the observable j and   with a variations of 
the charge density even without reference to the Maxwell equations. A uniform distribution is not distinct from vacuum; 2) if the basis ahµ  

were holonomic, viz.     
  0c c

b a a bγ γ− = , then there would have been no way to achieve the desired covariance. In fact, the abnormal term will 

vanish, but only if the nontrivial conditions (14) are met; 3) in general, ( ) 1 11 4 c d
ab abcd abR ieFρα ρα= − + , where abcdR  and abF  are the 

Riemannian curvature and the electromagnetic field tensors, respectively. 
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3 2 2 2  .a
c a c c cD D mD m m gψ ρ α ψ ψ ρ ψ ψ ρ ψ+ + +     = = ∂ + ⋅    



             (4.19) 

Comparing the last two equations we finally get the equation,  
  
  2 ,a c

c b a bP igmγ− ⋅ = −                                (4.20) 
which is complementary to Equation (4.14). Since acbγ  is skew-symmetric in the first two indices, the 
imaginary part in the l.h.s. is due to ( ) ( )1 2 2ca ca c aP P i D J+ − =  . Since the axial current is a vector, we can 
rewrite the imaginary part of the last equation as [C.f. footnote7], 

( ) ( ) ( ) ( ) { }1 2 1 4 0,   2b ab
acb c a a b bh h h mgν λ

µ µ ν λ λ νγ η∇ = ∇ ∇ −∇ = =                    (4.21) 

which is dual to Equation (4.16). The skew-symmetric Hermitian part, ( ) ( )ca ca ac acP P P P+ ++ − + , must vanish  

since the r.h.s. of Equation (4.20) is an imaginary quantity. Since 3 1 1
stua s t u

aj iψ ρ α ρ α ρ α ψ+= , ( ), , ,s t u ≠ , this 
yields the equation, 

3 3 3 3 2 4 = 0.acut
acbacb a c c a c a a c acb u t a cD D D D D j D jγ ψ ρ α ψ ψ α ρ ψ ψ ρ α ψ ψ α ρ ψ γ γ+ + + + + + − − + = = 

   


    (4.22) 

which is similar to Equation (4.16) and dual to Equation (4.15). 
4. A full set of prerequisites for the covariance. Considered together, Equations (4.15) and (4.22) constitute 

a linear system of eight equations for the six unknowns, a b b aj j∇ −∇ . In general, the rank of its matrix equals 6. 
Therefore, it can only have a trivial solution. Since a bj∇  are the invariants of a true tensor, jµ ν∇ , we have 
the tensor equation, 

0 .j jµ ν ν µ∇ −∇ =                                     (4.23) 

Equations (4.16) and (4.21) constitute the system of 8 equations for 10 unknown quantities, [ ]ν λ∇   and µ . 
These equations also explicitly depend on a choice of the auxiliary field of tetrad ( )a xh , which is unacceptable. 
Insisting on independence as a physical (and then mathematical) requirement and realizing that   does not 
exist as a physical field, we must put 0a = 10. Then we have the system of 8 homogeneous equations for only 
6 unknowns [ ]ν λ∇   with a trivial solution,  

0,ν λ λ ν∇ −∇ =                                     (4.24) 
which is similar to Equations (4.23) that we had for the vector current. 

More identities are readily obtained along the same guidelines as Equation (4.14). Namely, duplicating (4.12)-  

(4.14), we compute ( ) a
c aD Dψ α ψ

+ 
  

c  and ( ) a
c aD Dψ α ψ

+ + 
  

c c


 directly and using equations of motion. 

Adding up the results we obtain that 

( ) ( ) 0.adc a d adc a dD Dγ ψ α ψ γ
+ +  = Λ =  

c                        (4.25) 

Computing in the same way the dual quantities, ( ) 3
a

c aD Dψ ρ α ψ
+ 

  
c  and ( ) 3

a
c aD Dψ ρ α ψ

+ + 
  

c c


, we end 

up with 

( ) ( ) 0,adc adca d a dD Dγ ψ α ψ γ
+ +  = Λ =  

c
 

                      (4.26) 

which once again is a system of 8 equations for six unknowns with only a trivial solution. Since adcγ  is skew- 
symmetric in the first two indices and is not zero, we arrive at  

( ) ( ) 0,a b b aD D± ±Λ − Λ =                               (4.27) 
which, by virtue of (4.6), results in  

( ) ( )2 ,   2 . e A A e A Aµ ν ν µ µ ν ν µ µ ν ν µ µ ν ν µ∇ Θ −∇ Θ = − Φ − Φ ∇ Φ −∇ Φ = + Θ − Θ        (4.28) 

The differential identities (4.15), (4.23) and (4.28) for the Dirac currents are written down in the covariant 
tensor form and can be transformed further into tetrad representation with respect to any tetrad. Therefore, it is 
indeed possible to overcome the Cartan’s veto [C.f. footnote 4] relying on the second reservation in Cartan’s 
statement. 

 

 

10This accomplishes the proof of the statement outlined in the footnote7. 
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5. Dirac Field and Congruences of Curves 
Each of four linear partial differential equations, 0A Af e fµ

µ∂ = ∂ = , determine a congruence of lines because it 
is equivalent to the system of three ODEs for unknown xµ , ( )d d , 0,1, 2,3A

Ax e x Sµ µ µ= = . The question is 
whether two or three of these PDEs can be solved together (if they form a complete system). The answer is 
encoded in the properties of the rotation coefficients   

 
C

A Bω  of the orthogonal net of the tetrad Ae . These are not 
given a priori, but it is possible to find them as dynamic quantities. This is an immediate goal of this section. 
Technically, we will rely only on Equation (3.15), 

( )     
  00 11 22 33,   ,   .D A A

B B B B B D A B B A B B B Be e e e e e eν ν ν ν ν µ
µ µ µ µ µ µω ω ω ω ω ω∇ = ∂ + ∇ ∇ = ∇ = = − − −          (5.1) 

5.1. Vector Current and Timelike Congruence 
To analyze the lines of the vector current, the two obtained earlier equations, (4.3) and (4.23), 

0,    0,j j jµµ ν ν µ µ∇ −∇ = ∇ =                                 (5.2) 

must be examined together. When the invariant density of the Dirac (spinor) matter is positive, 2 0j= > , 
the vector field ( )j xµ  is strictly timelike; its tangent unit vector is [ ] ( )0e xµ , [ ]0j eµ µ= . Therefore, Equation 
(4.23) becomes  

[ ] [ ] [ ] [ ]0 0 0 0ln ln 0.  e e e eµ ν ν µ ν µ µ ν∇ −∇ + ∂ − ∂ =                           (5.3) 

Contracting this equation with A Be eν µ , , 1, 2,3A B =  and using Equation (5.1) we find that  

0 0 0 ,    , 1, 2,3 ,AB BA A Bω ω− = =                                (5.4) 

which is a necessary and sufficient condition for the congruence [ ]0eµ  to be normal [17] [18]. Namely, there 
exists such a function, ( )xτ , that the vector field [ ] ( )0e xµ  is orthogonal to the family of surfaces ( )xτ =  const , 

( ) ( ) [ ] ( ) [ ]0 0 0,   d d d d ,x f x e x x fe x f Sµ µ
µ µ µ µτ τ τ∂ = = ∂ = =                   (5.5) 

where ( )xτ  satisfies the complete system of three equations, ( ) ( ) 0Ae x xµ
µτ∂ = , 1, 2,3A = , and ( )f x  is a 

coordinate scalar. Contracting Equation (5.3) with [ ]0eν  we get 
[ ]

[ ]
( )0

000ln ln ,B
Be eµ µ µω∂ = ∂ −                             (5.6) 

where ln ln ln A
A Ae Sµ

µ∂ = ∂ = ∂ ∂    is the derivative in the direction of the arc AS . Contraction of Equ- 
ation (5.3) with [ ]0 Ae eν µ  yields  

00ln  ,   1, 2,3,A AR Aω∂ = − =                               (5.7) 

which indicates that congruences of lines, defined by the system of equations, [ ]
[ ]

0
0d dx S eµ µ= , must experience  

permanent bending (acceleration) whenever the invariant density ( )x  of the Dirac field is not uniformly 
distributed. The spatial gradient of ( )x  cannot vanish for any localized state. 

Additional information can be extracted from Equation (4.3), [ ]( ) [ ] [ ]0 0 0 0e eν ν
ν ν∇ ≡ ∂ + ∇ =   . Then, by 

definition,  

[ ] [ ]
  
0 101 202 3030 0 ln  .A

Aeνν ω ω ω ω∇ = = + + = −∂                      (5.8) 

Hence, we can rewrite (5.6) as 
[ ]0

0 00ln ,AB B
AB Be eµ µ µη ω ω∂ = − −                            (5.9) 

which shows that the r.h.s. of Equation (5.9), which contains only geometric objects, is a component of a 
gradient. Together with condition (5.4) this constitutes a necessary and sufficient condition that the function 
( )xτ  defined by Equation (5.5) is an harmonic function [17], 

 0.g µν
µ ντ τ= ∇ ∇ =                                (5.10) 

The parameter *τ  of ( ) * constxτ τ= =  is the definition of the world time. For the harmonic function, 
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( )xτ , the conditions of integrability for system (5.5) of partial differential equations reads as [17]  
[ ] ( )0

0 00ln  .BAB
AB Bf e eµ µ µη ω ω∂ = − −  

Comparing it with (5.9) we find that ( )f x = , so that the world time τ  and the “proper time” [ ]0S  are 
related by 

[ ]0d dSτ =                                 (5.11) 
Furthermore, since ( )f x =  and system possesses the proper time, we can rewrite Equation (5.9) as 
( ) ( ) ,j x xµ µτ= ∂  which could have been inferred directly from Equation (4.15). Then, the harmonic nature of 
( )xτ  immediately follows from the current conservation, 0jµµ∇ = . Since dτ  is the total differential and 

the vector current j  belongs, in fact, to the principal manifold  , so does the interval of the world time τ ,  

( )
( ) ( ) [ ]( )2

1

0
2 1 d   d ,

x

x
j x x S

τ µ
µτ

τ τ− = =∫ ∫                         (5.12) 

and this interval does not depend on the path of integration (the time variable τ  is a holonomic coordinate). 
Now, we can draw the major conclusion: The proper time, [ ]0S , flows more slowly than the world time, τ , 

whenever Dirac matter has a magnified density. Because of the wave nature of the Dirac field, its localization is 
inevitable. Since the congruence [ ]0eµ  appeared to be normal, the hypersurfaces ( ) * constxτ τ= =  represent 
space at different times *τ . The states can be considered stationary only with respect to τ ; one can hope to 
find them only after replacing 0i S∂ ∂  by i τ∂ ∂  in the operator of energy! 

5.2. Axial Current and Radial Congruence 
Here, we have to deal with the system of equations,  

0,   2 ,mν
ν λ λ ν ν∇ −∇ = ∇ =                               (5.13) 

which is similar to Equations (5.2) that we had for the vector current. The only difference is that the axial 
current has a source 2m . Since there is no flux of vector current in this direction (the amount of matter inside  
a closed surface remains the same), we associate the radial direction [ ] ( )3e xµ  with the axial current, [ ]3J eµ µ= .  

Next, observe that by virtue of the Fierz identity (2.3), 2 2 2= +   , we can parameterize, cos , =    
sin=   . Then the second Equation (5.13) takes form  

[ ] [ ]3 3 ln 2 2 sin  .e e m mµ µ
µ µ∇ + ∂ = =                          (5.14) 

On the one hand, by definition, [ ] 3 300 311 3223
AB

ABeµ
µ η ω ω ω ω∇ = = − − . On the other hand, according to Equ-  

ation (5.7), we have [ ] [ ] 3003 3ln lneµ
µ ω∂ = ∂ = −  . Substituting these expressions into Equation (5.14) we ob- 

tain an important relation,  

131 232 2 sin  .mω ω+ =                                 (5.15) 

The first of Equations (5.13), being contracted with A Be eµ ν , yields  

3 3 0 ,    , 0,1, 2 , ,AB BA A B A Bω ω− = = ≠                          (5.16) 

so that the congruence of lines [ ]3e  is normal and there exists such a family of hypersurfaces ( ) *xρ ρ= =  
const  that 

( ) ( ) [ ] ( )3 ,x n x e xµ µρ∂ =                               (5.17) 

where ( )xρ  satisfies the complete system of three equations, ( ) ( ) 0Ae x xµ
µ ρ∂ = , 0,1, 2A = , and ( )n x  is a 

coordinate scalar. In the same way as before [cf. (5.6), (5.7)], contracting the first of Equations (5.13) with [ ]3eν  
and [ ]3Ae eµ ν , we will get  

[ ] [ ] 33 3 33 3ln ln ,  ln  ,   0,1, 2,A
A A Ae e Aµ µµ ω ω−∂ = ∂ − ∂ = − =            (5.18) 

and this is compatible with the condition for integrability, [ ] [ ] 333 3ln ln A
An e n eµ µµ ω−∂ = ∂ − , of the system (5.17)  

only when ( ) ( ) constn x x = . Next, we may compute the second derivative of ρ . Using Equation (5.7) and 
Equation (5.27) below, we arrive at 
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[ ]( ) [ ] [ ] [ ] [ ] ( )  3
3 3 3 3 3 3ln  3 ln ln  lnA

Ag ne n n n n n nµν µ
µ ν µρ ω   ∇ ∇ = −∇ = + ∂ = − ∂ + ∂ = ∂      

From here we find that if ( ) ( )n x x= , then ( )xρ  is the solution of an inhomogeneous wave equation, 
[ ]3 3 2 ,  ,   ,A Ag m e eµν µ

µ ν µ µ µ µρ ρ ρ ρ δ= ∇ ∇ = ∂ = = − ∂ =                (5.19) 

for the “ potential” ρ  with the source density proportional to the mass parameter m of the Dirac equation and 
pseudoscalar density   (in static limit, it becomes the Poisson equation). Not surprisingly, this source is equal 
to the derivative of the invariant density in the direction of the axial current. If the invariant density was not 
changing in a “radial direction”, the whole idea of a localized object would be vague. Similarly to (5.5) and 
(5.11), we have  

[ ] [ ]3 3d d  d d .x e x Sµ µ
µ µρ ρ= ∂ = =                           (5.20) 

From here, we conclude that the differential form dxµ
µ  is integrable and the “radial distance”,  

( )
( ) ( ) [ ]( )2

1

3
2 1 d   d ,

x

x
x x S

ρ µ
µρ

ρ ρ− = =∫ ∫                         (5.21) 

does not depend on the integration path (the coordinate variable ρ  is holonomic). 

5.3. Congruences of the Angular Arcs 
Here, we must deal with four equations (4.6) and (4.28). Taking ( ) ( )[1] [2], e x e xµ µ µ µ= Θ = Φ   (an alter-  
native choice with [ ] [ ]1 2e eµ µ↔  will be discussed later), starting from Equation (4.6), and duplicating the deri-  

vation of Equation (5.8) we arrive at the equations,  

[ ] [ ]212 313 121 3232 12 ,    2 .eA eAω ω ω ω+ = − + = +  

Since by the second Equation (5.18) we have [ ]313 1 lnω = −∂   and [ ]323 2 lnω = −∂  , these equations com- 
pletely define 212ω  and 121ω ,  

[ ] [ ] [ ] [ ]212 1211 2 2 1ln 2 ,    ln 2 .eA eAω ω= ∂ − = ∂ +                     (5.22) 

Putting further in Equations (4.28) [ ]1eµ
µΘ =  and [ ]2eµ

µΦ = , and duplicating the scheme of Equation 
(5.3)-(5.7), we obtain,  

( )1 1 2 22 , , 1; ,BA AB A B B Ae A A A B A Bω ω η η− = − − ≠ ≠                  (5.23) 

[ ]1 1 21ln 2 ,  0, 2,3,A A AeA Aω η− − ∂ = =                           (5.24) 

( )2 2 1 12  , , 2; ,BA AB A B B Ae A A A B A Bω ω η η− = − ≠ ≠                  (5.25) 

[ ]2 2 12ln 2 ,  0,1,3.A A AeA Aω η− − ∂ = − =                          (5.26) 

Giving index A in Equations (5.24) and (5.26) all possible values, we get the following constraints,  

[ ] [ ] [ ]101 202 2320 3 3ln ,  ln sin ;mω ω ω ω= = −∂ = = −∂ =               (5.27) 

[ ] [ ] [ ] [ ] [ ]212 2 1 2 1 22 ln ,  2 ln .eA eAω ω= − − ∂ = − ∂                     (5.28) 

Equations (5.28) and (5.22) are mutually compatible only when [ ] [ ]1 2ln ln 0,∂ = ∂ =   and  

[ ] [ ]010 313 020 3231 2ln 0,   ln 0,ω ω ω ω= = ∂ = = = ∂ =                 (5.29) 

i.e., when the vectors of the geodesic curvature 0 0Aω  and 3 3Aω  of the congruences [0] and [3] of the vector 
and axial currents have no projections on the lines of the congruences [1] and [2] of the charged currents. 

 

 

11Having no metric, we assume here geodesic of an affine space, i.e. such a line ( )x sµ  that its tangent vector, ( ) d dp s x sµ µ= , is parallel 

transported (with respect to an affine connection µ
λσΓ  (3.14)) along the line, d dp s pµ µ∝ . In our particular case of the tetrad vector 3e , 

this amounts to    3 
3 3 3 3 3 3 3 0.A

Aω ω∇ = ∝ ≡e e e  
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Together with the previously obtained Equations (5.8), (5.18) and (5.22), they give all ABAω  in terms of deri- 
vatives of the invariant density and electromagnetic potentials. Namely, since [ ]303 0 lnω = −∂  , we also have 

101 202 0ω ω+ = , which together with the first Equation (5.27) entails that 

[ ] 3 30 ln 0,   0,   0,1, 2.A Aω∂ = = =                          (5.30) 

The second of these equations means that the congruence [3] is geodesic11. Quite remarkably, this conclusion 
about static character of the configuration that satisfies Dirac equations of motion is reached only after all the 
differential identities are considered together. The additional constraints that follow from Equations (5.23) and 
(5.25), when indices A and B are given all possible values, are as follows,  

[ ]130 103 230 203 120 102 0,  ,  2  ,eAω ω ω ω ω ω= = − =                       (5.31) 

[ ] [ ]123 132 231 2133 32 ,   2 .eA eAω ω ω ω− = − =                          (5.32) 

Combined with the previous results (Equation (5.4), particularly) they yield,  

[ ]120 012 02102 ,  0,eAω ω ω= = =                               (5.33) 

3 3 ; , 0,1, 2; .AB BA A B A Bω ω= − = ≠                           (5.34) 

The last of these equations is the necessary and sufficient condition for the congruences of lines [ ]0e , [ ]1e  
and [ ]2e  being canonical of the congruence [ ]3e  [18]. This property appears to be yet another consequence of 
the Dirac equation of motion, which thus guarantees that the orthogonal tetrad is Fermi-transported. Finally, 
comparing Equations (5.16) and (5.34) we find that 

3 0 ,    , 0,1, 2;  .AB A B A Bω = = ≠                             (5.35) 

5.4. Summary—Coefficients of Rotations That Completely Define the Matter-Induced 
Affine Geometry 

By now, we have succeeded to find simple expressions for all coefficients ABCω  of rotation of the basis Ae  of 
the normalized Dirac currents. This is the last step in the design of the matter-induced affine geometry. From 
this point, one can rely on the common tools of the differential geometry. We can divide the not vanishing 
components of ABCω  into two distinct groups: 

1) Five geodesic curvatures ( the ABCω  with only two distinct indices),  

[ ] [ ]

030 131 232

121 2121 2

sin ,
2 ,   2 .

m m
eA eA

ω ω ω
ω ω

= − = − = − = −

= + = −

  
                    (5.36) 

2) Only two of the ABCω  with all three different indices are nonzero. These are  

[ ] [ ]120 210 123 2130 32 ,   2eA eAω ω ω ω= − = = − =                      (5.37) 

3) The coefficients ABCω , which depend on the potential DA , are of the same form  
12 2 ,D DeAω =                                      (5.38) 

so that presence of electromagnetic field causes rotation of the Dirac tetrad in the (12)—tangent plane. This 
inter-action makes it impossible, in general, to match Dirac equation with the all-orthogonal system of hyper- 
surfaces12. 

It is essential that the only directional derivative that survived all constrains is [ ]3∂  , and even it can be 

 

 

12Keeping up with the promise given in Section 3, we compute, following Equation (3.10), the coefficients of rotation abdγ  of the basis 

ah . 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ( )1 2 0 3 0 1 3 1 2 3 2
12 030 131 232 .D

abd D d a b a b d a b d a b dV V V V V V V V V V V V b aγ ω ω ω ω = + + + − ↔   

Using Equations (5.36)-(5.37) and employing Equation (2.5) as, [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]0 0 1 1 2 2 3 3
a d a d a d ad a dV V V V V V V Vη− − = + , we obtain, 

( ) [ ] [ ] [ ] [ ]( ) [ ] [ ]( )1 2 1 2 3 32 sin .abd d a b b a a bd b adeA V V V V m V Vγ ψ η η= − + ⋅ −                            (5.39) 
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expressed via pseudoscalar density. Therefore, the practical computation of the connection ABCω  does not re- 
quire any reference to a coordinate background. The congruence of integral lines of the vector field 3e  is both 
normal and geodesic. This is the only geodesic of the principal manifold  , and it is inherited by the hyper- 
surfaces of the constant world time. The congruences 0 1 2, ,e e e  constitute a canonical system with respect to 
the congruence 3e . Therefore the entire tetrad is Fermi-transported along the the lines of the radial congruence 

3e . Equations (5.36)-(5.39) assume a localized configuration with maximum of invariant density in its interior 
and a naturally right-handed spatial trihedron ( )1 2 3, ,e e e . If there is a minimum, then the signs of tetrad 
components BA  in coefficients of rotation (5.36)-(5.37) (and only there!) must be reverted. 

6. Coordinate Surfaces and Coordinate Lines of the Dirac Field 
Below, we attempt to find the submanifolds of the physical manifold  , which can be mapped onto coordinate 
surfaces of the arithmetic 4 . An advance knowledge of these surfaces will be critical for finding the auto- 
localized Dirac waveforms and then understanding their shape and internal field structure. If we denote the 
differential operators Aeµ

µ∂  as [ ]A∂  and introduce, for the sake of brevity, [ ]3 ln sinQ m m≡ ∂ = − = −    , 
then an explicit calculation according to the second Equation (3.23),  

( ) ( )      
   ,D D D

A B B A A B B A D A B DCψ ω ω ψ ψ∂ ∂ − ∂ ∂ = − − ∂ ≡ ∂  

yields the following expressions for the Poisson brackets, 

[ ] [ ] [ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ] [ ]

[ ] [ ] [ ] [ ]( ) [ ] [ ]

[ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]( ) [ ]

0 3 3 0 0

[10 1 0 0 2

0 2 2 0 0 1

[1]1 2 2 2 2 1 1

3 1 1 3 1

,                            (a)

2 ,                        (b)

2 ,                        (c)

2 2 ,    (d)

2

f Q f

f eA f

f eA f

f eA f eA f

f Q f

∂ ∂ − ∂ ∂ = − ⋅ ∂

∂ ∂ − ∂ ∂ = − ∂

∂ ∂ − ∂ ∂ = ⋅ ∂

∂ ∂ − ∂ ∂ = ⋅ ∂ + ⋅ ∂

∂ ∂ − ∂ ∂ = ⋅ ∂ − [ ] [ ]

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]

3 2

3 2 2 3 2 3 1

,         (e)

2 .          (f )

eA f

f Q f eA f

⋅ ∂

∂ ∂ − ∂ ∂ = ⋅ ∂ + ⋅ ∂

                    (6.1) 

These expressions allow one to completely explore properties not only of the individual congruences and 3-d 
hypersurfaces but also of the 2-d surfaces. The latter is imperative as long as we aim at (and already have a hint 
of) dynamic localization of the Dirac field into finite-sized objects. 

Some immediate observations are in order. Equations (6.1) are nothing but differential identities that express 
the integrability of the directional derivatives. From equations of motion we know that 0A∂ =  for 0,1, 2A =   
and [ ]3 m∂ = −  . Let us take in Equation (6.1) f =  and use Equations (5.29) and (5.30). Then from Equ-  

ations (6.1.e,f) we have [ ]1 0∂ =  and [ ]2 0∂ = , while Equation (6.1.a) yields [ ]0 0∂ = . Thus, we have 
even more constraints,  

0,   0,1, 2.A A A A A∂ = ∂ = ∂ = ∂ = =                              (6.2) 

At any point P of the principal manifold   all the scalars change only in the direction 3e  of the axial 
current, and the rate of this change is determined by the product m . 

6.1. Integrable Subsystems and Coordinate Surfaces in 4 
Since we are aiming at the discovery of the localized solutions, a coordinate picture may become most app- 
ropriate, and it is useful to know in advance what the admissible coordinate net may look like. Solely for this 
purpose, we study here whether the congruences of the Dirac currents in 4  can form at least some of the four 
3-d coordinate hypersurfaces and of the six 2-d coordinate surfaces. Once found, these surfaces will be studied 
in detail as submanifolds embedded into 4  endowed with the connections identified above. 

1. Hypersurfaces S(123) and S(120). From visual inspection of the Poisson brackets (6.1), among the four equ- 
ations, 0Ae fµ

µ∂ = , there are two integrable systems of three equations that define two hypersurfaces and two 
integrable system of two equations that define two surfaces in the coordinate space 4 . Namely, three com-  



A. Makhlin 
 

 
605 

mutators between the [ ]1∂ , [ ]2∂  and [ ]3∂  [Equations (6.1 d,e,f)] are the linear combinations of these operators  

alone. Therefore, the function ( ) * constxτ τ= =  (as well as any function ( )f τ ) is the first integral of the 
complete (Jacobian) system of three equations,  

[ ] [ ] [ ]1 2 30, 0 and 0.e e eµ µ µ
µ µ µτ τ τ∂ = ∂ = ∂ =                          (6.3) 

The parameter *τ  enumerates the family of hypersurfaces ( )123S , which are spanned by the streamlines of 
the vector fields [ ]1eµ , [ ]2eµ  and [ ]3eµ  and have [ ]0eµ  as the normal. Equations (6.1 b,c,d) indicate that three equ- 
ations, 

[ ] [ ] [ ]1 2 00, 0 and 0,e e eµ µ µ
µ µ µρ ρ ρ∂ = ∂ = ∂ =                        (6.4) 

also constitute an integrable system with a first integral ( ) * constxρ ρ= =  (or any function ( )f ρ ); the latter 
represents hypersurfaces ( )120S  of the constant “radius” ρ when 2 0> . These are spanned by the integral lines  
of the vector fields [ ]1eµ , [ ]2eµ  and [ ]0eµ  and have [ ]3eµ  as the spacelike normal. 

2. Surfaces S(12) and S(03). Next, by Equation (6.1 d) the system of equations  

[ ] ( ) [ ] ( )1 20,   0e x e xµ µ
µ µϑ ϑ∂ = ∂ =                             (6.5) 

is integrable. Its two first integrals, ( )1 1x cθ =  and ( )2 2x cθ = , determine a two-dimensional surface ( )12S   
spanned by the streamlines of the vector fields 1eµ  and 2eµ  having the normal vectors 0 3

0 3c e c eµ µ µ µν ϑ= ∂ = + .  
The first integrals of the system (6.5) are known because both of its equations are satisfied by ( ) ( ) *x xϑ τ τ= =  
and ( ) ( ) *x xϑ ρ ρ= = . Once ( )xτ  and ( )xρ  are algebraically independent, these are the two first integrals 
of the system (5), and the 2-d surface ( )12S  is uniquely fixed by the values of constants *τ  and *ρ , which 
enumerate the surfaces of a constant “radius” ρ  at a given “world time” τ . 

Finally, according to Equation (6.1 a) the commutator between [ ]0∂  and [ ]3∂  is proportional to [ ]0∂ . There- 
fore, the system of equations  

[ ] ( ) [ ] ( )0 30,   0e x e xµ µ
µ µϕ ϕ∂ = ∂ =                              (6.6) 

is integrable. It has two first integrals, ( )1 1x Cφ =  and ( )2 2x Cφ = , which determine a two-dimensional surface 
( )03S  spanned by the streamlines of the vector fields [ ]0eµ  and [ ]3eµ . The two normal vectors nµ µφ= ∂  of these 

surfaces are the linear combinations [ ] [ ]1 2
1 2c e c eµ µ+ . One of the first integrals of the second Equation (6.6) is  

( ) ( )x xϕ τ= , i.e. we have [ ] ( ) ( )3 0e x xµ
µτ∂ = . Also, one of the first integrals of the first Equation (6.6) is  

( ) ( )x xϕ ρ= , i.e. [ ] ( ) ( )0 0e x xµ
µρ∂ = . Since the congruences of integral lines of the fields [ ]0eµ  and 3eµ  are  

normal—(cf. Section 5), we have ( ) [ ] ( )0 ux e xµτ∂ =  and [ ] ( ) ( )0e x xµ
µτ∂ = , as well as ( ) [ ] ( )3x e xµ µρ∂ =   

and [ ] ( ) ( )3e x xµ
µρ∂ = − . In terms of the new independent variables,  

( ) ( )0 1 2 3 1 2 0 1 2 3, , , , , , , , ,x x x x x x x x x xτ τ ρ ρ= = , the system (6.6) immediately acquires the normal (Jacobian) 
form,  

[ ]

[ ] [ ]

1 2
[3]3 1 2

1 2
0 01 2

0;    ( )

0.   ( )

e e a
x x

e e b
x x

ϕ ϕ ϕ
ρ

ϕ ϕ ϕ
τ

∂ ∂ ∂
− + + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂




                          (6.7) 

Its second equation is equivalent to the system of three ODEs, 

[ ] [ ]

1 2

1 2
0 0

d d d d ,
0

x x
e e

ρ τ
= = =


                                 (6.8) 

which has three first integrals, * constρ ρ= = , 1 1Cφ = , 2 2Cφ = . In terms of the new independent variables, 
0 3 1 2

1 2, , ,ζ τ ζ ρ ζ φ ζ φ= = = = , the system (6.7) reads as  
1 2

1 2 0,  0,ϕ ϕ ϕ ϕθ θ
ρ τζ ζ
∂ ∂ ∂ ∂

− + + = =
∂ ∂∂ ∂

                         (6.9) 



A. Makhlin 
 

 
606 

where ( ) [ ] ( ) [ ] ( )1 1 2 2
3 3

i
i i ie x e xθ φ ρ φ φ= ∂ ∂ + ∂ ∂ + ∂ ∂ . Since φ  is independent of τ , we have one PDE in 

three variables, which is equivalent to the system of two ODEs. The variables τ  and ρ  form an orthogonal 
coordinate basis on every 2-d surface ( )03S  (enumerated by the values of 1ζ  and 2ζ ). 

6.2. Coordinate Surfaces as Submanifolds in  
Conditions for simultaneous integrability of the PDEs for the streamlines of the Dirac currents prompted the 
existence of the (hyper)surfaces in 4  and, most importantly, in  . Here, in order to understand their shape, 
we look at them as submanifolds of the principal manifold  . 

1. The method. For the sake of brevity, we will use the Latin capitals , , 0,1, 2,3H N =  to label the entire 
tetrad basis He  (or HV ). In the context of the current work this is the basis of the ambient space. The capitals 

( ), ,tP P U=   will label the tangent tetrad vectors of a 3-d or 2-d submanifold. The capitals ( ), ,nA A F=   
will be used to label the normal vectors. Then the induced metric of a submanifold is PQ P Q PQg g e eµ ν

µν η= =  and, 
by virtue of definition (2.11), the first quadratic form of the surface ( )PS



 is (pseudo)-Euclidean, 2ds =  d dP Q
PQ S Sη . 
Since we are interested in submanifolds that are spanned by the integral lines of the tetrad vectors, the Gauss 

and Weingarten decompositions of the covariant derivatives of tangent and normal (with respect to a sub- 
manifold) tetrad vectors immediately follow from Equations (3.2),  

( )       
   Gauss      ,

t n

a H a Q a A a
R P P R H P R Q P R A

Q A
V V V Vω ω ω∇ = = +∑ ∑                     (6.10) 

( )       
   Weingarten      ,

t n

a H a P a B a
R A A R H A R P A R B

P B
V V V Vω ω ω∇ = = +∑ ∑                 (6.11) 

where all the ω 's listed in Equations (5.36)-(5.37) are known explicitly13. The first term,   
 

Q
P Rω , in the r.h.s. of 

the Gauss decomposition (6.10) is the connection of the intrinsic tangent space of the submanifold. The second 
term,   

 
A A
PR P RL ω=  (with two tangent and one normal indices), is the second fundamental form of the submani- 

fold with respect to the normal AV . The first term in Weingarten decomposition (6.11),   
 

P P
AR A RA ω= =    

 
QP C QP C

AC Q R AC QRLη η ω η η− = − , (the shape form with two tangent and one normal indices) is similar to the second 
fundamental form in (6.10); both account for the rotation of the tetrad in the (PA) plane when it is displaced in a 
tangent direction Re . The second term of Equation (6.11),   

; ;  
B

AC R CA R CB A RD D η ω= − = , with two normal and one 
tangent indices, is the covariant derivative of the normal components of a vector in a tangent direction of the 
submanifold. It accounts for the rotation of the (AB)—plane of the two normals under infinitesimal displacement 
in tangent direction Re . 

Now, since there is no question of how a submanifold is embedded into the ambient space with explicitly 
known tetrad vectors, we are in position to study the internal geometry of various coordinate surfaces, as 
submanifolds of the principal manifold  . Besides the second fundamental form, we will use the Riemann 
curvature tensor in ambient space and in subspaces, 

( )                  
         

N N N N M M M N M N
HKL H L K K L H L M H K K H L H M K L K M HR ω ω ω ω ω ω ω ω ω= ∂ − ∂ + − + −               (6.12) 

With these preliminaries, we are in the position to consider all subspaces on-by-one. 
2. The hypersurface S(123) represents space at a given time. It has three spacelike tangent vectors PV , 

( )1,2,3P = , and a single timelike normal vector 0V . The coefficients of the single second fundamental form are 
0 0 0
12 23 31 0L L L= = =  and [ ]

0 0 0
11 22 33 0 ln 0L L L= = = −∂ = . The second fundamental form, 0 0 d dP Q

PQL S S=II ,  

is proportional to first fundamental form, ( ) ( ) ( ) ( )2 2 21 2 3
123 d d d d dP Q

PQ S S S S Sη= = − − −I  of the ( )123S ,  

[ ] ( ) ( ) ( )2 2 20 1 2 3
0 ln d d d 0.S S S = ∂ ⋅ − − − =  
II                        (6.13) 

Therefore, the ( )123S  is a totally umbilical submanifold14 with zero mean normal curvature [ ]0 ln 0H = ∂ = . 
The latter means that ( )123S  is a totally geodesic submanifold; it inherits its sole geodesic 3e  from the ambient 
 . From the perspective of the ambient space, the hypersurface ( )123S  has no curvature, it is extrinsically flat. 

 

 

13In mathematical literature the Gauss and Weingarten formulae are written down as ( ),X XY Y h X Y∇ =∇ +  and X XA X Dξξ ξ∇ = − + , 
respectively. Here, ,X Y  are tangent and ξ  is normal to the submanifold. 
14All points of which are umbilical. A point is called umbilical if all principal curvatures at this point are equal. 
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The extrinsic part vanishes together with the connections [ ] [ ]202 3030 0 ln 0ω ω ω= = − = −∂ = . The intrinsic 
Riemann curvature of the ( )123S  has six different (modulo sign) components; it is given by the terms of (6.12) 
with all indices in tangent space of the ( )123S ,  

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )
[ ] [ ] [ ] [ ]

2 2 2 2 2
1212 121 2 2 1 1 2

2
1313 2323 1213 1232 13233 1 2 3

2 4 2 ,

,   2 ,  2 ,  4 ,

t

t t t t t

R e A A e A A Q eF Q

R R Q Q R eA Q R eA Q R eA Q

= ∂ − ∂ − + + = +

= = ∂ − = = − =
         (6.14) 

where ( )    
  
D D

BC A C B C C B B C C B DF e e F A A Aµ ν
µν ω ω= = ∂ − ∂ + −  coincide, by appearance, with the tetrad components of 

the electromagnetic field tensor rewritten in the basis Ae . It should be remembered that all the CA  here came 
from the components of the Ricci coefficients of rotation (5.38). 

3. The hypersurface S(120) represents the surface of a given “radius” at all times. It has two spacelike and one 
timelike tangent vectors PV , ( )0,1,2P = , and a single spacelike normal vector 3V . The coefficients of the 
second fundamental form are 3 3 3

12 20 30 0L L L= = =  and [ ]
3 3 3
11 22 00 3 lnL L L Q= = − = ∂ = . The second fun-  

damental form, 3 3 d dP Q
PQL S S=II , is proportional to the first fundamental form ( ) ( )20

120 d d dP Q
PQ S S Sη= = −I   

( ) ( )2 21 2d dS S−  of the ( )120S ,  

( ) ( ) ( ) ( )
2 2 23 0 1 2

120d d d I .Q S S S Q = − ⋅ − − = − ⋅  
II                         (6.15) 

Therefore, the hypersurface ( )120S  is also a totally umbilical submanifold with the mean curvature 
0H Q m= − = >  . By virtue of Equations (6.2), the vector of (mean) geodesic curvature H is constant and 

parallel throughout every hypersurface ( )120S . 
The intrinsic part of the Riemann curvature of the hypersurface ( )120S  has only the following components,  

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )2 2 2
1212 121 2 2 1 1 22 4 2 ,tR e A A e A A eF= ∂ − ∂ − + =                      (6.16) 

identical with those of ( )12S . The extrinsic parts are due to 131 232 030 Qω ω ω= = − = − , i.e., the connections that 
contain normal component 3e ,  

2 2 2
1212 1010 2020 sin .n n nR R R Q m= − = − = =                           (6.17) 

Since congruences 0e , 1e  and 2e  are canonical with respect to the normal congruence 3e , their lines are 
the lines of curvature of the hypersurface ( )120S . If at some point of ( )120S  we have 3 3II d d 0P Q

PQL S S= = , then 
the directions of 0e , 1e  and 2e  become the asymptotic directions. 

4. Surface S(12) is the surface of a given “radius” at a given time and can be viewed as a hypersurface of either 
( )123S  or ( )120S  with the normals 3e  or 0e , respectively. It has two spacelike tangent vectors PV , ( )1,2P = , 

and two normal vectors AV , ( )0,3A = , timelike 0V  and spacelike 3V . Accordingly, there are two second 
fundamental forms, 0 0 d dP Q

PQL S S=II  and 3 3 d dP Q
PQL S S=II , with the following coefficients 0 3

12 12 0L L= = ,  
0 0
11 22 0L L= = , [ ]

3 3
11 22 3 lnL L Q= = ∂ = . The first fundamental form of ( )12S  is ( ) ( )21

12 d d dP Q
PQ S S Sη= = −I

  
( )22dS− , and the two second fundamental forms are  

( )
0 3

120,   2 .Q= = − ⋅II II I                                 (6.18) 

Therefore, the 2-d surface ( )12S  is a totally umbilical submanifold with the mean curvature H m=    
sin 0m= > , which is determined by the Dirac field within principal manifold  . The Gaussian curvature 

1 2 sinK k k m= =   is positive. Such a surface can only be the sphere with the radius of curvature 1 Hκ =  
[19] [20]. (It is a plane, when 0κ = , but then   must be uniform and 0= . Here, the spherical shape is a 
dynamic symmetry since it originates from equations of motion.). Nearly the most important property of sub- 
manifolds ( )12S  follows from the compatibility conditions (5.29) and Equation (6.2), which indicate that the 
invariant densities , ,   are constant along every 2-d surface * constτ τ= = , * constρ ρ= = . The mean 
curvature H is constant along ( )12S  as well. The normal connection for this submanifold can be only due to the 
components  3 

0 1ω  and  3 
0 2ω  of the connection   

 
B

A Rω , but these vanish identically, 03;1 03;2 0D D= = , so that 
both normal vector fields (and the mean curvature vector) are parallel with respect to the tangent displacements 
along ( )12S , 0RD H = . The Riemann curvature of ( )12S  has only one component, 1212R  and it can be de- 
composed in two parts. The intrinsic one, 1212

tR , is given by the terms of (6.12) with all indices in tangent space 
of ( )12S . The only nonzero connections here are [ ]212 22eAω = −  and [ ]121 12eAω = , so that sectional curvature 
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of the ( )12S , 

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )2 2 2
1212 121 2 2 1 1 22 4 2 ,tR e A A e A A eF= ∂ − ∂ − + =                     (6.19) 

is entirely due to the tangent tetrad components of the electromagnetic field Aµ . The extrinsic part, 1212
nR , is 

due to the connections 131 232 Qω ω= = −  from the second fundamental form and  

[ ]( )2
0 0 3 3 2

1212 11 22 11 22 3 ln .nR L L L L Q= − = − ∂ = −                        (6.20) 

5. The surface S(03) represents a given “angular direction” at all “radial” distances and at all times. It has one 
spacelike and one timelike tangent vectors PV , ( )0,3P = , and two spacelike normal vectors AV , ( )1,2A = . 
Here, we also have two second fundamental forms, 1 1 d dP Q

PQL S S=II  and 2 2 d dP Q
PQL S S=II , with the following 

coefficients 1 2
03 03 0L L= = , 1 1

00 33 0L L= − = , 2 2
00 33 0L L= − = . The first fundamental form of the ( )03S  is  

( ) ( )2 20 3
03 d dS S= −I  and both second fundamental forms are just zero, 1 2 0.= =II II  

The submanifold ( )03S  is totally umbilical with the mean curvature 0H = , and as such is a totally geodesic 
submanifold. The shape form of ( )03S  is zero. The normal connection for the coordinate surface ( )03S  (and 
only for this surface) does not vanish,  

1 2 2 12 ,  2 ,  0,3,R R R ReA eA R∇ = − ∇ = =e e e e                   (6.21) 

solely due to the external potential Aµ , [ ]12;0 02D eA= − , [ ]12;3 32D eA= − . A displacement in the directions of 
0e  and 3e , rotates the tetrad in plane (12). The Riemannian sectional curvature of the ( )03S  is induced by an 

ambient space,  

[ ]
2

0303 3 .tR Q Q= −∂ +                                 (6.22) 

6.3. Coordinate Lines 
According to Equation (6.2), system (6.5) of PDEs admits, along with the first integrals ( ) *xτ τ=  and 
( ) *xρ ρ=  of hypersurfaces ( )123S  and ( )120S , respectively, the first integrals ( ) ( ) Rx x cϑ = = , ( )xϑ =  
( ) Px c=  and ( ) ( ) Sx x cϑ = = , which must be functions of the former ones, and vice versa, 

( ) ( ) ( ) ( ) ( ) ( )P , , P , , and , , , ρ τ ρ τ τ τ ρ ρ= = = =                (6.23) 

being, ultimately, the known functions of the Dirac field ( )Pψ . Potentially, one can obtain the functions τ  
and ρ  purely algebraically,without even solving system (6.5) of PDEs. Every 2-d surface ( )12S  is fixed not 
only by the constants *τ  and *ρ , but also, e.g., by Sc  and Pc , which indicates that surface ( )12S  belongs to 
the principal manifold   without any reference to a coordinate 4 . These observations are compli- mentary 
to the main idea of this work that Dirac field naturally determines the moving frame. Here, the two scalars, e.g., 
  and  , can replace the coordinates τ  and ρ  (similarly to the hodograph transformation in 
hydrodynamics). From Equation (6.2) with tetrad index 0A =  one can see that neither of the scalars , ,    
depends on the time variable τ  (or 0S ). Therefore, these quantities depend only on the radial variable ρ  (or, 
equivalently, on the affine parameter 3Sσ = ). 

1. Radial lines. When a geodesic line is given in the parametric form, ( )x xµ µ σ= , the unit tangent vector is 
[ ]3 d de xµ µ σ= . The affine parameter of the radial geodesic lines is 3Sσ = , but it differs from the parameter 
*ρ  of the hypersurfaces ( ) * constxρ ρ= = , which determines distance (5.21) at some moment of the world 

time τ  (5.12). In terms of the variable σ , the ODE for geodesic line with the tangent vector [ ]3eµ  is  

[ ] [ ]

2
  
3 33 3 2

d d d d d0 ,
d d d dd

A
A

x x x x xe e e
µ λ λ ν µ

µ λ λ λ
µ µ νµω

σ σ σ σσ
 

∇ = = = ∇ = + Γ 
 

             (6.24) 

where the connection λ
νµΓ  is defined by Equation (3.14). The ODE for a geodesic line ( )xλ ρ  in terms of the 

physical variable ρ  that can be obtained by means of a simple transformation, d d d dx xµ µσ ρ= , and 
reads as  

[ ]

2

32 2

d d d d ln d d ,
d d d d dd

x x x x m x m e
λ ν µ λ λ

λ λ
νµ σ σ ρ ρ ρσ

+ Γ = − = =
  


                (6.25) 

where the r.h.s. does not contain derivatives of the Dirac field and it clearly manifests that the (not unit) tangent 
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vector d dxλ ρ  and its change are parallel along the “radial” geodesic curve. 
2. The lines of the world time. The acceleration of the unit tangent vector of the lines of the vector current 

jµ  is 

[ ] [ ] [ ] ( ) [ ]
   3 
0 0 0 00 0 3 3 ,A

Ae e e e m eµ λ λ λ λ
µ ω ω∇ = = =                          (6.26) 

and it has only the radial component (precisely the same as radial geodesic (6.25)), which equals in magnitude 
but has opposite sign with respect to the mean curvature vector of surface ( )12S  and hypersurface ( )120S . The 
ODE for the trajectory ( )xλ τ  reads as  

[ ]

2

32

d d d d .
d d dd

x x x x mm e
λ ν µ λ

λ λ
νµ τ τ ρτ

+ Γ = =





                        (6.27) 

Obviously, the line of the vector current that passes through a point with the radial coordinate ρ∗  never 
leaves the the surface constρ ρ∗= = . Therefore, there is no flux of the charge density   in the outside 
direction, which is an indirect but indisputable evidence of localization. 

3. The coordinate net over S(12). Finally, the lines of the Dirac currents µΘ  and µΦ  are also bound to the 
surface constρ ρ∗= = . Indeed, for the curves ( )1x x Sλ λ=  and ( )2x x Sλ λ=  we have  

[ ] [ ] [ ] ( ) [ ] [ ] [ ]

[ ] [ ] [ ] [ ] ( ) [ ] [ ] [ ]

   3  2 
1 1 1 1 2 1 11 1 3 3 1 2

   3  1 
2 2 2 2 2 22 2 3 1 3 2 1

2 ,

2 ,

A
A

A
A

e e e e e m e eA e

e e e e e m e eA e

µ λ λ λ λ λ λ
µ

µ λ λ λ λ λ λ
µ

ω ω ω

ω ω ω

  
∇ = = + = − −

∇ = = + = − +

 

 
            (6.28) 

so that they have the same normal component of the mean curvature vector, and they are bent within surface 
( )12S  even when the components 0,  1, 2I IA e A Iµ

µ= ≠ = . 
To summarize, all the currents passing in a tangent direction through a point on hypersurface ( )120S  of a 

given radius ρ∗  never leave this surface. 

7. Conclusions 
The (hyper)surfaces emerging from the Dirac equation and differential identities for the Dirac currents point to a 
fairly simple geometric structure of the lines and surfaces of the admissible coordinate net. These surfaces are 
built into the Dirac matter and completely determined by the latter. We will extensively refer to their properties 
in the second part [8] of this work. They will be used to write down the exact nonlinear Dirac equations and to 
find their analytic solutions, which represent a finite-sized stable particle. These solutions will necessarily be 
localized and have a spherical symmetry. This symmetry is not contemplated as a property of the ambient space. 
Within the framework of the matter-induced affine geometry, the spherical symmetry is the property of a 
solution, and thus is a dynamic symmetry. 

A general discussion of the method, its results and perspectives is postponed till the last section of the Ref. 
[8]. 
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