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Abstract 
We study the strongly damped wave equations with critical nonlinearities. By choosing suitable 

state spaces, we prove sectorial property of the operator matrix  
 
 

I
A A
0

θη
−

 together with its 

adjoint operator, investigate the associated interpolation and extrapolation spaces, analysis the 
criticality of the nonlinearity with critical growth, and study the higher spatial regularity of the 
Y-regular solution by bootstrapping. 
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1. Introduction 
This paper deals with a class of wave equations with strong damping  
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 = ≥ ∈∂Ω

                           (1) 

Here NΩ ⊆ R  ( )3N ≥  is a bounded domain with 2C  boundary, and 0η >  is the coefficient of strong 
damping. Let ( )2=X L Ω , then the negative Laplacian −∆ , denoted by A, is a positive definite and self-adjoint 
operator defined in X with compact inverse. For each α ∈ , there define Aα  and Xα  as the fractional 
power of A and its domain endowed with the graph norm respectively. Evidently, in this setting, ( )1

1 2 0X H= Ω , 
( ) ( )2 1

1 0X H H= Ω ∩ Ω , ( )1
1 2X H −
− = Ω , and for all 0α > , we have ( )X Xα α−

′= . 
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Introduce the energy space 1 2Y X X= ×  as our work space, and let tv u= , 
0 I
A Aθ θη

− 
=  
 

A , 

( )
0u

f uv
    

=    
    

 , then Equation (1) turns to be an abstract Cauchy problem  

d , 0,
d

u u u
t

v v vt θ

      
+ = >      

      
A                                (2) 

0

00

,
t

uu
vv =

  
=   

   
                                     (3) 

and we can treat it in the framework of semigroup of operators. 
Recall that, the operator matrix θA  itself is not closed in Y, and consequently its negative is not a generator of 

any 0C -semigroups except 1θ = . But its closure, which is still denoted by θA , is a sectorial operator whenever 
1 2 1θ≤ < , and its negative generates an analytic and exponential decaying semigroup (see [1]-[3] for references). 

By using the notation of ε-regular solution introduced in [4] [5] together with interpolation and extrapolation 
spaces, and under the Lipschitz condition,  

( ) ( ) ( )1 11 , ,f u f u C u u u u u uρ ρ− −′ ′ ′ ′− ≤ − + + ∀ ∈R                    (4) 

( ) ( )( )1 2 2N Nρ≤ ≤ + − . 

Carvalho-Cholewa in [1] and lately Carvalho-Cholewa-Dlotko in [2] studied the local existence and regularity 
of the ε-regular (or Y-regular in this paper) solution of Equation (1). Under the dissipative condition,  

( ) 0,lim sup
s

f s
s→∞

≤ .                                  (5) 

Carvalho-Cholewa in [6] investigate the global existence of ε-regular solutions in the subcritical case  
( ) ( )1 2 2N Nρ≤ < + − , together with the existence and regularity of the universal attractors. As for the critical 

case ( ) ( )2 2N Nρ = + − , there are few references except 1θ = . According to the general theory of the 
ε-regular solutions, in this case, the related nonlinear map 1:Y Yε η−→  is critical (i.e. 10 ε ρ−≤ < , and η  
can only take the value ρε ), consequently for a ε-regular solution arising in the energy space, boundedness of 
the Y-norm on its maximal existence interval could not guarantee the global existence (see [1] [2]). 

Here we are concerned with the higher regularity and global existence of the Y-regular solution of Equation 
(1). By introducing a new state space ,s s sE X Xθ θ−= ×  (1 2 1s≤ ≤ ) weak than Y somewhat, we will reveal 
that, the operator matrix θA  is also sectorial, together with its dual operators #

θA . Moreover, all the 
interpolation and extrapolation spaces ( ),sEθ α

 ( [ ]1,1α ∈ − ) can be expressed by the Cartesian products. And 
consequently, for ( ) ( )2 2N Nρ = + −  and 1 2 1θ< ≤ , the corresponding nonlinearity   turns to be 
subcritical. Using these properties, we will prove by bootstrapping that every ,sEθ -regular solution of (2) with 
the initial value taken in Y is a strong one exactly. Moreover, this solution exists on the whole interval + , or 
its Y-norm blows up in finite time. Results obtained here, which can be viewed as useful supplements to the 
references listed above, tell us that in a semilinear parabolic equation, substitution of phase spaces may change 
the criticality of the nonlinear perturbation attached to it. In other words, criticality is not absolute for the 
parabolic systems in many concrete situations. 

2. Main Results and Proofs 
Lemma 2.1 Suppose that X and Y are two Banach spaces, A is a sectorial operators defined in X, and B is a 
linear operator densely defined in Y. Suppose also there is a homeomorphism :Q X Y→  satisfying 
QA BQ= , then B is also sectorial together with ( ) ( )A Bσ σ=  and 1e etB tAQ Q− − −=  (see [7], §5.2).  

Lemma 2.2 The operator matrix θA  is sectorial in the new space ,:E E X Xθ
θ θ θ= = × , and 

( )( ) 0Re θσ >A . Moreover, the domain ( ) ( )1:θ θ= EA  equipped with the graph norm is equivalent to the 
product space 1X X θ×  (cf. [8]).  

For the Hilbert space ( )2X L= Ω  and the operator A = −∆  introduced above, consider the interpolation-  
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extrapolation Hilbert scale ( ){ }, :X Aα α α ∈ , where ( )X Aα
α =   if 0α ≥ , ( ),X X Aα

α = ⋅  if 0α < , 

and Aα  is the realization of A in the space Xα . For the real and complex interpolation methods, please refer to  
[9], Ch.1, and for the extrapolation method, see [10], Ch. V for references. Recall that, for every α ∈ , Aα  is 
also a sectorial operator in Xα , and α ∈A   is ( ),αX X , ( )αα− ∈A   is ( ), α−X X  for all 0α ≥  (cf. [10], 
§ 5.1.3). 

Define the realization of θA  in ,sEθ  as follows:  

( ) ( ), 1

0
, if 1 2 ;s ss s s

s s

I
s

A A A Aθ θθ θ
θ θ

θ
η− −+ −

− −

− 
= < ≤ 
  

A  

, 1

0
, if 1.s s s s s

I
s

A A A Aθ θ θ θ θ
η− + − −

− 
= < ≤ 
 

A  

It is easy to check that, for all [ ]1 2,1s∈ , ( ) ( ), , 11
:s s s sE X Xθ θ θ+ −= = ×A  in the sense of equivalent norms. 

Furthermore, we have  
Lemma 2.3 ,sθA  is sectorial in the state space ,sEθ  with the same spectrum as θA  has.  
Proof: This lemma can be easily verified by Lemma 2.1, together with the fact that the following operator  

( )
( )

,

0
, if 1 2 ,

0

s
s

s s
s

A
s

A

θ
θ

θ θ
θ

θ
−

−

−
−
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Q  

,
0

, if 1.
0

s

s s

A
s

A

θ

θ θ
θ

−

−

 
= < ≤ 
 

Q  

is an isomorphism between Eθ  and ,sEθ , satisfying , , ,s s sθ θ θ θ=Q A A Q .  
Consider another operator matrix #

,sθA  defined below,  

( ) ( )

1 2
#
,

0
, if 1 2 ,s s ss s

s s

A
s

A A A A

θ

θ θ θθ
θ θ

θ
η

−

− −+
− −

 
= < ≤ 

−  
A  

1 2
#
, 1

0
, if 1.s s s s s

A s
A A A A

θ

θ θ θ θ
θ

η

−

− + − −

 
= < ≤ 

− 
A  

Evidently, #
,sθA  is closed in the space #

, ,:s s s sE E X Xθ θ θ−′= = ×  with domain ( )#
,s s sX Xθ θ+= ×A . And for 

all ( ),s

u
v θ
 

= 
 

A  and ( )#
,sθ

ϕ
ψ
 

= 
 

A , we have  
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= − + +

= − + +

= − +

A
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This tell us that, #
,sθA  is contained in ,sθ′A , the adjoint operator of ,sθA . In order to show the equality 

#
, ,s sθ θ′=A A , it suffices to check that ( ) ( )#

, ,s sθ θσ σ ′∩ ≠ ∅A A , which is a consequence of the following lemma.  
Lemma 2.4 #

,sθA  is sectorial in ,sEθ  with the spectrum ( ) { }#
, 0s Rezθσ ⊇ >A .  

Proof of this lemma is much similar to that of Lemma 2.3, and here we omit it. 
Denote ( ) ( )# #

, ,1
:=s sEθ θA , which is isomorphic to the product space s sX Xθ+ ×  according to the graph 

norm. 
Now we can give some representations for the interpolation and extrapolation spaces attached to ,sθA . For 

each [ ]0,1α ∈ , we have  

( ) ( ) ( ) ( ), , , 1 11
, ,s s s s sE E E X Xθ θ θ α θ α θα α + − − −

 = = ×                         (6) 

and  

( ) ( ) ( )
# # #
, , , 11

, .s s s s sE E E X Xθ θ θ αθ α θα α
+ − −

 = = ×   

Thus by the dual principle (refer to [10], Ch. V, thm. 1.5.12), we obtain  

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )

#
, ,

1 .

s s s s

s s s s

E E X X

X X X X

θ θ θαθ αθα α

θ αθ α θαθ αθ

−−

− − − +− −

′ ′ ′= = ×

= × = ×
 

Hence, for each [ ]0,1γ ∈ , we have that  

( )( ) ( ) ( ) ( ), , 1 21 1s s s sE E X Xθ θ γ θ γ θγγ − − − −− − +
= = ×                         (7) 

in the sense of isomorphism. 
Let us study the nonlinear operator   in the case ( ) ( )2 2N Nρ = + −  and ( ]1 2,1θ ∈  in new state 

spaces.  
Theorem 2.5 Take ( ]1

0 2 0,1γ θ −= − ∈ , then under the assumption (4), for each ( ]00,γ γ∈ , 
( )1

, ,: s sE Eθ θ γ

−→  is bounded and locally Lipschitz. More precisely,   verifies  

( )( ) , , ,,

1 1

1

1 .
s s ss E E EE

u u u u u u
C

v v v v v v
θ θ θθ γ

ρ ρ− −

−

 ′ ′ ′               − ≤ − + +              ′ ′ ′                 
              (8) 

Proof: Firstly using the embedding ( )2s
sX H→ Ω , we can easily deduce that ( )sX C→ Ω  if 4s N> , 

and ( )sX Lσ→ Ω  for all [ )1,σ ∈ ∞  if 4s N= . Notice that ( )2 0s γ θ− − ≤  for all ( ]00,γ γ∈ . Hence for 
the number s satisfying 4 1N s≤ ≤ , by invoking (4), we find that the Nemytskij operator of f, denoted also by f 
verifies  

( ) ( )
( )

( )
2

1 1 .
s s ss X X XX

f u f v C u v u v
γ θ

ρ ρ

− −

− −− ≤ − +  

This inequality, together with the definition of   and (7) leads to the desired inequality (8). 
If 4s N< , then we have the following embedding  

( ) 2, if 1 ;
4s

NX L
N s

σ σ→ Ω ≤ ≤
−

                           (9) 

( ) ( ) ( )2
2, if max 1, .

4 4 2
r

s
NX L r

N sγ θ γ θ− −

  ← Ω ≥  − + −  
                 (10) 

And simple calculations show that in case 3N ≥ , for all [ )1 2, 4s N∈  and ( ]00,γ γ∈ , inequalities  

2 2
4 2

N N
N s N

+
≥

− −
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and  

( )4 4 2 2
4 2

N s N
N s N

γ θ− + − +
≥

− −
 

hold simultaneously. Thus for the number r verifying the restriction in (10), the other number rσ ρ=  satisfies 
the restriction in (9). Hence by invoking (9), (10) and (4), we obtain  

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )( )
( )

2

1 1

1 1 ,

r
s

r r r

s s s

X L

L L L

X X X

f u f v f u f v

C u v u v

C u v u v

γ θ

ρ ρ ρ
ρ ρ

ρ ρ

− − Ω

− −

Ω Ω Ω

− −

− ≤ −

≤ − +

≤ − +

 

which means that inequality (8) still holds in the case 4s N< . This complete the proof.  
Theorem 2.6 Let ( ) ( ){ }1 1

0 max 0,1 2 2 1nα θ− −= − + − , then under the assumption (4), for all ( )0 ,1α α∈ , 
the operator   satisfies  

( ) ( ) ( )

1 1

1 .
E E EE

u u u u u u
C

v v v v v v
θ θ θθ α α α

ρ ρ− − ′ ′ ′               − ≤ − + +              ′ ′  ′                 
             (11) 

Similar to Thm. 2.5, core of the proof for this theorem is to check the validity of the following inequality  

( ) ( )
( ) ( ) ( )( )1 1 1

1 11X X XX
f u f u C u u u u

θ α θ θ α θ θ α θ

ρ ρ

+ − + − + −

− −′ ′ ′− ≤ − + +  

under condition (4). Here we omit the whole process.  
Remark 2.7 In the new state spaces, the nonlinearity   turns to be a subcritical map (please compare to 

[1] [2]).  
Now we can investigate higher regularity and global existence of solutions of the abstract Cauchy problem (2) 

+ (3) for the critical growth exponent ( ) ( )2 2N Nρ = + −  in the case 1 2 1θ< ≤ . In view of [4] and [1] [2],  

we know that for the initial point 0

0

u
Y

v
 

∈ 
 

, there exists a unique ε-regular (or in other words Y-regular) 

solution ( )0 0, ,
u

u v
v
 

⋅ 
 

 defined on an interval [ ]0,T  for some 0T > , s.t.  

[ )( ) ( )( ) ( )( ) [ )1
0 0 00, , 0, , 0, , 0,

u
C Y C Y C Y

v ρε ητ τ τ η ρε
 

∈ ∩ ∩ ∀ ∈ 
 

            (12) 

for some ( ]0,1 2ε ∈ , and Equtaion (2) is satisfied in the space 1Y ρε− + . If 0

0

u
v
 
 
 

 lies in the space ,sEθ , then 

thanks to (8), there exists another interval [ ]0,T , on which there is a unique ,sEθ -regular solution 0

0

u
v
 
 
 

 

satisfying  

[ )( ) ( ) ( )( ) ( ) ( )( )
0

1
, , ,0, , 0, , 0, ,s s s

u
C E C E C E

v θ θ θγ β
τ τ τ

 
∈ ∩ ∩ 

 
                (13) 

for all [ )00,β γ∈  together with Equation (2) satisfied in the space ( )
0

, 1sEθ γ− +
 (see [7], Ch. 6 or [11], Ch. 3 

for references). 
Take 1 2s = , then by the uniqueness and regularity mentioned above, we can easily find that an ,1 2Eθ

-regular solution is equal to a Y-regular one on the common existing interval if they have the same initial value.  

Denote by [ )0,τ  and [ )00,τ  respectively the maximal intervals of ( )0 0, ,
u

u v
v
 

⋅ 
 

 existing as a Y-regular 



Q. H. Zhang 
 

 
702 

solution and as an ,1 2Eθ -regular one with 0

0

u
Y

v
 

∈ 
 

. In the following paragraph, we will prove that 0τ τ= . 

Evidently 0τ τ≤  since ,1 2Y Eθ→ . For the inverse inequality, it suffices to show that [ ]( )0, ,
u

C T Y
v
 

∈ 
 

 for 

arbitrary ( )0,T τ∈  (cf. [12]). This can be done by bootstrapping. 
Taking any ( )1 0,t τ∈ , and using (13) and (6), we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( )

0 00

0 0 0

1 0 0 ,1 2 1 2 1 1 2 1

1 2 1 1 2 1 ,1 2 1

, ,

.

u
t u v E X X

v
X X E

θ γ θ γ θγ

γ θ γ θ θ θ γ θ

+ − − −

+ − + − − + −

 
∈ = × 

 
→ × =

                   (14) 

Regard 1t  and ( )0,1 2 1Eθ γ θ+ −  as the initial time and space respectively, then by invoking the local existence 

and uniqueness of the ( )0,1 2 1Eθ γ θ+ − -regular solution, we can find a time 0δ > , such that  

[ ] ( )( ) ( ] ( )( )
( ] ( )( )( ) [ )

0 0
0

0

1 1 1 1,1 2 1 ,1 2 1

1
1 1 0,1 2 1

, , , ,

, , 0, .

u
C t t E C t t E

v

C t t E

θ γ θ θ γ θ γ

θ γ θ β

δ δ

δ β γ

+ − + −

+ −

   ∈ + ∩ +     

∩ + ∀ ∈

 

Here the time δ  depends on the norm ( )
( ),1 2 10

1 0 0, ,
E

u
t u v

v
θ γ θ+ −

 
 
 

 due to the subcriticality of   (8). Notice 

that 
u
v
 
 
 

 is uniformly continuous in ( )0,1 2 1Eθ γ θ+ −  on any bounded interval [ ] [ )1 1, ,t T t τ⊆  thanks to (13) and  

(14), therefore it can be extended to the whole interval [ )1,t τ  as an ( )0,1 2 1Eθ γ θ+ − -regular solution. And similar 
to (14), for any ( )2 1,t t τ∈ , we have that  

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 00

0 0 0

2 0 0 ,1 2 1 1 2 2 1 1 2 1 1

1 2 2 1 1 2 2 1 ,1 2 2 1

, ,

.

u
t u v E X X

v
X X E

θ γ θ γ θ γ θ γ θγ

γ θ γ θ θ θ γ θ

+ − + − + − − −

+ − + − − + −

 
∈ = × 

 
→ × =

 

The above inclusion is valid for all ( )0,t τ∈  due to the arbitrariness of 1t . Thus using the procedure 
performed above, we can deduce that, as an ( )0,1 2 2 1Eθ γ θ+ − -regular solution,  

( ) ( )( ) ( ) ( )( )( )0 0
0

1
,1 2 2 1 ,1 2 2 10, , 0, , .

u
C E C E

v θ γ θ θ γ θγ β
τ τ+ − + −

   ∈ ∩     
 

for all [ )00,β γ∈ . 
Select k ∈  so that ( ) ( )01 2 1 1k γ θ θ+ + − ≥ , and repeat the above step k times, we finally obtain  

( ) ( )( ) ( ) ( )( )( )0 0
0

1
,1 2 1 ,1 2 10, , 0, , .k k

u
C E C E

v θ γ θ θ γ θγ β
τ τ+ − + −

   ∈ ∩     
             (15) 

for all [ )00,β γ∈ , and ( )( ) ( ) ( )0 0
0

,1 2 1 ,1 2 1 1k kE E E Yθθ γ θ θ γ θγ+ − + + −→ → → . Thus, for any ( )0,T τ∈ , we can 

conclude that [ ]( )0, ,
u

C T Y
v
 

∈ 
 

, which leads to the desired conclusion 0τ τ≤ . 

Theorem 2.8 Every Y-regular solution ( )0 0, ,
u

u v
v
 

⋅ 
 

 of the problem (2) + (3) with 0

0

u
Y

v
 

∈ 
 

 is exactly the 
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strong one on its maximal interval of existence [ )0,τ . More precisely, 
u
v
 
 
 

 verifies all the following properties  

• [ )( ) ( ) ( )( ) ( ) ( )( )1
1

0, , 0, , 0, ,
u

C Y C E C E
v θ θ β

τ τ τ
 

∈ ∩ ∩ 
 

 for all [ )0,1β ∈ ,  

• Equation (2) holds in Eθ  for all ( )0,t τ∈ , and  

• either ( )0 0lim sup , ,
t

Y

u
t u v

vτ −→

 
= ∞ 

 
, i.e. 

u
v
 
 
 

 blows up in finite time, or τ = +∞ , i.e. 
u
v
 
 
 

 exists 

globally.  
Proof: Choose k ∈  so that ( )01 2 1 1kγ θ+ − ≥ , then the inclusion (15) and the imbedding  

( ) ( )1
0

,1 1 14 2
E X X X X Eθ θ θ θθ θγ −− −

= × → × =  jointly produce 1). Moreover, thanks to (11), if we regard ( )Eθ α
 

( ( )0 ,1α α∈ ) as the initial space, and use the existence and uniqueness of the ( )Eθ α
-regular solution, we can 

derive 2). Suppose that condition  

[ )
( )0 0

0,
sup , ,
t Y

u
t u v

vτ∈

 
< ∞ 

 
                                (16) 

holds, then as an ,1 2Eθ -regular solution, 
u
v
 
 
 

 can be extended onto the whole interval +  since  

( )( )
0

,1 2 ,1 2 1
: E Eθ θ

γ−
→  is subcritical and ,1 2Y Eθ→ . Therefore 0τ τ= = +∞ , and 

u
v
 
 
 

 exists globally as a 

Y-regular solution (it is a global strong solution indeed). This results means that (iii) holds.  
Remark 2.9 From Thm. 2.8(i), one can conclude that the first component function ( )0 0, ,u u v⋅  of a Y-regular 

solution ( )0 0, ,
u

t u v
v
 
 
 

 belongs to ( )( ) ( )( )1 2
10, , 0, ,C X C X βτ τ∩  for all [ )0,1β ∈ , and satisfies Equation  

(1) in the strong sense on its maximal existing interval ( )0,τ  definitely. In [6], the authors showed that, 
( )0 0, ,u u v⋅  is the strong solution under the extra conditions 3 5N≤ ≤  and ( )( )1 2, 4 2Nθ ∈ + . And in [2], 

the authors proved that ( )0 0, ,u u v⋅  is the classical one whenever 1 2 2 3θ≤ < . In this sense, Thm 2.8 is a 
useful supplement to the above two results.  

Remark 2.10 Under the assumptions (4) and (5), the following estimate is valid for ( )0 0, ,
u

u v
v
 

⋅ 
 

 (see [6] 

[13]):  

( ) 0
0 0

0

, , 1
uu

t u v C
vv

     
≤ +      

      
   

where  

( )( )
2

0

1 d d
2

u x

Y

u u
f s s x

v v Ω

    
= −    

    
∫ ∫  

is the energy functional attached to (2). Thus for every 0

0

u
Y

v
 

∈ 
 

, condition (2.11) holds, and consequently 

τ = ∞ , ( )0 0, ,
u

u v
v
 

⋅ 
 

 is globally defined.  

3. Further Discussions 
By introducing some new state spaces, we investigate the higher regularity and global existence of the weak 
solution of the wave Equation (1) for the critical growth exponent ( ) ( )2 2N Nρ = + −  in the case 
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1 2 1θ< ≤ . Results obtained here show that criticality of the nonlinearity attached to a semilinear parabolic 
system is not absolutely. It depends on the state spaces selected in many concrete situations. On the other hand, 
we have to admitted that, methods used here are inadequate for 1 2θ = , since criticality of   does not 
change anymore ( 0γ = ), regardless of the space 1 2,sE  we selected. In this case, condition (2.11) does not 
guarantee the global existence of the Y-regular solution any more. In [14], the authors proved that, under  

hypotheses (4) and (5), every Y-regular solution ( )0 0, ,
u

t u v
v
 
 
 

 arising in Y can be extended onto the whole 

interval +  as a 1Y− -regular solution ( 1 1 2Y X X− −= × ) or a piece-wise ε-regular solution in other words (see  

[12] for references). More precisely, 
u
v
 
 
 

 verifies  

1) ( ) [ ]( )1, 0, ,
u

C Y BWC T Y
v

+
−

 
∈ ∩ 

 
  for every ( )0,T ∈ ∞ ,  

2) ( ) ( )1d d ,
u

t WC Y
v

+
−

 
∈ 

 
 , and  

3) there is a sequence of singular times { }iτ  with iτ → ∞ , s.t. on each [ )1,i iτ τ−  ( 0 0τ = ), 
u
v
 
 
 

 is a 

Y-regular solution, and ( )
( )

lim sup
it

Y

u t
v t

ε

τ −→

 
= ∞ 

 
 for each ( )( 10, 2ε ρ − ∈  .  

Thus, we can also consider the existence and regularity of the universal attractors. 
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