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Abstract 
In this paper, we present the analytical expressions for computing the minimum distance between 
a point and a torus, which is called the orthogonal projection point problem. If the test point is on 
the outside of the torus and the test point is at the center axis of the torus, we present that the or-
thogonal projection point set is a circle perpendicular to the center axis of the torus; if not, the 
analytical expression for the orthogonal projection point problem is also given. Furthermore, if 
the test point is in the inside of the torus, we also give the corresponding analytical expression for 
orthogonal projection point for two cases. 
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1. Introduction 
In this paper, we discuss how to compute the minimum distance between a point and a spatial parametric surface 
and to return the nearest point on the surface as well as its corresponding parameter, which is also called the 
point projection problem (the point inversion problem) of a spatial parametric surface. It is very interesting for 
this problem due to its importance in geometric modeling, computer graphics and computer vision [1]. Both 
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projection and inversion are essential for interactively selecting surfaces [1] [2], for the surface fitting problem 
[1] [2], for the reconstructing surfaces problem [3]-[5]. It is also a key issue in the ICP iterative close for 
construction and rendering of solid models with boundary representation, projecting of a space curve onto a 
surface for curve surface design [6]. Many algorithms have been developed by using various techniques 
including turning into solving a root problem of a polynomial equations, geometric methods, subdivision 
methods, circular clipping algorithm. For more details, see [1]-[23] and the references therein.  

In the various methods mentioned above, all the iterative processes can produce one iterative solution. 
Different from the above methods, we consider the special situation which the test point have countless 
corresponding solutions for the orthogonal projection problem. We present the analytical expression for 
computing the minimum distance between a point and a torus. If the test point is on the outside of the torus and 
the test point is at the center axis of the the torus, we know that the orthogonal projection point set is a circle 
which is perpendicular to the center axis of the torus; If not, the analytical expression for the orthogonal 
projection point problem is also given. In addition, if the test point is in the inside of the torus and is on the 
major planar circle, then the corresponding analytical expression for orthogonal projection point set is minor 
planar circle. Moreover, if the test point is in the inside of the torus and is not on the major planar circle, we also 
present the corresponding analytical expression for orthogonal projection point of the test point.  

2. Computing the Minimum Distance between a Point and a Torus 
2.1. Test Point Being on the Outside of the Torus 
The torus Γ  can be defined as  

( )2
2 2 2 2x y R z r+ − + =                                  (1) 

in 3R , where R r> . In this subsection, we suppose that test point ( )0 0 0, ,x y z  is on the outside of the torus, 

namely, ( )2
2 2 2 2
0 0 0x y R z r+ − + > . It denotes that the center axis of the torus is the z-axis, the center point is 

( )0,0,0 . 
Firstly, we deal with the first kind of circumstance which the test point is on the center axis of the torus Γ  , 

namely the test point’s coordinate is ( )00,0, z . Projecting a test point ( )00,0, z  onto a torus surface Γ  can be 
done as follows. Major planar circle is defined as  

2 2 2 ,
0.

x y R
z

 + =


=
                                      (2) 

Assume that the coordinates of arbitrary point of major planar circle is ( )1 1, , 0x y  which is satisfied  

2 2 2
1 1

1

,
0.

x y R
z

 + =


=
                                     (3) 

It is not difficult to find that line segment 1L  determined by test point ( )00,0, z  and ( )1 1, , 0x y  is 
perpendicular to the torus. So the intersection of line segment 1L  and torus Γ  is the minimum distance 
between test point ( )00,0, z  and torus Γ . We can know that parametric equation of the line segment 1L  is  

( )
1

1

0 0

,
, 0 1

.

x x t
y y t t
z z z t

= ⋅
 = ⋅ < <
 = − ⋅

                                (4) 

From (1) and (4), we get that the corresponding parameter value of intersection of parametric equation for the 

line segment 1L  and the torus Γ  is 
2 2

0

1 rt
R z

= −
+

. Then the intersection of the line segment 1L  and the 

torus Γ  is  
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1 1 1 1 02 2 2 2 2 2
0 0 0

, , ,r r rx x y y z
R z R z R z

 
 − −
 + + + 

 

or another form  

1 1 2 2
0

1 1 2 2
0

0 2 2
0

,

,

.

rx x x
R z

ry y y
R z

rz z
R z


 = −
 +

 = −

+

 =
 +

                                (5) 

By (3) and (5), we obtain  

2

2 2 2

2 2
0

0 2 2
0

1 ,

.

rx y R
R z

rz z
R z

  
  + = −   + 


=
+

                            (6) 

In the case of the test point being at the center axis of the torus, Formula (6) indicates that the corresponding 
orthogonal projection point set of the test point is a circle which parallels to major planar circle (see Figure 1). 

In the following content, we try to discuss the second orthogonal projection case which test point ( )0 0 0, ,x y z  
is not on the center axis of the torus. This means that neither of the first and second coordinates of the test point 
( )0 0 0, ,x y z  are zero. In order to compute the minimum distance between the test point ( )0 0 0, ,x y z  and the 
torus Γ , we define a plane 0Ω  which passes through the central axis or the z-axis and a line which is 
determined by the test point ( )0 0 0, ,x y z  and the central point ( )0,0,0 . So the minimum distance between test 
point ( )0 0 0, ,x y z  and the torus is the intersection between the orthogonal projection line and the torus Γ . In 
the following, we intend to compute the minimum distance between test point ( )0 0 0, ,x y z  and torus Γ  
according to this idea. We deduce that the general plane equation 0Ω  passing through the z-axis is  

0 0 0.y x x y− =                                      (7) 

From (2) and (7), we obtain that the corresponding intersection of the plane 0Ω  and major planar circle of  
 

 
Figure 1. In the case of the test point being on the center axis of the torus, the correspond-
ing orthogonal projection point set is a circle perpendicular to the center axis of the torus.    
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the torus is 0 0
2 2 2 2
0 0 0 0

, , 0R x R y
x y x y

 ⋅ ⋅ 
 + + 

 and 0 0
2 2 2 2
0 0 0 0

, , 0R x Ry
x y x y

 ⋅ − −
 + + 

. If the intersection of the plane 0Ω  

and major planar circle of the torus is 0 0
2 2 2 2
0 0 0 0

, , 0R x R y
x y x y

 ⋅ ⋅ 
 + + 

, then the corresponding vector between this 

intersection and test point ( )0 0 0, ,x y z  is 0 0
0 0 02 2 2 2

0 0 0 0

, ,
R x R y

x y z
x y x y

 ⋅ ⋅ = − −
 + + 

n . Furthermore the parameter 

equation of the line segment 2L  determined by the intersection 0 0
2 2 2 2
0 0 0 0

, , 0R x R y
x y x y

 ⋅ ⋅ 
 + + 

 and test point 

( )0 0 0, ,x y z  is  

( )

0 0
02 2 2 2

0 0 0 0

0 0
02 2 2 2

0 0 0 0

0

,

0 1
,

.

R x R xx x t
x y x y

tR y R yy y t
x y x y

z z t

  ⋅ ⋅  = + − ⋅
  + +  < <  ⋅ ⋅  = + − ⋅
  + + 

= ⋅

                     (8) 

And because the intersections of the torus Γ  and the plane 0Ω  is the following first minor planar circle 0Ψ   

( )2
2 2 2 2

0 0

,

0,

x y R z r

y x x y

 + − + =

 − =

                             (9) 

by (8) and (9), the corresponding parameter value of intersection of the line segment 2L  and the minor planar 

circle 0Ψ  is 

( )2
2 2 2
0 0 0

rt
x y R z

=
+ − +

. Substituting this parameter value into (8), we obtain the intersection 

( )0 0 0 0 0 1, ,x w y w z w  where 

( )
0 2 2 2 2 2

2 2 20 0 0 0
0 0 0

1R R rw
x y x y x y R z

 
 = + − ⋅
 + +  + − +

 and  

( )
1 2

2 2 2
0 0 0

rw
x y R z

=
+ − +

. If the intersection of the plane 0Ω  and the major planar circle of the torus is 

0 0

2 2 2 2
0 0 0 0

, ,0
R x R y

x y x y

 ⋅ ⋅ − −
 + + 

, then the corresponding vector between this intersection 0 0
2 2 2 2
0 0 0 0

, , 0R x R y
x y x y

 ⋅ ⋅ − −
 + + 

 

and the test point ( )0 0 0, ,x y z  is 0 0
0 0 02 2 2 2

0 0 0 0

, ,R x R yx y z
x y x y

 ⋅ ⋅ = + +
 + + 

n . Furthermore the parameter equation 

of the line segment 3L  determined by the intersection 0 0
2 2 2 2
0 0 0 0

, , 0R x R y
x y x y

 ⋅ ⋅ − −
 + + 

 and the test point 

( )0 0 0, ,x y z  is  
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( )

0 0
02 2 2 2

0 0 0 0

0 0
02 2 2 2

0 0 0 0

0

0 1

R x R xx x t
x y x y

tR y R yy y t
x y x y

z z t

  ⋅ ⋅  = − + + ⋅
  + +  < <  ⋅ ⋅  = − + + ⋅
  + + 

= ⋅

                      (10) 

Because the intersections of the torus Γ  and the plane 0Ω  is the following second minor planar circle 1Ψ   

( )2
2 2 2 2

0 0

,

0,

x y R z r

y x x y

 + − + =

 − =

                               (11) 

from (10) and (11), the intersection parameter of the line segment 3L  and the second minor planar circle 1Ψ  

is 

( )2
2 2 2
0 0 0

rt
x y R z

=
+ + +

. Substituting this parameter value into (10), we get the second intersection 

( )0 2 0 2 0 3, ,x w y w z w  of the segment line 3L  and the torus Γ  where  

( )
2 2 2 2 2 2

2 2 20 0 0 0
0 0 0

1R R rw
x y x y x y R z

 
 = − + + ⋅
 + +  + + +

 and 

( )
3 2

2 2 2
0 0 0

rw
x y R z

=
+ + +

. 

In the following, we explain that the distance between the intersection ( )0 0 0 0 0 1, ,x w y w z w  and the test point 

( )0 0 0, ,x y z  is the minimum distance. Because the test point ( )0 0 0, ,x y z  is at the outside of the torus Γ , so 

( )2
2 2 2
0 0 0x y R z r+ − + > . It is easy to know that ( )2

2 2 2
0 0 0x y R z r+ + + > . From the two inequalities, we 

get  

( ) ( )
2 2
0 0 2 2

2 2 2 2 2 2
0 0 0 0 0 0

24 1 0.rR x y
x y R z x y R z

 
 
 + − >
 

+ − + + + + + 
 

 

And because of  

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 2
0 0 2 2

2 2 2 2 2 2
0 0 0 0 0 0

2 2
2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2 2 2
0 2 0 0 2 0 0 3 0 0 1 0 0 1 0 0 1 0

24 1

4 2 2

,

rR x y
x y R z x y R z

R x y r x y R z r x y R z

x w x y w y z w z x w x y w y z w z

 
 
 + −
 

+ − + + + + + 
 

= + − + + + + + − +

= − + − + − − − + − + −

 

so it exists inequality relationship 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
0 2 0 0 2 0 0 3 0 0 1 0 0 1 0 0 1 0 .x w x y w y z w z x w x y w y z w z− + − + − > − + − + −  

This demonstrates that the distance between the second intersection and the test point is longer than the 
distance between the first intersection and the test point. Thus the distance between the intersection 
( )0 0 0 0 0 1, ,x w y w z w  and test point ( )0 0 0, ,x y z  is minimum (see Figure 2).  
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Figure 2. In the case of the test point being not on the center axis of the torus, the corres-
ponding orthogonal projection point of being minimum distance.                            

 
Remark 1. If the test point ( )0 0 0, ,x y z  degenerates into the the special point ( )0 0, 0,x z , then the 

corresponding orthogonal projection point of the special test point ( )0 0, 0,x z  would naturally become point 

( ) ( )

0
00 0
2 22 20

0 0 0 0

1
,0,

Rx r
xx z rR

x x R z x R z

  
−     + 
− + − + 

 
 

. In the same way, if the test point ( )0 0 0, ,x y z  degenerates into 

the the special point ( )0 00, ,y z , then the corresponding orthogonal projection point of the special test point 

( )0 00, ,y z  would also naturally become point 
( ) ( )

0
00 0
2 22 20

0 0 0 0

1
0, ,

Ry r
yy z rR

y y R z y R z

  
−     + 
− + − + 

 
 

. Of course, if 

the test point ( )0 0 0, ,x y z  is the special point ( )00,0, z , then the corresponding orthogonal projection point set 

of the special test point ( )00,0, z  would be point set presented by Formula (6). In a word, for any test point 
being on the outside of the torus, we present the corresponding analytical expressions for the orthogonal 
projection point or the orthogonal projection point set. 

2.2. Test Point Being in the Inside of the Torus 

In this subsection, we suppose that test point ( )0 0 0, ,x y z  is in the inside of the torus, namely,  

( )2
2 2 2 2
0 0 0x y R z r+ − + < . Firstly, we deal with the first case which the test point is not on the major circle. In 

fact, analogous to treatment method of the second part content of the second section, it is easy to verify that 
orthogonal projection point of the test point ( )0 0 0, ,x y z  is ( )0 0 0 0 0 1, ,x w y w z w , where  

( )
0 2 2 2 2 2

2 2 20 0 0 0
0 0 0

1R R rw
x y x y x y R z

 
 = + −
 + +  + − +
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and 

( )
1 2

2 2 2
0 0 0

.rw
x y R z

=
+ − +

 Now we consider the second case which the test point is in the inside of the 

torus and is on the major planar circle such that 
2 2 2
0 0

0

,
0.

x y R
z

 + =


=
 Similar to the treatment method of the first part 

content of second section, it is easy to know that orthogonal projection point set of the test point ( )0 0, , 0x y  is  
the corresponding minor planer circle. We directly present the corresponding analytical expression according to 
the test points being at different positions for major planar circle. Since Formula (9) denotes two minor planer 
circles, in fact, orthogonal projection point set of arbitrary test point being on the major planar circle just only 
has one minor planar circle. According to this reason, we try to present a unified and concise analytical 
expression of the only one minor planar circle for arbitrary test point being on the major planar circle. If 

0 00, 0x y≠ ≠ , then the corresponding orthogonal projection point set of the test point ( )0 0, , 0x y  is minor 
planer circle  

( )

( )

( )

0

0

cos 1 ,

cos 1 , 0 2π

sin .

rx x
R
ry y
R

z r

θ

θ θ

θ

  = +   
  = + ≤ ≤  

 
 =



                         (12) 

For more special cases, if test point ( ) ( )0 0 0, , , 0,0x y z R= , then orthogonal projection point set of the test 

point ( ), 0, 0R  is the corresponding minor planer circle  

( )

( )

cos ,
0, 0 2π
sin .

x r R
y
z r

θ
θ

θ

= +
 = ≤ ≤
 =

                           (13) 

If test point ( ) ( )0 0 0, , , 0,0x y z R= − , then the corresponding orthogonal projection point set of the test point 

( ), 0, 0R−  is minor planer circle  

( )

( )

cos ,
0, 0 2π
sin .

x r R
y
z r

θ
θ

θ

= − −
 = ≤ ≤
 =

                          (14) 

If test point ( ) ( )0 0 0, , 0, , 0x y z R= , then the corresponding orthogonal projection point set of the test point 

( )0, ,0R  is minor planer circle  

( )
( )

0,
cos , 0 2π
sin .

x
y r R
z r

θ θ
θ

=
 = + ≤ ≤
 =

                           (15) 

If test point ( ) ( )0 0 0, , 0, , 0x y z R= − , then the corresponding orthogonal projection point set of the test point 

( )0, , 0R−  is minor planer circle  

( )
( )

0,
cos , 0 2π

sin .

x
y r R
z r

θ θ
θ

=
 = − − ≤ ≤
 =

                          (16) 
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Remark 2. In this subsection, we fully present the corresponding orthogonal projection point or point set of 
arbitrary test point which is in the inside of the torus, namely, the corresponding analytical expression of 
orthogonal projection point for the minimum distance between the test point and the torus. If the test point is not 
on the major planar circle, then the corresponding analytical expression of orthogonal projection point is only 
one point. If the test point is on the major planar circle, then the corresponding analytical expression of  
orthogonal projection point is minor planar circle. Besides that, if the test point ( )0 0 0, ,x y z  satisfies the 

relationship ( )2
2 2 2 2
0 0 0x y R z r+ − + = , it is obviously easy to know that the test point is on the torus.  

3. Conclusion 
This paper investigates the problem related to a point projection on the torus surface. We present the analytical 
expression for the orthogonal projection of computing the minimum distance between a point and a torus for all 
kind s of positions. An area for future research is to develop a method for computing the minimum distance 
between a point and a general completely center symmetrical surface.  
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