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Abstract

When we study a congruence T(X) = ax modulo m as pseudo random number generator, there are several
means of ensuring the independence of two successive numbers. In this report, we show that the dependence
depends on the continued fraction expansion of m/a. We deduce that the congruences such that m and a are
two successive elements of Fibonacci sequences are those having the weakest dependence. We will use this
result to obtain truly random number sequences X,. For that purpose, we will use non-deterministic sequences
yn. They are transformed using Fibonacci congruences and we will get by this way sequences X,. These se-

quences X, admit the IID model for correct model.
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1. Introduction

In this paper, we present a new method using Fibonacci
sequences to obtain real IID sequences X, of random
numbers'. To have random number two methods exists :
1) use of pseudo-random generators (for example the
linear congruence), 2) use of random noise (for example
Rap music).

But, up to now no completely reliable solution had
been proposed ([1]-[3]). To set straight this situation,
Marsaglia has created a Cd-Rom of random numbers by
using sequences of numbers provided by Rap music. But,
he has not proved that the sequence obtained is really
random.

However, by using Fibonacci congruence, there exists
simple means of obtaining random sequences whose the
quality is sure (cf [4]): one uses the same method as
Marsaglia, but one transforms the obtained sequence by
Fibonacci congruences. Then, one obtains sequence of
real X,such that the IID model is a correct model of X,,.

1.1. Fibonacci Congruence

Linear congruences T (x)=ax mod (m) are often used
as pseudo-random generators. In this case, we try to
choose a and m so that successive pseudorandom
numbers behave as independent. Of course, we can only
ensure that it is the case of p successive numbers p where
2P <m. To choice a and m, one can use the spectral test

' By abuse of language, we will call “IID sequence” (independent iden-
tically distribution) the sequence of random numbers.
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or the results of Dieter (cf [5]) which allow to choose the
best “a”.

Unfortunately, the conditions which ensure the inde-
pendence of three successive numbers are not those
which ensure the best independence of two successive
numbers,for example.

Indeed, in this paper, we will study the conditions
which ensure the independence of only two successive
numbers and we will see with astonishment that this is
the Fibonacci congruence which provides the best
empirical independence.

We shall study the set

Ez={E,T(f)|£e{0,l,-~~,m—l}} when 7Z =z modulo
mand 0<Z <m if zeZ.We will understand that

. . . m
this dependence depends on the continued fraction —,
a

i.e. it depends on sequences r, and h, defined in the
following way.

Notations 1.1 Let r,=m, r,=a. One denotes by
r. the sequence defined by r,=h_ ., +71,,, the Eu-
clidean division of r, by r,, when r_, #0. More-
over, one denotes by d the smallest integer such as
r,,, =0.0nesets r,,,=0.

One sets k, =0, k=1 and k., =hK.,
n+l1<d.

Then, dependence depends on the h,’s: more they are
small, more the dependence is weak.

Theorem 1 Let (x,,Y,)eE,. Let _
R = {[X: X +K, |®[ Y. Yo +1,,[} and let R, =R’

+k, if
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be the rectangle R° modulo m. Then
If nis even,

E,NR,= {(x0 KoL Yo+ L )|e= 0,1,2,---,hn71}

Moreover the points (x0+kn_1€,y0+rn_1£) are lined

up modulo m.
If nis odd,
E,"R,

= (% T Kl Yo o T )= 0,1,2,0 |

Moreover, the points (X, +K, , +K, £, Yo +F,, ~ rnflz)
are lined up modulo m.

Of course, in general, it is only on the border that R,
the rectangle modulo m, satisfies R, # R®. If not, R,
is a normal rectangle.

For example if X, =Y, =0, this theorem means that
the rectangle [0,k /2]®[r,,/2,r,,[ does not contain
points of E, ifniseven:

E, m{[O, kn/2]®[rn72/2,rn72[} =g . If h_, is large,
that will mean that an important rectangle of R’ is
empty of points of E,: that will mark a breakdown of
independence.

As h =1, the congruence which defines the best
independence of E, will satisfy hy=1 and h, =2.In
this case we call it congruence of Fibonacci. Indeed,
there exists n, such that a=fi, and m=fi
where fi, is the sequence of Fibonnacci: fi, = fi, =1,

fi.,, = fi.,, + fi_ . As a matter of fact the sequence I,
is the sequence of Fibonacci except for the last terms (i.e.
except for fi, = fi, =1). It is also the case for sequence
k., .

Remark 1.1 In fact, when we use sequence h,, we
use Euclidean Algorithm. Now, Dieter has also used this
algorithm to compute the dependence of
(T"(%).T"™" (%)) when m=2°. But he has not
understood the part of the h, ’s in this dependence.

1.2. Application: Building of Random Sequence

Unfortunately, congruences of Fibonacci cannot be used
in order to directly generate good pseudo random
sequences because T> =+Id where Id is the identity
(cf page 141 of [6]). Inclened in this case, the pseudo
random sequence X, =T (X,) checks X ., ==X, .
However, one can use congruence of Fibonacci in order
to build IID sequences by transforming some random
noise Y, .

Definition 1.2 Let qeN'. Let T be the congruence
of Fibonacci modulo m. We define the function of
Fibonacci T, by T,=Pr,T where

1) T(x)=T(mx)/m,

2) Pr,(z)=0,bb,---b, when z=0,bb,-

is the

Copyright © 2011 SciRes.

binary writing of z.

We choose Y, e{O/m,l/m,---,(m—l)/m} ,n=1,
2,---,N. Then, y, admits for correct model a sequence
of random variables Y, defined on a probability space
(Q,A,P). Then, we will impose to y, that the
conditional probabilities of Y, admit densities with
Lipschitz coefficient bounded by K, not too large.

In fact, since Y, has discrete value, we can always
assume that Y, has a continuous density.

Notations 1.3 We denote by g, be the uniform
measure defined on {O/m,l/m,-~~,(m—1)/m} by
iy (k/m)=1/m forall ke{0,1,---,m-1}.

For all permutation ¢ of {1,2,---,N} , for all
ne{l,2,--,N}, we denote by f ,(|y.y;.+) the
conditional density with respect to g, of Yom =Y
given Y¢(n-1) = yl,’Ygﬁ(n—Z) =Y,

Since Y, is discrete, we can also assume that
fos (| Vi Yo, ) has a finite Lipschitz coefficient.

Notations 1.4 We denote by K, a constant such
that, for all permutation ¢ of {1,2,---,N}, for all
nell, 2, N},

[ o (VY V3o = g (YIV Voo < Koy =y] - I
order to simplify the proofs we suppose K, >1.

Now, we shall prove easily that the conditional
probabilities of T, (Y,) check

P{Tq (Y¢(n) ): Xo ‘Y;b(n—l) = yl”Y¢(n—2) =Yy :Y,;;(N )T Ynoi }

=1/m[1+0(1)K,2°/m]
Then we shall choose m and @ such that
|g| <K,2%/m is small enough. We shall deduce that, for

all Borel set Bo < {0/27,1/2° (2 —1)/2q}N ,

P{(X,,-,Xy)€Bo}=L(Bo)[1+O(1)Ne] where L
is the measure corresponding to the Borel measure in the
case of discrete space : L {kl/zq ook /2" }) =1/2M .

Then x, =T,(y,) cannot be differentiated from an
IID sequence. Indeed, it is wellknown that, for a sample
X, , there is many models correct : in particular, if X, is
extracted of an IID sequence, models such that
P{(X,,~--,Xy) e Bo}=L(Bo)[l+¢] are correct if &
is small enough with respect to N. Reciprocally, if the
sequence of random variables X, checks
P{(X,,-+,Xy) € Bo}=L(Bo)[l+&,], the model IID
is also a correct model for the sequence X, .

Thus one will be able to admit that the IID model is a
correct model for the sequences X, . As a matter of fact,
one will be even able to admit that there exists another
correct model Yng0 of Yy, such that T, (Yng‘)) is
exactly the IID sequence.

Now there exists noises Y, such that K, is not too
large. For example these sequences can be built by using
texts. In this case we can prove the result : in order that

X, is IID, it suffices that y, admits a correct model

0JS



130 R. BLACHER

such that K, is not too large. However, it is a condition
which can be imposed easily by transforming some
noises. The advantage compared with the CD-Rom of
Marsaglia is that this result is proved. Of course, we
tested such sequences.

So finally we can indeed build sequences X, admi-
tting for correct model the IID model by using Fibonacci
congruences. This means that, a priori, these sequences
X, behave as random sequences. It is always possible
that they do not satisfy certain tests. But it will be a very
weak probability as we know it is the case for samples of
sequences of IID random variables.

We point out that a first version of these results are in
[4]. Moreover, all these results and the proofs are
detailed in [7].

Note that to use the congruence of Fibonacci method
is completely different from the method using Fibonacci
sequence with X ., =X, +X,, modulo m, which is
moreover a bad generator : cf page 27 of [1].

2. Dependence Induced by Linear
Congruences

In this section, we study the set
E,={tT(0)]r {01, m-1}}
ence T(Xx)=ax modulom.

when T is a congru-

2.1. Notations

We recall that we define sequences r, and h, by the
following way: weset r,=m, r,=a and
r. =N, N, + ., the Euclidean division of r, by

when r, #0. One denotes by d the smallest integer

such as r,,, =0.Onesets I, ,=0.Moreover, k,=0
k=1 and k., =h_ k. +k, if n+1<d.
Then E=hl+ ! 7
a h, +
1
h, +
h4 4.

Therefore, h, >1 foralln=1,2,---,d and
r,_, =hyry+r,, =hyr,+0=hyr, . The full sequence r,
is thus the sequence r,=m, r=a,--,r,, =0,
r,,, = 0. Then, if T is a Fibonacci conguence, I, is the
Fibonacci sequence fi, , except for the last terms.

Remark that if h, =1 for n = 1,2,~--,d -1, k, is
also the Fibonacci sequence for n = 1,2,---,d. Indeed by
definition, k, =0, k =1 and k,,, h K, +k, if
n+1<d.

n+17n+1

2.2. Theorems

Now, in order to prove the theorem 1, it is enough to
prove the following theorem.

Copyright © 2011 SciRes.

Theorem 2 Let ne{2,3,---,d
If niseven,
E, {[0.k, [®[0. 1, [}={(Ko £ 11 0)] £ = 0.1,2,0-,h L}
Moreover the points (k,_,¢,r,_,¢) are lined up.

> 'n-1

}. Then

If nis odd,
E,n{lok]@lor

={(k,_, +k, f,rnz ro,0) |£:0,1,2,---,hn4}'
Moreover, the points (k,_,+k,_ ¢, r,_,—r_ () are

lined up.

Then, if there exists h, large, there is a breakdown of
independence. For example if n = 2, it is a wellknown
result. Indeed, m=r,, r=a, k =1 and
k,=h =|m/a| where | x| means the integer part of
x. Thus, the rectangle Rect, =[0, m/(2a)]®[m/2,m[
will not contain any point of E,. However, this
rectangle has its surface equal to m? / (4a). Thus if “a”
is not sufficiently large, i.e if h, is too large, there is
breakdown of independence.

We confirm by graphs the previous conclusion. We
suppose m = 21. If a = 13, we have a Fibonacci con-
gruence: cf Figure 1. If one chooses a = 10,
sup(h;)=20: cf Figure 2 . If one chooses a =5,
sup(h;)=>5: cf Figure 3.

Then, in order to avoid any dependence, it is necessary
that sup(h;) issmall.

2.3. Distribution of T([c,c'[) When T Is a
Fibonacci Congruence

We assume that T is a Fibonacci congruence. Let
I =[c,c[n{0,1,-,m—1} where c,c'e{0,1,---,m—1}.

We are interested by 'Fil(l) or T(1) because

T?=xId. Since T(I) behaves as independent of I,
normally, we should find that T(1) and, therefore
T (1), is well distributed in {0,1,---,m—1} . As a
matter of fact it is indeed the case.

Indeed, let k",n=1,2,---, ¢' -, be a permutation of
{c,c+1,---,c'~1} such that

T (k) <T (k) <T (k) <o <T ' (k). Then,
for all numerical simulations which we executed, one has
always obtained

[T (k) fm=r/N ()] £ p(m)/N (1)

where ¢(m) < Log(m). In fact, it seems that ¢(m) is
of the order of Log(Log(m)). Moreover,
Max_, . iy ‘ N()T™ (kr )/m - r‘ seems maximum
when [ is large enough : ¢'—c>m/2.

For example, in Figures 4, 5 and 6, we have the
graphs N(I)T'1<kr)/qm—r, r=0,1,---,N(I) -1 for
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Moreover k.., =h Kk

+k, is the Euclidean division

n+17n+1
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of kn+2 by kn+1'
Now, we prove the following results.
Lemma 3.2 Let n =0, 1, 2 ,---, d. If n is even,

k,a=m-r .Ifnisodd, k.a=r,.
Proof. We prove this lemma by recurrence. For n =0,
ka=0=0=m-m=m-r,.Forn=1,
ka=a=a=r.
We suppose that it is true for n.
One supposes n even. Then,
wma=ahk +ak, ,=-hr +r_ =r .
One supposes n odd. Then,
wma=ahk +ak, ,=hr —r |
Therefore, k,,,a = m-r, ;.
Lemma3.3Letn=2,3,---,d + 1. Let .
te{l,2,---,k,—1}.1f n>2 iseven, r_ <at<m-r, .
If n>3 isodd, m—r_ >at>r .
Moreover, if n>2 iseven, @ =m-r,.If n>3
isodd, ka=r,.
Proof. The second assertion is lemma 3.2. Now, we
prove the first assertion by recurrence.

k

k =—h,a=mM-=r,.

One supposes n = 2. Then, m=r1, =hr +r, =ha+r,.

Moreover, k, =h . If 1<t<h =k,,
n=asat<ha=m-r,.

If h=k,=1, {1,2,--,k, -1} =@ . In this case, we
study te{l,2,---,k, -1} where k,=hk,+k =h,+1.
Then, 1<t<h,.Then, at=tak, =-tr,.

Moreover,

m-r,>m-tr, 2m-hyr, =r,-h,r,

= rO_(rl —I’3)= r +(r0_r1)> 5

Therefore, because at=m-tr,, at=m —tr, .
Therefore, m—r, > at > r.

One supposes that the first assertion is true for n

where 2<n<d.
Let 0<t'<k,,,. Let t'= fk +e be the Euclidean
division of t by K, : e<Kk,.
Then, f <h, .Ifnot,
t'>(h, +1)k, +e>hk +k,_ =k,
One supposes n even.
In this case, r, , <at<m-r, for

n-1 —
te {1,2,---,kn —1}.
Moreover,
at'= fak +ae=f(m-r )+ae=—fr +ae.
First, one supposes €=0.Then, f >1.
Moreover, because n>2,

m-r,2m-fr >m-hr, =m—(r_-r.)

+1°

=hh R, 2 —h+h, > rn_
Therefore, because at’'=—fr,, at’=m-— fr,.
Therefore, m—r, >at'>r ,,.

Now, one supposes f <h, and e>0.

+1

Copyright © 2011 SciRes.

By recurrence,

m-r,>ae>ae—fr, >r_ — fr,

>r_ —(h,-1r,
=hAha > hy -
Therefore, because at’'=-fr, +ae, at'=ae- fr,.
Therefore, m—r, >at'>r, .
One supposes f=h , e#k _, and e>0.
If e#k,,, ae#k,_,a.Indeed, if not,
a(e—k,_,)=0.For example, if ek, _, >0,
k, >e—k,_, > 0. Then, because our recurence,

m >r,_, > 0: it is impossible.
Now, if n=2, mzﬂzaz n=r_.

_ Moreover, if n>2, nx>4. Then, by recurence

Kp@=r,,.
Then, if e+#k
Moreover,

m-r >ae>ae—fr >r_ —fr >r_—hr =r .
Therefore, because at'=—fr, +ae, at'=ae— fr, .
Therefore, m—r, > at’ > ..

One supposes f =h, and e=k, . Then,
t'=hk,+k,, =K., . It is opposite to the assumption.

Then, in all the cases, for t'e{1,2,---,k,,, -1},
m-r, 2 at’ >r . Therefore, the lemma is true for n + 1

n+1

ae#k,_a=r_ .Then, ae>r, .

n-1>

if nis even. Then, it is also true forn + 1 = 3.

One supposes n odd with n>3. One proves the
recurrence by the same way as if n is even (cf [7]). Then
the lemma is true for n+1.

Lemma 3.4 The following
Ky, Sm.

Proof. If te{l,2,--,ky, —1}, by lemma 3.3,
r,<at<m-r,, or m—r,>at>r, ,ie r, <at<m

inequalities  holds:

or m-r, >at>0 where r, >0. Then, 0O<at<m or
m>at>0.

Then, if kg, >m, there exists t, €{1,2,---,k,,, —1}
such that t,=m,i.e. at, =am=0.Itis impossible.

Lemma35 Let t,t'e{l,2,--,ks,, —1} such that
at=at’. Then, t=t".

Proof. Suppose t>t'. Then, a(t—t')=0 and
a(t—t')=0. Then, by lemma 3.3,
rp<a(t-t)<m-ry,, or m-r,>a(t-t')>r,, =0
where 1y >0.Then, 0< a(t —t') . It is a contradiction.

Lemma36Letn=1,2,---,d. Let
H, =hk, +hk, +hk, +---+hk, . Then,

H, =k, +k, -1
The proof is basic.
Lemma 37 Letn=1,2,3, ..,d—- 1. Let

L, ={tt=0,1,2,---,H,} . Then,forall nx1,
I‘n+l :{t:|+gkn+l|l € Ln’g Sthrl} .
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Proof. Let leL,, I<H,. Let g<h
it t=1+gk,,,, t<H,+h_ Kk, =
{t=1+gk

leL,,g< hn+1} clL,,
Reciprocally, let tel., and Ilet
e<k

be the Euclidean division of t by K., .

.1 - Lherefore,
H,,, . Therefore,

n+1

t=1~fk  +e ,

n+l1

n+1

We know that H, =k, +k, -1>k.,, . Therefore,
e <H,. Therefore, ecL,.

Therefore, if f <h,,,,
t=fk,, +ee{t=1+gk|lel,g<h,} .

Moreover, if f>h  +1,
t=fk,, +e= (hn+1 + 2) Koo +e2h ko +2K

= Hn+1 - Hn +2kn+1 = Hn+1 _kn+1 _kn +1+2kn+1 .
= Hn+1 +kn+1_kn +12 Hn+1 +1

Therefore, telL, .
Then, suppose f =h_, +1. Then,
t=fk,,, +e=(h, +1)k,, +e

n+l1 n+1

=h k., +k,,, +e=H.,. —-H, +k

n+17n+1 n+l1

+€

n+l1

=H,,, -k, -k, +1+k,,, +e=H_ -k +1+e

Because tel,,, and t=H_ , -k +1+e,
e+1-k, <0. Therefore, e<k,-1.

Therefore, t= fk,,, +e="h, Kk, +k

where k., +e<k,, +k, -1=H,

Therefore, t=h,, K, +e where ' <H,.

n+17n+1

Therefore, te {t =l+0k,., |I elL,,g< hn+1} .

+ée,

n+1

n+1 n+l1

Therefore, L c{t=|+gk |IeLn,gShn+1}.

Therefore, L., = {t =1+gk || el,,g< hn+l} .

n+l1

Lemma38Let F,={at[t=0,1,2,H,}.

Let E,={at+km|t=0,1,2,--,H keZ|. Weset

E,={0l[seZ| where 0j =0 and ol, >0l for all
seZ.
n n _
nThenhforall seZ, o), —0; =t or
Oy, =05 =y

Proof We prove this lemma by recurrence.
Suppose n = 1. Then, ,=a, H,=hk =k,=h, .
Therefore,

F={atft=0,1,2,---,h} ={0,a,2a,--, ha}
={0,r,2r,---,hr =m-r,} .

Therefore, the lemma is true for n = 1.

Suppose that the lemma is true for n.

Then, E = {§+ km|t=0,l,2,--- H,..ke Z}, where

> Tn+l»
H.., =hk +hk, +hk, +---+h k., =H,+h_ Kk

n+17n+1 *

Because te{0,1,2,--,H ,}, tel,,, . By lemma 3.7,
If tel,,,,

aza(|+gkn+l)za+(—l)

t=l+gk,,, where g<h_, .Bylemma 3.2,

n+l1

ar. = a+ (_1)” ar

n+2

Copyright © 2011 SciRes.

Therefore,
E,., ={at+kmteL,, kez|
={at+kmft=1+gk, .l eL,,g<h, kez|
= {a+(—l)" gr,., +kmllel,,g<h, ke Z}
={f +(=1)" gr,,, +km|f e F,,g <h,,,.k eZ}
= {os” +(=1)"gr,,, +km|seZ,g<h, ke Z}

Suppose that n is even.

n n __ AN n
Then, o] +(-1) gr,,, =07 +gr,,, <0+, —r,,
because g, < hn+1rn+1 =h -

Use the recurrence. Suppose 0,,—0; =T, . Then,
n n n _ AN

0; +(_1) Oh SO + 1 =1, =05, —h .

Therefore,

{Otrwl

_fAn n n n ’
- {Os <Og +h, <--<05+ hn+lrn+1 < Os+1}
Therefore, o' —o/'"'
n+l1

of <o <o <ol

t+1 S+l *

Suppose 0g,, —0; =T.,,. Then, s is fixed .

s+l

Let T=min{t=0,1,---, |o” 05, = rn}. Therefore,

N . S+t+l

s+T+1 ~ Ot :T I N

Let O=uy, {os+t TN |0 <g= hn+1} :

Then,
— n n n n

0= {Os ’Os+1"”=os+T—1}U{OS+T +0r, 0< g= hn+1} .

— ! ’ ’

Therefore, O={0.,0,,,---,0,} where

2 r

o1 —0g =TI, . Moreover,

: 0L =r—h,r.,=r

s+T+1 "~ Ys+K e n+2
Therefore, if o7 and

n+l n+l n n+l n n+l n+l __
Oy € {Ot 0, <0 < 05+T+1}’ Oy =0y =1, or

n+1

n n
Os < Ot < Os+1}

:rn+1 or rn+2 lf

0

s+K

0,
0,

n+2 -

Suppose that n is odd. One proves this result by the
same way as when n is even (cf [7]).

Proof 3.9 Now one proves theorem 2.

Suppose that n is even.

Then, k,_ja=r_, 2k_a=2r_,....
h. k. a=h_r

n-1"n-1 -t = hh — s

Now, ak _/=/r_ =/r_ for £=0,1,2,---,h .

{(Ks i)} = 01,2, 0}
Therefore,
={(kn_1£,akn_1€)|£ =0,1,2,--, hn_l} CE,

Moreover, I, ,=h_r._ +r, . On the other hand, by

n—1"n-1
lemma 3.8 , all the points of E, = (t,at) , t<H_ ..
have ordinates distantof r, or I, _;.
Therefore, if there is other points of
E, n{[0,H,,]®[0.r,,[} that the points
{(Kot a1, 1 0)|€=0,1,2,+ 0}, there exists

lye{l,2,---,h} and
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(%.Y,) € E, n{[0,H,,]®[0,r,,]} such that
halo =Y =1,

Because H, , =k, +k,_, -1<k,, <k;, , by lemma
3.5, there exists an only te{l,---,H ,}, such that
at=y,: t=Xx .Because Yy, #0, there exists an only

te{0,1,---,H,_}, suchthat at=y,.
Now, rn—lfo_y]:m_a:rn:Tkn . Then,
al,k, , ——ak, =at. Then, a(/,k, ,+k,)=at.
Because r,, =hyr, with r,_ >r, , h =2

Moreover, d >n>2.Then, d-1>0. Then, k;, ,>0.

Then, by lemma 3.4,
2k, —k,_, <2k, <2k, +k;_, <hgky +ky_, =K4,, <m.
Then, 0</?.k,_, +k, <k, -

Then, by lemma 3.4,

0<k,,+k, <tk +k, <h_k_ +k, <k, -k, _, +k,

=2k —k , <2k, <2k, +k,_, <hk, +k,_ =k, <m’
Then, 0</.k, , +k, <Kj,, -
Now O0<t<H, , =k, +k,_, —1<k;+ky, <k, .
Moreover, 0</.k, _, +k, <K, -
Then, because a(.k,, +k, )= at, by lemma 3.5,

t=10.k,_, +k,.
Then, t=/¢)k, _, +k, 2k, _,+k,>H,, . It is a
contradiction.
Therefore, there is not other points of
E,n{[0.H,,]®[0.r,,[} that
{(kpilar, )]0 =0,1,2,--,h , } .
Therefore, there is not other points of
E,N {[O, k.[®[0,r,_, [} that the points

{(kpilar )]0 =012, 0} .
Therefore,

E, n{[0.k,[®[0.r,_,[}={(K, 0.1, ,0)]¢ = 0,1,2,---,h ],
According to what precedes,

{(kn%m)lﬂ =0,1,2,-+,h

n—l}
={(Kk, (L1 )]0 = O,l,2,~--,hn_1}
y =

is located on the straight line
even.

Suppose that n is odd. One proves this result by the
same way as when n is even (cf [7]).

(r/Koy)x if nis

4. Models Equivalent with a Margin of &
4.1. Correct Models

In general terms, one can always suppose that Y, is the
realization of a sequence of random variables Y,

defined on a probability space (Q,AP): y, =Y, ()
where @ e Q and where Y, is a correct model of y, .

Copyright © 2011 SciRes.

As a matter of fact, there exist an infinity of correct
models of Y, . It is thus necessary to be placed in the set
of all the possible random variables.

Notations 4.1 One considers the sequences of random
variables Y/, n = 1,--- N, defined on the probabilities
spaces (Q,AR,), 6e®:

(Yf,Yf,-~-,Yﬁ):Q—>{0/m,1/m,-~-,(m—l)/m}N .One

assumesthat Y’ =Y, forall #c®.

For example, one can assume that
Q={O/m,l/m,--~,(m—1)/m}N and
(Y, Yy ) =(Id,---,1d).

It thus raises the question to define what is a correct
model. Indeed, if a model Y/ is not correct, it is
however possible that y, =Y, (@). Now, in the case
where the model Y, is IID, to define a correct model is
a generalization of the problem of the definition of an
IID sequence. Then, it is a very complex problem (cf
[1]).

However, generally, one feels well that correct models
exist. In fact, it is a traditional assumption in science. In
weather for example, the researchers seek a correct
model, which implies its existence (if not, why to try to
make forecasts?).

One could thus admit that like a conjecture or a
postulate without defining exactly what is a correct
model. Cependant, a more detailed study is in [7].

4.2. Models Equivalent

4.2.1. The Problem
Let Yne2 and Yng1 be two sequences of random vari-
ables such that, for all Borel set Bo,

P{(Ylgz,---,Y,fz)e Bo} - P{(Yﬁ’l A Bo}[1+0b(1)s],

where Ob(.) means the classical O(.) with the additional
condition |Ob(1)| <1. One supposes that Y is a
correct model of the sequence y,, n =1, 2,---,N. One
wants to prove that Y2 is also a correct model of 'y,
if & issmall enough.

4.2.2. Example
Let us suppose that we have a really IID sequence of
random variables X; with uniform distribution on
[0,1/2] and [1/2,1] and with a probability such as
P{X; e[1/2,1]}=0,500[1+£] ~where ~&=0,001
Then, this sequence has not the uniform distribution on
[0,1]. However, if we have a sample with size 10, we
will absoluetely not understand that X, has not the
uniform distribution on [0,1]. It is wellknown that one
need samples with size larger than N = 1000 minimum in
order to test this difference.

For example, one cannot test significantly H,: “ X/
has the uniform distribution” against H, (&) :
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“P{X/ eBo|=L(Bo)[1+0b(1)e]”if VN £<1/10.
Indeed, if IN &= 1/10 and b = 2, the probability of
N 0
anl |:1[1/2,1] ( Xn ) - I/ZJ
N/4

under H, (&) and about 0.0455 under H,: i.e. the
probability of rejecting the assumption IID, H,, under
H, (.9) is not much bigger than that of rejecting H, if
X7 is really IID (cf also section 4.3 of [8]).

Then it is no possible to differentiate the IID model
and models such that

P{(X{,-++,X{) e Bo} = L(Bo)[1+Ob(1)z].

>2 is about 0.0466

obtaining

4.2.3. Border of Correct Models

Now there is a problem : for example, use a realization
x. of the IID model, and let X' be a model checking
P{(X{",+, X} )€ Bo} = L(Bo)[1+0b(1)s' | where

&' is small enough but not very small. Let X:Z be a

model such that
P{(fo,..-,x§2)e Bo}

- p{()(lgl’...szl)e Bo}[1+0b(1)g]'

Then, X can be not a correct model: it is enough
that &' is in extreme cases of the possible values of the
& ’s such that

p{(xfz,...,xﬁ)e Bo}: L(Bo)[1+0b(1)&],

SUPg, (Ob(1)) =1, imply that X is a correct model.

Then, there are models more correct than others.
These are models Y such that, if P (Ylg,-",Y,f ),
Y? is also a correct model where & is small enough,
but not too small. For example, &=1/10, 1/100 or at
worst ¢ =1/N if need be (cf section 5-7 of [7]).

It seems clear that such models exist. For example it is
assumed that this is the case when X, is sample of an
IID sequence X, and that it is a good realization of
Xr.

On the other hand, we know that it should exist
estimates of models (these estimates are easier to
calculate in some cases as texts). Then, we can choose as
model Yn‘g‘ , the model provided by these estimates :
close models will also correct models.

All these points are detailed in [7].

4.3. Exact 11D Model

Then, generally, if Y is a correct model such that
T, (Yng cannot be differentiated with the IID model,
one will be able to choose another correct model Yf0
close to Y/ and such that T, Yng0 is exactly the IID
model. Indeed one proves easily the following

Copyright © 2011 SciRes.

proposition (cf proposition 5-1 of [8]).

Proposition 4.1 One assumes that m is large enough.
Let Y be a correct model of the sequence y, . One
assumes that there exists &, >0 such that if Y/ is a
model satisfying, for all Borel set Bo,

P{(X{.:++, X4 )  Bo} = P{ XJe, e X ) e Bo}[1+0b(1)sY],
then Y isa'correct model of y, .
One assumes also that, for all (k,---,ky ),

P{{Tq (Ylec): kl/zq}ﬂ“'ﬂ{Tq (YN9°)=kN/2q}}

= 2%[1 T ky (q):|

where sup, ., ‘gkl"'VkN (q)‘=gX (q) . One assumes
that &, (q) is increasing, that ¢, (1)<g, and that
there exists g eN" such that &, (qg) is small
enough.

Then, there exists g, e N and a correct model Y,
of the sequence {y,} , . such that, for all
(kl,...’kN)’

P{{qu (Ylac ):kl/Zq} PTIPN {qu (YNH" ) =k /2“}}: 2qtN

5. Approximation Theorem
5.1. Theorem

In this section, we assume that T is a Fibonacci
congruence and we use Fibonacci function T, in order
to build 11D sequences.

Theorem 3 We keep the notations 1.3 and 1.4 and
notations of section 2.3. Let y(m)=[2+p(m)]. We
assume »(m)NK,2/m~0 and m/K, . Then, for
all Borel set Bo,

P{(xl,---,XN)eBo}:L(Bo){H /2
where |Ob’(1) is increased by a number close to 1.

If K, isnot too large, there is no difficulty to choose
m and g in such a way that ¢<y(m)2'NK,/m is
small enough. Therefore,
P{(X,.-+, Xy ) € Bo} = L(Bo)[1+0b(1)].

5.2. Proof

Because, by Section 2.3, the points of T (ml) are well
distributed in {0,1,---,m—1} , it is easy to prove that the

sum of points of hy, ('F_l (ml )) will be close
card (ml m{O,l,~--,m—1})/m (e.g. cf Figure 7). Then,
we have the following lemma (cf also proposition 6-1 of

[7D.
Lemma 5.1 Let hN be the probability density function
of Y e{0/m,1/m,---,(m—1)/m}, with respectto , :
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0 01 02 03 04 05 06 07 08 09 1

Figure 7. Points of h;, (f_l(mlk)) when hy, (t)=sin(4nt)+1.

jlh u), (du)=1. Let hy=(l/c,)h, such that

j hy (u)du=1.

Let K’eR such that |hy (r)—hy (r")| < Kg|r'=r|
and |h’ h’ ’|<K’|r’—r when 1,1’ €[0,1]
One supposes 2q m=~0,and m/K';>1 .

Then, the following equallty holds:

P{{Y¢(n—l>

=Y } M-, {Y¢(n—N+1)

P{T(mY)/mel,}= L(IQ{H%},

where I, =[k/2%,(k+1)/2°[ , L(1,)=1/2°.

Then, one can prove theorem 3. Indeed, by applying
lemma 5.1 when Y has for distribution the distribution
of the conditional probability of Y¢(n) given
Yooy = Yi>Ygno2) = Y27+ » We have

P{T(mY)/me |k}

= P{X¢(n) & 1Moy

=L(Ik)[1+

Now, one proves easily that

Y17Y¢ =Y. }

(m)Ob'(1) KO}

m/2°

P{X¢(n) el, ‘x¢(n_l) =X X oy = x;,...}

-y . Z My

vs <Tq (%)

.P{XM cl, ‘Y¢(n_l) ~ Y Yy = yéz’...},

= Yoy }}

n ..y =
y51

oY
SN—1 | Z_:l '... Z_l ’ P{{Y¢(n

Then, Z e Z 77y'sl "”’yéN—l =1.

Y Tq () ey, <Tq! ()

We deduce that
P{X¢(n) el ‘xﬂn )
=L(Ik){l+

Then, one proves by basic methods (cf proposition 6.2
of [7]) that, forall I, ®---®1, ,

= XII’X¢(n72) = X;,”-}

7(m)Ob'(1)K, }

m/2¢

{ . el @...®|kN}
ﬁ( ( )[1+Ob £]).
_r(m) (m)|ob’(1)|K
where |g|_ - /2°' . Because

7(m)NK, 2°/m =~ 0, we deduce that
P{(X/ X ) el ®1, |

oM m/2°
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=Yoo, }}

-y y;I } ﬁ“.m{YﬂanH)

Now, we deduce that, for all Borel set

Boc {0/2%,.+-,(2° _1)/2q}N ’
P{(xl,...,xN)e Bo} =L(Bo) {HM}

m/2°
6. Choice of Random Noises

6.1. Use of Texts

Now, we suppose that we use sequences Y, and
y", €{0/m,1/m, ... (m=1)/m}, n = 1,2,--- N, obtained
from independent texts. In order to reduce K, we add
modulo m a text and a text written backward:

Y :[y; + YN +rand0(n)}/m where rand, (n) is

pseudo-random sequences which have good empirical
independence assumptions for p successive pseudo
random numbers when p=>3. In an obvious way, the
texts are realizations of sequences of random variables :
for example, one can take as model, the set of the
possible texts provided with the uniform probability

As a matter of fact, we add rand,(n) to have
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sequences Y, which have a good randomness (cf [9], or
chapter 3 of [6]).

In particular, a priori, “ P{Y, =y} is not too different
from 1/m” is a reasonable assumption. Moreover,
(YasYner> Yaiz) has a empirical distribution close to
independence and texts behaves as Q-dependent
sequences (cf [6]). Then, for all permutation ¢, a
three.—dimensionjcll model . Y¢(n_)aY¢(n+1)»Yq(n+2) with a
continuous density and a Lipschitz coefficient not too big
will be a good model. By the same way,

P{YW) = Yo = VYoo = y;,---} is not too

different of P{Y, =y} which is not too different from
I/m (cf [7]). In this case, one can prove that generally
K, issmall cf[7].

On the other hand, to increase K, a good way is to
use the Central Limit theorem. In fact one can combine
the two methods : cf [7].

6.2. Example

Now it may be necessary to do some transformations to
get the my; €{0,1,---,m—1} in the case where the
letters and symbols are provided by sequences a(j),
i=12,-,Ny, a(j)e{0,1,---,255}, j=1,2,---,N;.

One sets N, =| N, /1, |. We choose two consecutive
elements a and m of the Fibonacci sequence : m can be
chosen with respect to N,. Then, we choose I, such
that a<32"<m.

1) We set C(j)=m mod x =32

2) We set d(n):Z?:]c(r](n_1)+r)Kr—1 for
i=1,2,-,N,.

3) We set YA:Ld(n)m/KﬁJ/m for j=1,2,---,N,.

By using this technique, we have created real IIID
sequences X,. We have used a sequence C(j) with
N, = 20,000,000 . This sequence was obtained from
dictionary, encyclopedia, and Bible. We choose r, =20,
a<4*10°<m, q=70. Then N,=10°. Then, we
have estimated K, =0.01. In order to avoid any error
we have choose K, =10* in the building of X, .

We have tested the sequence X,. We have used the
classical Diehard tests (cf [1] [2]) and the higher order
correlation coefficients (cf [10]). Results are in
accordance with what we waited: the hypothesis
“randomness” is accepted by all these tests (cf [7]).

One can can download this sequence in [11]

7. Conclusion: Building of Random Sequence

By theorem 3 one can find models correct Y, such that
P{(xl",---, X0 ) c Bo} = L(Bo)[1+0b(1)gJ where ¢
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is small if K, is not too large. Now it is possible to
build such sequences concretely, for example by using
texts studied in section 6. In this case, coefficient K,
depend on the choice of m, ie. of r . But, K,
increases very little when I, increases. Even, in some
cases, it seems that it decreases. Then, at most 2“/ m
decreases much more quickly than K increases.

So by taking m large enough and by choosing well q,
we found & small enough in a way that there exists
correct models which checks the conditions of
proposition 4.1. Then, there exists m sufficiently large
and q sufficiently small and a correct model
Y2 e{o/m,i/m,-,(m-1)/m} such that T, (YfO) is
the IID model.

Then, this result show that one can build sequences
X, such that the model 1D is a correct model of x, .

That means that X, behaves like any IID sample: a
priori, X, can check not the properties which one
expects from a IID sample like certain tests, but that
occurs only with a probability equal to that of any IID
sample.

By this method, we therefore have a mean to value the
technique used by Marsaglia to create its CD-ROM. We
arrive in fact to prove mathematically that the sequence
obtained can be regarded a priori as random, what
Marsaglia did not.

Remark 7.1 One might wonder if the sequence built
adding text and pseudo-random sequences is not an [ID
sequence. It is a similar hypothesis which Marsaglia
does when he built its CD-Rom. This also corresponds to
results of [9]. But in fact, nothing is proved.

It is maybe possible to prove it but that seems
complicated. Finally, it is much easier to apply the
functions Tq: in this case, it requires only that K, is
not too big. It’s an hypothesis much simpler to be
verified and it does not require many efforts in some
cases. That is why we choose to build IID sequences
using this technique.
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