

Computation of Topological Indices of Dutch Windmill Graph

M. R. Rajesh Kanna¹, R. Pradeep Kumar², R. Jagadeesh³

¹Post Graduate Department of Mathematics, Maharani's Science College for Women, Mysore, India

²Department of Mathematics, The National Institute of Engineering, Mysore, India

³Research and Development Centre, Bharathiar University, Coimbatore, India

Email: mr.rajeshkanna@gmail.com, pradeepr.mysore@gmail.com, jagadeeshr1978@gmail.com

Received 11 January 2016; accepted 5 April 2016; published 8 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

😨 🛈 Open Access

Abstract

In this paper, we compute Atom-bond connectivity index, Fourth atom-bond connectivity index, Sum connectivity index, Randic connectivity index, Geometric-arithmetic connectivity index and Fifth geometric-arithmetic connectivity index of Dutch windmill graph.

Keywords

ABC Index, ABC4 Index, Sum Connectivity Index, Randic Connectivity Index, GA Index, GA5 Index

1. Introduction

The Dutch windmill graph is denoted by $D_n^{(m)}$ and it is the graph obtained by taking *m* copies of the cycle C_n with a vertex in common. The Dutch windmill graph is also called as friendship graph if n = 3. *i.e.*, friendship graph is the graph obtained by taking *m* copies of the cycle C_3 with a vertex in common. Dutch windmill graph $D_n^{(m)}$ contains (n-1)m+1 vertices and *mn* edges as shown in the Figures 1-3.

All graphs considered in this paper are finite, connected, loop less and without multiple edges. Let G = (V, E) be a graph with *n* vertices and *m* edges. The degree of a vertex $u \in V(G)$ is denoted by d_u and is the number of vertices that are adjacent to *u*. The edge connecting the vertices *u* and *v* is denoted by *uv*. Using these terminologies, certain topological indices are defined in the following manner.

Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariants.

The atom-bond connectivity index, ABC index was one of the degree-based molecular descripters, which was introduced by Estrada et al. [1] in late 1990's. Some upper bounds for the atom-bond connectivity index of

graphs can be found in [2], The atom-bond connectivity index of chemical bicyclic graphs and connected graphs can be seen in [3] [4]. For further results on *ABC* index of trees, see the papers [5]-[8] and the references cited there in.

Definition 1.1. Let G = (V, E) be a molecular graph and d_u is the degree of the vertex u, then ABC index of G is defined as, $ABC(G) = \sum_{uv \in E} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}$.

The fourth atom bond connectivity index, $ABC_4(G)$ index was introduced by M. Ghorbani *et al.* [9] in 2010. Further studies on $ABC_4(G)$ index can be found in [10] [11].

Definition 1.2. Let G be a graph, then its fourth ABC index is defined as, $ABC_4(G) = \sum_{uv \in E(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$,

where S_u is sum of the degrees of all neighbours of vertex u in G. In other words, $S_u = \sum_{uv \in E(G)} d_v$, Similarly for S_v .

The first and oldest degree based topological index was Randic index [12] denoted by $\chi(G)$ and was introduced by Milan Randic in 1975.

Definition 1.3. For the graph G Randic index is defined as, $\chi(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$.

Sum connectivity index belongs to a family of Randic like indices. It was introduced by Zhou and Trinajstic [13]. Further studies on Sum connectivity index can be found in [14] [15].

Definition 1.4. For a simple connected graph G, its sum connectivity index S(G) is defined as,

$$S(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u + d_v}}.$$

The Geometric-arithmetic index, GA(G) index of a graph G was introduced by D. Vukicevic *et al.* [16]. Further studies on GA index can be found in [17]-[19].

Definition 1.5. Let G be a graph and e = uv be an edge of G then, $GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u d_v}$.

The fifth Geometric-arithmetic index, $GA_5(G)$ was introduced by A.Graovac *et al.* [20] in 2011.

Definition 1.6. For a Graph G, the fifth Geometric-arithmetic index is defined as $GA_5(G) = \sum_{uv \in E(G)} \frac{2\sqrt{S_u}S_v}{S_u + S_v}$,

Where S_u is the sum of the degrees of all neighbors of the vertex u in G, similarly for S_v .

2. Main Results

Theorem 2.1. The Atom bond connectivity index of Dutch windmill graph is $ABC(D_n^{(m)}) = \frac{mn}{\sqrt{2}}$.

Proof. Consider the Dutch windmill graph $D_n^{(m)}$. We partition the edges of $D_n^{(m)}$ into edges of the type $E_{(d_u,d_v)}$ where uv is an edge. In $D_n^{(m)}$ we get edges of the type $E_{(2,2)}$ and $E_{(2n,2)}$. Edges of the type $E_{(2,2)}$ and $E_{(2n,2)}$ are colored in red and black respectively as shown in the figure [18]. The number of edges of these types are given in the **Table 1**.

We know that
$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}$$

i.e., $ABC(D_n^{(m)}) = |E_{(2,2)}| \sum_{uv \in E_{(2,2)}(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}} + |E_{(2m,2)}| \sum_{uv \in E_{(2m,2)}(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}$
 $ABC(D_n^{(m)}) = (n-2)m\sqrt{\frac{2+2-2}{2\cdot 2}} + 2m\sqrt{\frac{2m+2-2}{2m\cdot 2}}$

[From Table 1 and Figure 4]

$$=(n-2)m\frac{1}{\sqrt{2}}+2m\frac{1}{\sqrt{2}}=\frac{mn}{\sqrt{2}}.$$

Theorem 2.2. The Randic Index of Dutch windmill graph is $\chi(D_n^{(m)}) = \frac{(n-2)m + 2\sqrt{m}}{2}$

Proof. We know that
$$\chi(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$$

 Table 1. Edge partition based on degrees of end vertices of each edge.

Edges of the type $E_{(d_x,d_y)}$	Number of edges
 E _(2.2)	(n – 2)m
$E_{(2m,2)}$	2m

Theorem 2.3. The Geometric-arithmetic index (GA) of Dutch windmill graph is

$$GA\left(D_n^{(m)}\right) = \frac{m\left(mn - 2m + n - 2 + 4\sqrt{m}\right)}{m+1}.$$

Proof. We know that $GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{(d_u + d_v)}$

$$GA(D_n^{(m)}) = \left| E_{(2,2)} \right| \sum_{uv \in E_{(2,2)}(G)} \frac{2\sqrt{d_u d_v}}{(d_u + d_v)} + \left| E_{(2m,2)} \right| \sum_{uv \in E_{(2m,2)}(G)} \frac{2\sqrt{d_u d_v}}{(d_u + d_v)}$$

$$= (n-2)m\frac{2\sqrt{2\cdot 2}}{2+2} + 2m\frac{2\sqrt{2m\cdot 2}}{2m+2}$$
 [From Table 1 and Figure 4]
$$= \frac{m(mn-2m+n-2+4\sqrt{m})}{m+1}.$$

Theorem 2.4. The Sum connectivity index S(G) of Dutch windmill graph is $S(G) = \frac{(n-2)m}{2} + \frac{m\sqrt{2}}{\sqrt{m+1}}$. Proof. We know that $S(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u + d_v}}$ i.e., $S(D_n^{(m)}) = \left|E_{(2,2)}\right| \sum_{uv \in E_{(2,2)}(G)} \frac{1}{\sqrt{d_u + d_v}} + \left|E_{(2m,2)}\right| \sum_{uv \in E_{(2m,2)}(G)} \frac{1}{\sqrt{d_u + d_v}}$ $= (n-2)m \frac{1}{\sqrt{2+2}} + 2m \frac{1}{\sqrt{2m+2}}$ [From Table 1 and Figure 4] $= \frac{(n-2)m}{2} + \frac{m\sqrt{2}}{\sqrt{m+1}}$.

Theorem 2.5. The fourth atom bond connectivity index of Dutch windmill graph is

$$ABC_{4}\left(D_{m}^{(n)}\right) = \begin{cases} \frac{m}{\sqrt{m+1}} \left[(n-4)\sqrt{6(m+1)} + \sqrt{m+2} + \sqrt{3} \right] & \text{if } n \ge 4 \\ \frac{m}{\sqrt{m+1}} \left[\sqrt{\frac{2m+1}{2(m+1)}} + \sqrt{3} \right] & \text{if } n = 3 \end{cases}$$

Proof. Any Dutch windmill graph $D_n^{(m)}$ contains (n-1)m+1 vertices and mn edges. Let d_u denote the degree of the vertex u. We partition the edges of $D_n^{(m)}$ into edges of the type $E_{(S_u,S_v)}^*$ where uv is an edge and S_u is the sum of the degrees of all neighbours of vertex u in G. In other words, $S_u = \sum_{uv \in E(G)} d_v$, Similarly for S_v .

Case (1) If $n \ge 4$: In $D_n^{(m)}$ we get edges of the type $E_{(4,4)}^*$, $E_{(4,2m+2)}^*$ and $E_{(2m+2,4m)}^*$. Edges of the type $E_{(4,4)}^*$, $E_{(4,2m+2)}^*$ and $E_{(2m+2,4m)}^*$ are colored in red, green and black respectively as shown in the figure [1]. The number of edges of these types are given in the Table 2.

We know that
$$ABC_4(G) = \sum_{uv \in E(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$$

 $ABC_4(D_n^{(m)}) = |E_{(4,4)}^*| \sum_{uv \in E_{(4,4)}^*(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}} + |E_{(4,2m+2)}^*| \sum_{uv \in E_{(4,2m+2)}^*(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$
 $+ |E_{(2m+2,4m)}^*| \sum_{uv \in E_{(2m+2,4m)}^*(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$

i.e.,

$$= (n-4)m\sqrt{\frac{4+4-2}{4\cdot4}} + 2m\sqrt{\frac{4+2m+2-2}{4(2m+2)}} + 2m\sqrt{\frac{2m+2+4m-2}{4m(2m+2)}}$$
$$= \frac{(n-4)m\sqrt{6}}{4} + m\sqrt{\frac{m+2}{m+1}} + m\sqrt{\frac{3}{m+1}}$$

Figure 5. $D_n^{(m)}$.

Table 2. Edge	partition based	on degree sum	of neighbors of	f end verti	ices of each edge.
		0	0		0

Edges of the type	Number of edges
$E^{*}_{\scriptscriptstyle (4.4)}$	(n – 4)m
$E^{^{*}}_{^{(4,2m+2)}}$	2m
$E^{\ast}_{\scriptscriptstyle (2m+2,4m)}$	2m

$$=\frac{m}{\sqrt{m+1}}\Big[(n-4)\sqrt{6(m+1)}+\sqrt{m+2}+\sqrt{3}\Big].$$

Case (2) If n = 3: In $D_3^{(m)}$ we get edges of the type $E_{(2m+2,2m+2)}^*$ and $E_{(2m+2,4m)}^*$. The number of edges of these types are given in the **Table 3**.

We know that
$$ABC_4(G) = \sum_{uv \in E(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$$

i.e.,
 $ABC_4(D_n^{(m)}) = \left| E_{(2m+2,2m+2)}^* \right| \sum_{uv \in E_{(2m+2,2m+2)}^*(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$
 $+ \left| E_{(2m+2,4m)}^* \right| \sum_{uv \in E_{(2m+2,4m)}^*(G)} \sqrt{\frac{S_u + S_v - 2}{S_u S_v}}$
 $= m \sqrt{\frac{2m + 2 + 2m + 2 - 2}{(2m + 2)(2m + 2)}} + 2m \sqrt{\frac{2m + 2 + 4m - 2}{(2m + 2)4m}}$
 $= m \frac{\sqrt{2(2m+1)}}{2(m+1)} + m \sqrt{\frac{3}{m+1}} = \frac{m}{\sqrt{m+1}} \left[\sqrt{\frac{2m+1}{2(m+1)}} + \sqrt{3} \right].$

Theorem 2.6. The fifth Geometric-arithmetic index (GA_5) of Dutch windmill graph is

$$GA_{5}\left(D_{n}^{(m)}\right) = \begin{cases} \left(n-4\right)m + \frac{4m\sqrt{2(m+1)}}{3} + \frac{2m\sqrt{2m(m+1)}}{3m+1} & \text{if } n \ge 4\\ m\left[1 + \frac{4\sqrt{2m(m+1)}}{3m+1}\right] & \text{if } n = 3 \end{cases}$$

Proof. We know that $GA_5(G) = \sum_{uv \in E(G)} \frac{2\sqrt{S_u S_v}}{(S_u + S_v)}$

$$GA_{5}\left(D_{n}^{(m)}\right) = \left|E_{(4,4)}^{*}\right| \sum_{uv \in E_{(4,4)}^{*}(G)} \frac{2\sqrt{S_{u}S_{v}}}{(S_{u} + S_{v})} + \left|E_{(4,2m+2)}^{*}\right| \sum_{uv \in E_{(4,2m+2)}^{*}(G)} \frac{2\sqrt{S_{u}S_{v}}}{(S_{u} + S_{v})} + \left|E_{(2m+2,4m)}^{*}\right| \sum_{uv \in E_{(2m+2,4m)}^{*}(G)} \frac{2\sqrt{S_{u}S_{v}}}{(S_{u} + S_{v})}$$
[From Table

2 and Figure 5]

$$= (n-4)m\frac{2\sqrt{4\cdot 4}}{4+4} + 2m\frac{2\sqrt{4(2m+2)}}{4+2m+2} + 2m\frac{2\sqrt{(2m+2)4m}}{2m+2+4m}$$
$$= (n-4)m + \frac{4m\sqrt{2(m+1)}}{3} + \frac{2m\sqrt{2m(m+1)}}{3m+1}.$$

Case (2) If n = 3:

$$GA_{5}\left(D_{n}^{(m)}\right) = \left|E_{(2m+2,2m+2)}^{*}\right| \sum_{uv \in E_{(2m+2,2m+2)}^{*}(G)} \frac{2\sqrt{S_{u}S_{v}}}{\left(S_{u}+S_{v}\right)} + \left|E_{(2m+2,4m)}^{*}\right| \sum_{uv \in E_{(2m+2,4m)}^{*}(G)} \frac{2\sqrt{S_{u}S_{v}}}{\left(S_{u}+S_{v}\right)}$$

Table 3. Edge partition based on degree sum of neighbors of end vertices of each edge.

Edges of the type	Number of edges
$E^{*}_{(2m+2,2m+2)}$	m
$E^{*}_{_{(2m+2,4m)}}$	2m

[From Table 3]

$$= m \frac{2\sqrt{(2m+2)(2m+2)}}{2m+2+2m+2} + 2m \frac{2\sqrt{(2m+2)4m}}{2m+2+4m}$$
$$= m \left[1 + \frac{4\sqrt{2m(m+1)}}{3m+1} \right].$$

3. Conclusion

The problem of finding the general formula for ABC index, ABC_4 index, Randic connectivity index, Sum connectivity index, GA index and GA_5 index of Dutch Windmill Graph is solved here analytically without using computers.

Acknowledgements

The first author is also thankful to the University Grants Commission, Government of India for the financial support under the grant MRP(S)-0535/13-14/KAMY004/UGC-SWRO.

Conflict of Interests

The authors declare that there are no conflicts of interests regarding the publication of this paper.

References

- Estrada, E., Torres, L., Rodriguez, L. and Gutman, I. (1998) An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. *Indian Journal of Chemistry*, 37A, 849-855.
- [2] Chen, J., Liu, J. and Guo, X. (2012) Some Upper Bounds for the Atom-Bond Connectivity Index of Graphs. Applied Mathematics Letters, 25, 1077-1081. <u>http://dx.doi.org/10.1016/j.aml.2012.03.021</u>
- [3] Chen, J. and Guo, X. (2012) The Atom-Bond Connectivity Index of Chemical Bicyclic Graphs. *Applied Mathematics* A Journal of Chinese Universities, **27**, 243-252. <u>http://dx.doi.org/10.1007/s11766-012-2756-4</u>
- [4] Xing, R., Zhou, B. and Dong, F. (2011) On Atom-Bond Connectivity Index of Connected Graphs. Discrete Applied Mathematics, 159, 1617-1630. <u>http://dx.doi.org/10.1016/j.dam.2011.06.004</u>
- [5] Furtula, B., Gravoc, A. and Vukicevic, D. (2009) Atom-Bond Connectivity Index of Trees. Discrete Applied Mathematics, 157, 2828-2835. <u>http://dx.doi.org/10.1016/j.dam.2009.03.004</u>
- [6] Gutman, I., Furtula, B. and Ivanovic, M. (2012) Notes on Trees with Minimal Atom-Bond Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 67, 467-482.
- [7] Xing, R., Zhou, B. and Du, Z. (2010) Further Results on Atom-Bond Connectivity Index of Trees. Discrete Applied Mathematics, 157, 1536-1545. <u>http://dx.doi.org/10.1016/j.dam.2010.05.015</u>
- [8] Xing, R. and Zhou, B. (2012) Extremal Trees with Fixed Degree Sequence for Atom-Bond Connectivity Index. *FILOMAT*, 26, 683-688. <u>http://dx.doi.org/10.2298/FIL1204683X</u>
- [9] Ghorbani, M. and Hosseinzadeh, M.A. (2010) Computing *ABC*₄ Index of Nanostar Dendrimers. *Optoelectronics and Advanced Materials: Rapid Communications*, **4**, 1419-1422.
- [10] Farahani, M.R. (2013) Computing Fourth Atom-Bond Connectivity Index of V-Phenylenic Nanotubes and Nanotori. Acta Chimica Slovenica, 60, 429-432.
- [11] Farahani, M.R. (2013) On the Fourth Atom-Bond Connectivity Index of Armchair Polyhex Nanotube. *Proceedings of the Romanian Academy*—*Series B*, **15**, 3-6.
- [12] Randic, M. (1975) On Characterization of Molecular Branching. Journal of the American Chemical Society, 97, 6609-6615. <u>http://dx.doi.org/10.1021/ja00856a001</u>
- [13] Zhou, B. and Xing, R. (2011) On Atom-Bond Connectivity Index. Zeitschrift für Naturforschung, 66a, 61-66. <u>http://dx.doi.org/10.5560/ZNA.2011.66a0061</u>
- [14] Zhou, B. and Trinajstic, N. (2009) On a Novel Connectivity Index. Journal of Mathematical Chemistry, 46, 1252-1270. http://dx.doi.org/10.1007/s10910-008-9515-z
- [15] Zhou, B. and Trinajstic, N. (2010) On General Sum-Connectivity Index. Journal of Mathematical Chemistry, 47, 210-

218. http://dx.doi.org/10.1007/s10910-009-9542-4

- [16] Vukicevic, D. and Furtula, B. (2009) Topological Index Based on the Ratios of Geometrical and Arithmetical Means of End-Vertex Degrees of Edges. *Journal of Mathematical Chemistry*, 46, 1369-1376. <u>http://dx.doi.org/10.1007/s10910-009-9520-x</u>
- [17] Chen, S. and Liu, W. (2010) The Geometric-Arithemtic Index of Nanotubes. Journal of Computational and Theoretical Nanoscience, 7, 1993-1995. http://dx.doi.org/10.1166/jctn.2010.1573
- [18] Das, K.C. and Trinajstic, N. (2010) Comparision between First Geometric-Arithmetic Index and Atom-Bond Connectivity Index. *Chemical Physics Letters*, **497**, 149-151. <u>http://dx.doi.org/10.1016/j.cplett.2010.07.097</u>
- [19] Xiao, L., Chen, S., Guo, Z. and Chen, Q. (2010) The Geometric-Arithmetic Index of Benzenoidsystems and Phenylenes. *International Journal of Contemporary Mathematical Sciences*, 5, 2225-2230.
- [20] Graovac, A.. Ghorbani, M. and Hosseinzadeh, M.A. (2011) Computing Fifth Geometric-Arithmetic Index for Nanostar Dendrimers. *Journal of Mahematical Nanoscience*, **1**, 33-42.