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Abstract

In this paper entitled on commutative Delta-Semigroups, we have obtained important results on
commutative A-semigroups.
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Introduction

The concept of a commutative A-semigroup was introduced by a Tamura. T in his paper entitled “Commutative
semigroup whose lattice of congruences is a chain” appeared in Bulletin de la S. M. F., tome 97 (1969), p. 369 -
380 [1]. A semigroup S is called a A-semigroup if and only if the lattice of all congruences on S is a chain with
respect to inclusion relation, in fact if S is a A-semigroup, then all the ideals of S form a chain, hence all the
principal ideals of S from a chain. It is observed that a A-semigroup is either an s-indecomposable semigroup or
these tunion of two s-indecomposable semigroups. Further every homomorphic image of A-semigroup is a A-
semigroup. A semilattice is a A-semigroup if and only if it is of order <2, further a A-semigroup S is a s-inde-
composable semigroups [2]. In fact, if G is a group, then G is an abelian A-semigroup if and only if G is a
p-quasicyclic for some prime p which is also equivalent for saying that all sub semigroups of G are from a chain
[3]. Further an abelian group G° with zero is a A-semigroup if and only if G is a p-quasicyclic group, p is ar-
bitrary prime. It is also observed that an abelian group G° with 0 is a A-semigroup if G is a p-quasicylicgroup,
for an arbitrary prime p. Further in [4] Tamura stated that an ideal of semigroup S, every homomorphism of |
onto a non-trivial group G can be extended to a homomorphism of S onto G. we proved that result in theorem
0.8. In fact in this paper, we gave an example to show that the above result need not valid if the word “ideal” is
replaced by just “left ideal”. In fact, if a semigroup S contains a proper ideal | and if S is a A-semigroup, then
neither S nor | is homomorphic onto a non-trivial group.
First, we start with the following preliminaries:

“AMS subject classification number 20M10 together with 20M18.
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Definition 1 [1]: A semigroup S is called a A-semigroup if and only if the lattice of all congruences on S is a
chain with respect to inclusion relation. That is, if p and o are congruences on S, then exactly one of the follow-
ing three holds pco,p=0,0c p.

Definition 2 [5]: If | is an ideal of a semigroup S then p, = (I x I) U 1S is a congruence on S. it is called the
Rees-congruence modulo the ideal I.

Definition 3 [4]: A s-indecomposable semigroup is a semigroup which has no semilattice homomorphic im-
age except trivial one (one element semigroup).

Definition 4 [3]: Let p be a prime number. If a group G is the set union of a finite or infinite ascending chain
of cyclic groups ¢, of order p",thatis,

G=(JC

ns
1

>

I CS

CcC,c--cC, -,

then G is called a p-quasicyclic group, or quacyclic group if it is not necessary to specify p.

Definition 5 [5]: If a semigroup S satisfies the condition the divisibility ordering is a chain, we say then S sa-
tisfies the divisibility chain condition.

First, we start with the following Theorem.

Theorem 1: If S is a A-semigroup, then all the ideals of S form a chain, hence all the principal ideals of S
form a chain.

Proof: If S is a A-semigroup by the definition of A-semigroup; all Rees-congruences on S form a chain. Let p
and o be Rees-congruences modulo ideals | and J respectively. Now we show that pco ifandonly if 1 cJ.

Suppose pc o and let x,z el so that (x4)epco and thus (xz)eo and hence x,7eJ. Thus
I = J. Conversely assume that | < J, let (x,y)ep sothatboth »,# el cJ thenboth x,7eJ anthus

(x,y) e o and hence p c o. Therefore all the ideals of S form a chain. Since the set of all Rees-congruences

of a A-semigroup forma infinite chain which is in fact a complete chain. In this chain every ideal is a principal
ideal. Hence all the principal ideals of S form a chain.

Proof: Let A be a A-semigroup that congruences of A form a chain. Let B be a homomorphic image of A, then
also in B congruences form a chain. Let f:A— B be a homomorphism which is onto. Let p and o be

any two congruences on B, then (f X f)_l(p) = {(x,y) eAX A|(f (x), (y)) € p} clearly a congruence on
A containing the kernel of f. Where ker f = {(;zg/) eAXA[f(x)=f (y)} is congruence on A. it is observed
that ker f < (f X f)_l(p). Let (x,a/)ekerf = f(x)="f(y) and thus f(x),f(y)ep (..p is ref-
lexive) and hence (x,y)e(f X f)ﬁlp and therefore ker f < (f X f)’l(p). Now we observe that

(fX f)fl(p) is a congruence. We have (f X f)flp is reflexive. Let (x,y)e(f X f)flp so that
(f(x).f(y))ep andthus f(y),f(x)ep (..p issymmetric)and hence (7,)5)6(]‘ X f)"p and
therefore (f X )" (p) is symmentric. Let (x,y)e(f X f)fl(p) and (%x)e(f X f)*(p) sothat
(f(x).f(y))ep and f(y), f(x)ep andthus f(x),f(z)ep (..p istransitive)and hence

(x.z)e(f X f)'l(p) and therefore (f X f)'l(p) is transitive. Thus (f X f)'l(p) is an equivalence rela-
tion. Let (y,x)e(f X )" (p) and acA sothat (f(x),f(y))ep andthus

(f(a), f(x)).(f(a). f(y))ep and (f(x),f(a)).(f(y).f(a))ep and hence (f(ax),f(ay))ep and
(f(xa), f(ya))ep (..p iscongruence) and therefore (ax),(ay)e(f X f)"(p) and

(xa),(ya)e(f X f)_l(p). Thus (f X f)'l(p) is a congruence containing ker f Jand (f X f)'l(p) is a
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congruence containing ker f . Now the congruences on A form a chain, thus either

(f X f)’l(p)g(f X f)’l(cf) or (fX f)’l(cr)g(f X f)fl(p).Supposethat

(f X ) (p)c(f X ) (o). Nowweclaimthat pco Let (f(x),f(y))ep sothat

(x,g/)e(f X £)"(p) and thus (x,y)e(f X £)™" and therefore (f(x).f(y))eo. Thus pco. Con-
versely, let (x,y)e(f X £)"(p) sothat (f(x).f(y))ep thus (f(x),f(y))eo andhence

(x,y)e(f X f)fl(a). Thus (f X f)fl(p)g(f X f)fl(a). Hence (f X f)fl(p)g(f X f)fl(o-) if and
only if p < o . Thus every homomorphic image of a A-semigroup is a A-semigroup.

Theorem 3: A semilattice is a A-semigroup if and only if it is of order < 2.

Proof: Let L be a semilattice of order < 2. We define x,2el, x<# by x=4z for some zelL i.e.
(;r/% =yly=yyl= yzz =yl=x and yx =yl = /}/.ZZ =yl=x and thus xy = jy)f). Let a, b be distinct
elements of L and let 1, ={x|x<a}, I, ={x|x<b}, then I, and I, are ideals of L. Let p, and p,
denote the Rees-congruences modulo the ideals 1, and |, respectively, since I, #1,, p, # p,. Suppose L isa
A-semigroup then either p, c p, or p, < p,. Hence either I, <1, or I, c|,. For the first case, ael,
namely <b (.. 1, <l,). There L is a chain. Suppose L is a chain containing at least three elements a,b,c say

a<b<c. Let I"={x\x>b} where 1~ is an ideal of L. We defined congruences p* and p~ on L as fol-
lows:

(%,gz)ep+ ifand only either »,zel” or x=7,
(x,y)ep’ if and only either x,z el or x=7.

Clearly p~ isthe Rees-congruence modulo 1-. Now we show that p* is a Rees-congruences. Clearly p*
is reflexive. Let (;c,g/)ep+ so that eighter x=# or x,#el” and hence (gz,x)ep+. Thus p* is sym-
metric. Let (;m/) ep’ and (7,%)6 p' sothateither x=4 or x,zel” andeither =2 or
7,2el” and thus »=z or »zel® and hence (x,zg/e p* then (xz,42)ep’ and (zx,29)ep’,
Vze<lL. let (x,g/)ep* so that either »=4 or x,#el”. Suppose zeb then xAz>b and zAz2b
and suppose z>b then x>b>z and #>b>z and thus xAz=12,4Az=2 Hence (X/\Z,gy/\z)e/f
and (ZAx,z/\?)ep*. Thus (,rZ,gyZ)eer and (Z;lf,Z/;z)E/f. Hence p" is a congruence modulo 1*.
Now (a,b)ep  but (ab)ep". Suppose (a,b)ep”, then either a,bel” or a=b since abel”, so,
a<b, b<b.Suppose abel’ then a<b, <b.Thenis contradiction (.a<b<c inL).thus (a,b)e p”
but (a,b)e p". Also (c,b)e p” butnotin (a,b)e p . Suppose (a,b)e p*,theneither c,bel” or
c=b since bel*,so c>b, b>b.Suppose c,bel ", then c>b, b>b. thisis contradiction
(-.a<b<c inL).thus (c,b)ep” but (cb)ep .

Therefore p" G p~ and p & p*. This is contradiction to our assumption. Thus L is a chain of order < 2.
Conversely suppose that L is a semilattice with two elements. Then L x L and 1_ are congruences on L and
clearly 1, < L x L. Thus all congruences on two elements semilattice are comparable. Thus L is a A-semigroup.

Theorem 4: A A-semigroup is either an S-indecomposable semigroup or the set union of two S-indecomposable
semigroups.

Proof: We define a relation A" on Sas aAb if and only if N(a)=N(b) thatis aNb if and only if
acF ifandonlyif beF for any filter containing a. Now we show that N is an equivalence relation. Let
aNa sothat N(a)=N(a) thus N isreflexive. Let aNb sothat N(a)=N(b) andthus aeF ifand
only if beF and therefore N(b)=N(a) and hence bAa.Thus N is symmetric. Let aNb and bAC
so that N(a)=N(b) and N(b)=N(c) and thus aeF if and only if be F and beF if and only if
ceF andhence aeF ifandonlyif ceF andtherefore N(a)=N(c).Thus aNc.Sothat N istran-
sitive. Thus N is an equivalence relation. Now we have to show that A is a congruence on S that is
abe N so that (ac,bc)e N and (cb,ca)e N . Suppose (a,b)e N so that N(a)=N(b) and thus
N(ac)=N(bc) and hence aceF if and only if b,ceF (since N(a)=N(b) ) if and only if bceF
and therefore N (ac)=N(bc). thus (ab,ba)e N and similarly (ca,cb)e A'. Thus N is a congruence
on S. Now (a’,a)jeN so that N gaz =N(a) and thus a*eF if and only if aeF and also
(ab,ba)e N since abeF if and only if a,beF if only if bjacF. Thus N(ab)=N(ba) so that
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(ab,ba)e NV. Thus N is a semilattice congruence on S. Now we have to show that N is the least semilat-
tice congruence on S. If p is any semilattice congruence on S. Now we claim that N < p. Suppose a,be N
sothat N(a)=N(b) we have (ab,ba)ep and (az,a)e p . Now we have to show that (a,b)e p so that
ap=bp. Let K be a filter in S|p such that ape K we have T1:S —s|p by II(x)=xp is the natural
homomorphic ae{xeS|xpeK} is a filter of s so that bp e K. Thus we have for any filter K of S|p we
have apeK if and only if bpe K so that ap=bp and thus (a,b)ep. Thus N cp. Thus N isa
least semilattice congruence on S. we have f :Na —Y isonto homomorphism. Here Na|ker f ~Y.

We have to show that ker f = Na X Na.

Let be the family of completely prime ideals of S such that (a,b)e o so for any either a,bel or abel
where abel wherever either ael or bel.Here Na= {x eS|N(x)=N (a)} . Suppose
(x,y)eNa X Na then N(x)=N(y)=N(a).Now Iisacompletely prime ideal suchthat xel and ye I
that is yeS\I is a filter and x¢S\|. We have to show that S\I is a filter. Let a,beS\I so that
aegl and begl and thus abgl and hence abeS\I if abeS\I then beS\I otherwise either
ael or bel we have ael so that abel or bel so that abel . This is contradiction, so that
abgl.Thus abeS\I.Hence S\I isafilter. Thus each Na is as-indecomposable semigroup.

Now let 7 be a family of completely prime ideals of S. Define (a,b)e o by forany 1z we have either
abel or abgl. Let (aa)eoc sothateithera, acl or agl so o is a reflexive. Let (a,b)ec so
that either a,bel or abel sothat (b,a)eo and hence o isasymmetric. Let (a,b)ec and (b,a)eo
so thateither a,bel or a,bel andeither b,cel or b,cel.

Case (i): Let a,bel and b,cel,so acel.

Case (ii): Let a,bel and b,cel,s0 a,cel andthus ael or cel andhence cel.

Case (iii): Let a,bel and b,cel so that acel and thus ael or cel and hence a a<!l thus
(ac)eo.

Thus o is an equivalence relation on S.

Now we have (a,c)ec we have to show that (ac,bc)eo that is ac,bcel or acbce!. For any
Il ez since (a,b)eo,so (a,b)el or abel.Nowwetake acel and bcel . Sothateither ael or
cel andthus cel andhence bcel (since bel). Thus (ac,bc)eo and similarly (ca,ch)eo . Thus
o is a congruence on S. Also clearly (az,a) eo (since ael,so a’el). Now we claim that (ab,ba)eo
that is both either ab,bae 1 or ab,bagl. Now take abel and bag!l so that either acl or bel
andthus bel andhence bacl.Thus (ab,ba)eo . Thus o is asemilattice congruence on S.

Conversely given any semilattice congruence p we have to show that p=oc we have T1:S —s|p where
s|p is a semilattice so that ap <bp ifandonlyif ap-bp=bp. LetJ be an ideal of s|p so that
agll™(J)={xeS|xpeJ} is completely prime ideal. Let a¢I1*(J) soand bgII™*(J) sothat apeJ
and bpgJ.Now (ab)p=(ap)(bp)=apvbpel

So abeIl™(J).

Let 7 be the set of all completely prime ideals of the form H’l(J) where J is an ideal of S|p. Let o be the
induced semilattice congruence on S. Now (a,b)e o if and only if for any completely prime ideals ¢ m (J)
where J is an ideal of S|p so that a,beIl*(J) or a,bgIl™*(J) andthus ap,bpeld or ap,bpeJ and
hence (a,b)ep. Thus < p. Now we claim co. Let (a,b)ep sothat ap=bp. Suppose ap=bp so
that ap £bp and thus ap ¢ (bp]. Then there is an ideal J of S|p such that bpeJ and ap¢J. Then
bell™(J) and agII™(J). This is contradiction since ap=bp. Thus apeJd and bpeld . Then
a,bell*(J).Hence (ab)eo.Thus pco.Hence p=o.

Since S is a A-semigroup and every homomorphic image of a A-semigroup is a A-semigroup, So S/ N isa
A-semigroup, which is also a semilattice A-semigroup if and only if is of order less than 2, so |S //\/| <2.thus
|S/N|=1 or |[S/N|<2. If [S/N|=1 we are through. If |S/N|=2 then we have S=S,US, where
S5, €Sy, and S5, S,, and S,NS, =,S,,S, .

Theorem 5: If G is a group then the following statements are equivalent:

(1) G is an abelian group which is a A-semigroup;

(2) G is a group in which all subgroups from a chain;

(3) For any two elements a and b of a group G, either a=b" or b=a" for some positive integer n;

(4) G is a p-quasicyclic group for some prime p;

(5) G is a group in which all subsemigroups from a chain.

Proof: (1) = (2) Let G be an abelian group such that G is a A-semigroup. Since G be an abelian, so G is a
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group such that G is a A-semigroup. Let H be any subgroup of G then we have the congruence on H is defined
by a=b(modH) ifand only if b~ e H . This relation is an equivalence relation. Clearly reflexive, since a is
always congruent to a.

It is also symmetric. Since a is congruent to b, so b is also congruent to a. Let a=b(modH) and
b=c(modH) then b*aeH and c*eH . Now we show that a=c(modH) if and only if c*eH .
Now c*bb*a=c*aeH .Nowwesothat ac=bc(modH) so that
(bc)fl (ac)=c?bac=b"c'ca=b" eH . Thus ac=bc(modH) similarly ac=bc(modH ). Thus the rela-
tion is congruence. Let H, c H, c---c H, then H,UH,U---UH, ={H,}. Hence the set of all subgroups
of a group G from a chain.

(2= (3) Let G be a group satisfying the condition that subgroups from a chain. Then G is periodic and all
cyclic subgroups from a chain. i.e. (a)c(b) or (b)c(a). If (a)c(b) then a=b" for some positive in-
teger n, or if (b)<(a).Then b=a" for some positive integer n.

(3)= (4) By the periodicity of G it follows that all cyclic subgroups of G form a chain with respect to inclu-
sion. According the order of every element, hence of every cyclic subgroup is a power of a same prime number
p. let C(x) denote the cyclic subgroup generated by x. Let F, be the set of all elements of order p" in G.
We have a finite or infinite sequence {F,} and

c=UJF, 1)

m

Let x,ye{Fn} by (3), we have either x=)Y" or Y =x" forsome m>0. Assumethat x=Y", so
C(x)=C(#) since |C(x)|:‘C(3/)‘: p",sowehave C(x)=C(#) similarly »=x",we have

C(x)=C(). Conversely, suppose C(x)=C(7) we have |C(x)|=‘C(y)‘=p”.since xeC(x) sothat
x=p" forsomepand x=q" forsomeqandthus p"=q™ (since |C(x)|:‘C(y)‘). Thus xeF, and

similarly # e F, sothat x,#eF,. Thus C(x)=C(4/) if and only if X,z are in a same F, . Choose one
element a, in F, . then we have a finite or infinite sequence C(a)c=C(a,)c--<=C(a,)c — (2)
where |C(a,)=p" and F, =C(a,) by (1).

ngc(an)

If the sequence (2) is finite G =C(a,) for some n. that is G cyclic subgroup of order p". Thus we have G
is a p-quasicyclic group of some prime p.

(4) = (5) Let G be a p-quasicyclic group, that is G is U::1C(an) where C(an) is cyclic group of order p.
Let H be a subsemigroup of G and let H) =F NH where F, is the set of all elements of order p, in G,
also F, =C(a,). Here

H

-

H

’
n

1]
AN

n

Let xeH, by the definitionof F,, C(a,)=C(x)cH. Iftheset {ni IH, ¢¢} is infinite, then H =G.
If the set is finite, and if n its maximum, H =C(a,,). Consequently G has no proper subsemigroup, hence
no proper subgroup except C(a,),n=12,--- in (2). Thus C(a,)=C(a,)c ---cC(anm ) Thus we have all
subsemigroups of G form a chain.

(4) = (1) Since cyclic groups are abelian, so G is abelian which is a A-semigroup.

(5) = (1) It follows that G is periodic, therefore every subsemigroup is a subgroup. Hence all subgroups form
a chain.

Theorem 6: A group G® with zero is a A-semigroup if and only if the group G is a A-semigroup.

Proof: Let G be a group and G° be the group G with zero element adjoined. Let p be any congruence on G. A
congruence p° on G is associated with as follows:

(a,b)e p°® ifandonly ifeither a=b=0 or (a,b)ep, abeG.Clearlyp’is reflexive, since (a,a)ep
and p is reflexive. Let (a,b)e p° so that either a=b=0 or (a,b)ep and thus a=b=0 or (ba)ep
(<. p is symmetric). Thus (b,a)e p° and hence p is symmetric. Let (a,b)e p° and (b,c)e p’ so that ei-
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ther a=b=0 or (a,b)ep and either b=c=0 or (b,c)ep andthus a=c=0 or (ac)ep (..p is
transtive). Thus (a,c)e p° and hence p° is transtive. Hence p° is an equivalence relation. Let (a b)e p° and
ceG so that elther a=b=0 or (ab)e A an also ac=bc=0 or (acbc)ep (..p is congruence)
Thus (ac,bc)e p°® and similarly (ca,cb)e p°. Thus p’isa congruence on GO Clearly the mapping p° — p
is a one to one. Now we have to show that pc o if and only if p° < o®. Assume that pc o and let
(a,b)e p° sothateither a=b=0 or (ab)ep, abeG and thus either a=b=0 or (ab)eo
(.pco) and hence (a,b)ec®. Thus p° co®. Conversely suppose that p° co® let (a,b)e p’ < p°
and thus (a,b)ec® (.. p° co’) and hence (a,c)ec (..o”co®)sothat pco. Hence pco if and
only if p°co’. Let @, and @, denote the universal relation on G and G respectively. Now we will
prove that every congruence on G"Gis either @, or p° acongruence associated with p on G. let ¢ be a con-
gruence on G so that (a,0)eo for some aeG and multiflying the both sides by a X, xe G0 we have
(x,0)e o, for all xeG°. Therefore o =w 0 - Thus every congruence on G° is either W, Or p° for some
congruence p on G, and also clearly o, c @ .o - Hence a group G° with zero is a A-semigroup if and only if the
group G is a A-semigroup.

Theorem 7: An abelian group G° with zero is a A-semigroup if and only if G is a p-quasicycli group, p is ar-
bitrary prime.

Proof: From theorem 6 we have G is a p-quasicycli group for some prime p if and only if G is an abelian
group which is a A-semigroup. From theorem 6 we have a group G® with zero is a A-semigroup if and only if the
group G is a A-semigroup. Since G is an abelian group which is a A-semigroup. So G° is an abelian group with
zero is a A-semigroup.

Theorem 8: Let | be an ideal of a semigroup S. If f is a homomorphism of | onto a non-trivial group G, then
there is a homomorphism g of S onto G such that f is the restriction of g to I.

Proof: Let f:lI —>G is an onto homomorphism g:S—G defined by g(x)=f(x), if xel,
g(x)="f(xa)f(a ) If xel (choose ae<l)Now we show that g is a homomorphism.

Case(i): Ifboth xel, yel. g(xy)=f(xy)="f(x)f(y)=9(x)g(y). Thusg isahomomorphism.

Case(ii): If xel, yel.

We have g(xy)=Tf(xy) and g(x)g(y)="f(xa)f(a)" f(y). Now f(xy)="f(xa)f(a)” f(y)
since f(a)f(xy)="f(a)f(xa)f(a)’ f(y) and since f(a)f(xy)="f(a(xy))="f(ax)f(a)f(a ) ()
f ((a) 9

and f(a)f(xa)f(a)" f(y)="f(ax)f(y) and f(a(xy))=f((ax)y). Thus g(xy)=g(y) and hence g
is homomorphism.
Case(iii):If x,yel, xyel.

We have g(xy)=f(xy) and g(x)g(y)=f(xa )f(a)’lf(ya)f(a)’l. Now we have to show that
f(xy)= f(xa)f(a)’lf(ya)f( a)". Put f(a ) f(b) .. f is onto) so that f(a)f(a)flzf(a)f(b)
andthus f(ab)=e. Thentoshowthat f(xy)= f((xab)(yab)).Now we claim that
f((xab)(yab))f(xy)_lze. Put f(xy)fl:f(z) (.. f is onto) so that f(xy)f(xy)fl:f(xy)f(z) and
hence f(xyz)=e. Thenwe provethat f((xab)(yab))f(z)=e. Now f((xab)(yab))f(z)
= f((xab)(yab)(z)):f(xa)f(by)f(ab)f(z): f(xa)f(by)f(z)=f(xabyz)= f(xab)f(yz). and now
we show that f (xab)= f (x). ie. f(x)flf(xab):e put f(x ) = f(t) sothat
f(x)f(x)"=f(x0)f(t) and thus f(xt)=e then f(t)f(xab)=f(txab)=f(tx)f(ab)=e-e=e and
hence f(x)" f(xab)=

f (xab) f (yz)=f(x)

)

f ((xab)(yab)) f (xy "=e and therefore put f (xab) f (yab)=f(xy). Thus g(xy)=g(x)g(y). Henceg
is a homomorphism.

ax

e and therefore f(xab)= f(x). Now we have
f(yz)=f(xyz)=e. andthus f((xab)(yab))f(z)=e and hence
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Case(iv):If x,ygl, xyel.

We have g(xy)=f(xya)f(a) by definition and g(x)g(y)= f(xa)f(a)flf(ya)f(a)fl. Now we
show that f(xya) f (a) f(xa) f (a)f1 (ya)f(a)fl. we have f(xya)= f(xa)f(a)flf(ya) and hence
f(a)f(xya)=f(a)f(xa)f (a) f(ya) and therfore f(axya)zf(ax)f(a)f(a)_lf(ya) thus

f (axya) = f (ax) f (ya). Now we show that f((ax)(ya))= f (ax)f(ya).

f
We have f(( )(ya))=g(ax) f(ya)=g(ax)g(ya)= f(ax) f(ya) and thus
f((ax)(ya)) = f (ax) f ya) and hence g(xy)=g(x)g(y). Thus g is a homomorphism. Since f:1 -G
is onto, so that f(x)=y,yeG. Now g:S—>G by g(x)=f(x), If xel then g(x)=y, for some
yeG.Thusgisonto. Thus g:S — G isan onto-homomorphism.

-1

b
Example 1: Let S :{(i dj/a>0,b,c,d >0,a,b,c,d eR}.

Let (ai blj(ai szeS.
Cl dl CZ dZ

Now [aq blj[ai szz[aiaﬁblcz a1b2+bldzjes
C.I. dl d2 C.I.aZ + dlCZ CIbZ + dle

Where a,a, +bc, >aa, >0 because bc,>0 andsince a and a, are positive and also matrix multip-
lication is associative. Thus S is a semigroup.

Now write I:{a Oj/a>0,b20}.
b 0

We verify | is left ideals of S.

Let (& B)(3 O)_(&@+BD 0 e lisa leftideal.
c, dJ){ib O ca+db 0

11 a 0)\1 1 a a
Now eS and = el.
s 5o oo )

Thus I is not a right ideal.
Now we have (R*) is a group

0
Define f:1 > R" by f =a.
b 0
Now let f a 0yc 0 = ac 0 =ac.
b o)ld 0 bc 0
Andlet £ (& O)1¢[[C O))-ac.
b 0 d 0

Thus f is a homomorphism which is also onto.

Now we claim that f can’t be extended to homomorphism g¢:S — R* such that %: f.

1 1)1 1 1 1) . .
We have = is an idempotent.
0 0)lO O 00

11
Since g is a homomorphism, so g ([0 D =1

0
Let eS.
c d

C2)
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. a b)1 1 a a
Consider = .
(c d][o Oj [c cj

An let ab 1 1Y) a a
9lc a))%o o)) %c ¢
a b a a
And hence g =g — (1).
c d c c
Put b=0,d=0 in(1)
a o0 a a
Then = .
ol (2 o))-<[C )
0
And hence f[[a D:g((a aj].
c 0 c cC
0 0 0
Since 2 el,wehave g 2 = f 2 =a.
c 0 c 0 c 0
And therefore g[[a aD=a.
cC ¢
From (1) a by g2 @ =a
e a7 W e o))
This is contradiction.
. 1 2)1 3 5 11
Consider = .
2 3)\2 4 10 18
5 11
So, ¢ .
10 18
1 2 1 3
And =1x1=1.
oz 3 3J)--

Here 1+5. Thus g is not homomorphism.

Theorem 9: If a semigroup S contains a proper ideal | and I and if S is a A-semigroup, then neither S nor | is
homomorphic onto a nono-trivial group.

Proof: Suppose there is a homomorphism f of S onto G, so that f(s)=G, |G| >1. Since G, contains no
ideal except G, so f(1)=G. Hence |I|>1. Let p be the congruence on S induced by f. For each aeS 1,
there is an element b in | such that (a,b € p . Let o be the Rees-congruence on S modulo I. Then (a,b ep
but (a,b)eo then both (ab)el. Now since |G|>19(x,//u)ea but (x,y)ep, for some (x,g/ el.
Since (X,/;;)ea so that both X,y)e | . Butif (X,/y)ep then x¢1.Thus pZo and pdo.Whichis
contradiction to assumption, since S is a A-semigroup. Therefore a S is not homomorphic onto a group G,
|G| >1. Suppose that I is homorphic onto G, |G|>1. Then by the above theorem there is a homomorphic of
Sonto G. This leads to the same contradiction above. Therefore | is not homomorphic onto G.

References

[1] Tamura, T. (1969) Communicative Semigroups Whose Lattices of Congruences Is a Chain. Bulletin de la Société
Mathématique de France, 97, 369-380.

[2] Tamura, T. (1964) Another Proof of a Theorem Concerning the Greatest Semilattice Decomposition of a Semigroup.
Proceedings of the Japan Academy, 40, 777-780. http://dx.doi.org/10.3792/pja/1195522562

[3] Tamura, T. (1956) The Theory of Construction of Finite Semigroups. Osaka Journal of Mathematics, 8, 243-261.

[4] Tamura, T. (1967) Decomposability of Extension and Its Application to Finite Semigroups. Proceedings of the Japan
Academy, 43, 93-97. http://dx.doi.org/10.3792/pja/1195521688

[5] Howie, J.M. (1969) Fundamentals of Semigroup Theory. Oxford University Press Inc., New York.



http://dx.doi.org/10.3792/pja/1195522562
http://dx.doi.org/10.3792/pja/1195521688

	On Commutative Δ-Semigroups*
	Abstract
	Keywords
	Introduction
	References

