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Abstract 
In the present paper, geometry of the Boolean space Bn in terms of Hausdorff distances between 
subsets and subset sums is investigated. The main results are the algebraic and analytical expres-
sions for representing of classical figures in Bn and the functions of distances between them. In 
particular, equations in sets are considered and their interpretations in combinatory terms are 
given. 
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1. Distance between Subsets Bn 
Let { }0,1B = , { }0,1 nnB =  and nB  be the set of all words of finite length in the alphabet B. For , 2

nBX Y ∈  
we take: 

( ) ( ), min , .
u X
v Y

X Y u vρ ρ
∈
∈

=  

It is clear that ( ),X Yρ  is the Hausdorff distance between the subsets ,X Y  and ( )0 ,u v nρ≤ ≤ , and
( ),u v u vρ = +  is the Hamming distance between the points: ( ) ( )1 2 1 2, n

n nu u u u v v v v B= = ∈  , where 
( ) ( ) ( )( )1 1 2 2 ,n nu v u v u v u v= ⊕ ⊕ ⊕+   and ⊕  is the addition operation with respect to mod 2. 

The Hausdorff distance has essential role in many problems of discrete analysis [1] and thus has certain inter-
est. On the other hand, there only are a few essential results concerning distances between the subsets nB , and 
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their investigation offers significant difficulties. 
First, we present the following simple properties of the Hausdorff distance:  
1) ( ) ( ), ,X Y Y Xρ ρ= ; 
2) ( ), 0X Y X Yρ = ≠ ∅  ; 
3) Если ,X X Y Y′ ′⊆ ⊆ , то ( ) ( ), ,X Y X Yρ ρ ′ ′= ; 
4) ( ) ( ), ,X Y X a Y aρ ρ= + + , for na B∈ . 
Let us note that, generally speaking, the Hausdorff distance does not satisfy the triangle inequality: 

( ) ( ) ( ), , , ,X Y X Z Z Yρ ρ ρ≤ +                               (1) 

which is demonstrated in the following picture: 
 

 
 

But inequality (1) holds true if 1Z = . 

Distance between Spheres in Bn 
Let ( )n

pS x  be a sphere of radius p with the center at nx B∈ . We take, for an arbitrary subset, nM B⊆ : 

( ) ( ).n n
p p

x M
S M S x

∈

=


 

Thus, we have the following two equvalent interpretations for ( )n
pS M : 

1) ( )n
pS M  is the set of all points in nB  which are at the distance p≤  from the set М; 

2) ( )n
pS M  is the set of all points in nB , covered by the spheres of the radius p with the centers at points of 

the set M. 
Examples.  
1) ( ( )) ( )1 1 2

n n nS S a S a= , for an arbitrary point: na B∈ ; 
2) ( )n n n

pS B B= , for an arbitrary p O≥ ; 
3) If ( )n n

pS M B=  and ( )1 ,n n
pS M B− ≠  then p is the radius of the covering of the set nB  [2]. 

Theorem 1. ( ) ( )( ) ( ){ }1 2 1 2, max 0, ,n n
p qS M S M M M p qρ ρ= − − . 

Proof. We consider two cases. 
a) .p q n+ >  Then, 

( ) ( )1 2
n n
p qS M S M ≠ ∅  

and, consequently, 
( ) ( )( )1 2, 0.n n

p qS M S Mρ =  

b) .p q n+ ≤  Let ( ) ( )1 2, .n n
p qx S M y S M∈ ∈  We present them in the form: 

1 2 ,x x x= +  where 1 1 2, ;x M x p∈ ≤  

1 2 ,y y y= +  where 1 2 2, .y M y q∈ ≤  

From here we have: 

( ) ( )1 2 1 2 1 2 1 2, , .x y x x y y x x y yρ ρ= + + = + + +  
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As 1 2 1 2 1 1 2 2 ,x x y y x y x y+ + + ≥ + − +  consequently we have: 

( )
1 1 1 2 1 1 1 2

1 1 1 2 2 2

1 2 1 2 1 1 2 2, ,

1 1 2 2, ,

min min

min max .
x M y M x M y M

x M y M x p y q

x x y y x y x y

x y x y
∈ ∈ ∈ ∈

∈ ∈ ≤ ≤

+ −+ + ≥ + +

= + − +
 

Then, taking into account that: 

2 2
2 2,

max ,
x p y q

x y p q p q n
≤ ≤

+ = + + ≤ , 

we have: 

( ) ( )( ) ( )1 2 1 2, , .n n
p qS M S M M M p qρ ρ= − −  

The theorem is proved. 
Let: 

( ) ( )
1
2

1 2, max , .
X r
Y r

R r r X Yρ
=
=

=  

Taking into account that the sphere of the radius p with the center at ( )00 0  and the sphere of the radius q 
with the center at ( )11 1  contain, respectively, as many points as: 

0 andp n
t t q

n n
t t= =

   
   
   

∑ ∑ , 

we get the following corollary. 
Corrollary. If q p> , then: 

0
, .

p n

t t q

n n
R q p

t t= =

    
≥ −    

    
∑ ∑  

The value of the function ( )1 2,R r r  for definite values of 1 2,r r  was calculated in [1]. 
Theorem 2. If q p> , then: 

0
, .

p n

t t q

n n
R q p

t t= =

    
= −    

    
∑ ∑  

The general form of the standard generating function for the distance between the subsets , nX Y B⊆  has the 
following form: 

( ) ( ),
, .X Y

p q
X p
Y q

F z zρ

=
=

= ∑                                    (2) 

The summation in (2) is over all pairs of the subsets ( ),X Y  with , .X p Y q= =  
Let us consider a few examples. 
1) 1p q= = . 
In this case, we have: 

( ) ( ) ( ) ( ), ,
1,1

0,

2 1 .
n

n
nx y x y k n

x y x kx y B

n
F z z z z z

k
ρ ρ

=∈

 
= = = = + 

 
∑ ∑∑ ∑∑  

Thus, ( ) ( )1,1 2 1 nnF z z= + , which is the well-known function of distribution of distances between the points 
in the space nB  with the metrics of Hamming. 

2) 1p = , and q is an arbitrary positive integer which does not exeed 2n . 
In this case: 

( ) ( ) ( ), ,
1, .n

x Y x Y
x Bq x Y qY q

F z z zρ ρ
∈ =
=

= =∑ ∑ ∑                           (3) 

As: 
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( ) ( ), , ,x Y x a Y aρ ρ= + +  

for arbitrary points , na x B∈  and any subset nY B⊆ , then we get from (3): 

( ) ( )0,
1, 2 .Yn

q
Y q

F z zρ

=

= ∑  

Then: 

( ) ( ){ }0, min 0, , .n

x
Y x x x Bρ ρ= = ∈                            (4) 

Consequently, the distance between the zero point and an arbitrary subset Y equals the minimal weight of the 
points which are in Y. 

Hence, ( )0,Y kρ ≥ , if there are not points with 1x k≤ −  in Y. The numbers of subsets Y with Y q=  
and the condition ( )0,Y kρ ≥  are found by the following formula: 

( ) 12n n
q k

q
k Sλ −

 
= − 
 

,                                   (5) 

where 
0

r
n
r

i

n
S

i=

 
=  

 
∑  

where 
0

r
n
r

i

n
S

i=

 
=  

 
∑  is the cardinality of the sphere with the radius r in .nB  

From (5), we get the following statement: 
Lemma1. If ( ),q kολ  is the number of the subsets of cardinality q (in nB ) having the distance 𝑘𝑘to the zero 

point, then: 

( ) ( ) ( ), 1 .q qq k k kολ λ λ= − +  

For ( )
12

0 : , 0 .
1

n

k q
q

ολ
− 

= =  
− 

  

Theorem 3. The following formula holds true: 

( )
1

1
1,

1

2 2 2
2 2 .

1

n n n n nn
n n k k k

q
k

S SF z z
q q q

−
−

=

      − −
= + −      

−        
∑                      (6) 

Proof. By definition: 
( ) ( )0,

1, 2 .Yn
q

Y q
F z zρ

=

= ∑  

From this and Lemma 1, taking into account (3) and (4), we get:  

( ) ( ) ( )
1 1

0,
1,

1

1
1

1

2 2
2 2 2 ,

1 1

2 2 2
2 2 .

1

n n n
Yn n n k

q
Y k

n n n n nn
n n k k k

k

F z z q k z
q q

S S
z

q q q

ρ ολ
− −

=

−
−

=

    
= + = +    

− −     
      − −

= + −      
−        

∑ ∑

∑
 

The theorem is proved. 
If ( )1,Φ p z  is the generating function of the random value ( ),a Yξ ρ=  uniformly distributed on the pairs 

( ),a Y , where Y q= , then the following holds true. 
Corollary 1. The following formula holds true: 

( ) 1
1,

1

2 21Φ .
2

n n n nn
k k k

p n
k

S S
z q z

q q
q

−

=

    − −
= + −    

        
 

∑  
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Corollary 2. The following holds true:  

1

1

2 21 .
2

n n n nq
k k

n
k

S S
M k

q q
q

ξ −

=

    − −
= −    
        
 

∑  

Corollary 3. The formula for ( )1,1F z  follows from (6). 
Proof. From (6) we get for p = 1: 

( ) ( ) ( )1,1 1
1 1

2 2 2 2 2 2 2 (1 ) .
n n

n n k n n n n n n k n n
k k

k k

n
F z z S S z z

k−
= =

  = + − − − = + = +    
∑ ∑  

Corollary 4. For q = 2, the following formula holds true: 

( )0 1 .
2
n nMξ

π
= − +  

Proof. By definition and from Corollary 2, we derive: 

( )1 1
2,1

1

2 211 .
2 22

2

n n n nn
k k

n
k

S S
M kφ ξ −

=

    − −
= = −    

        
 

∑                       (7) 

Transforming the terms in (7), we get:  

1
1

1

1 2 2 1 .
2

2
2

n
n n

kn
k

n n
M k S

k k
ξ +

+
=

    
= − − −          

 
 

∑                          (8) 

Then, using the following formulas:  

1
1 1

1 1 1

1
2 , ,

1

n n n
n n n

k k
k k k

n n n
k n k S n S

k k k
−

− −
= = =

−     
= =     −     

∑ ∑ ∑  

2

1

2
.

2

nn

k

n nk
k n=

  
=   

   
∑  

Let us “compress” the sum: 

1
1

1
.

1

n
n
k

k

n
S S

k −
=

− 
=  − 
∑  

By definition, we have: 

( )

1

1 0 1 1 1

1 1

1 1

1 1 1 1
2 2

1 1 1 1

1 1
2 2 1 2 2

1 1

n k n n n n n
n n

k r k r k k k r k

n n n n
n n n n

k r k k r k

n n n n n n n
S

k r k r k k r

n n n n
k r k r

−

= = = = = = =

− −

= = = =

− − − −             
= = − =             − − − −             

− −       
= − − = −      − −      

 
 
 

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

2 1

1

1
2 .

1

n n
n

k r k

n n
k r

−

= =




−   
=    −   

∑ ∑

 

Furthermore, if: 

1

1
,

1

n n

k r k

n n
R

k r= =

−   
=    −   
∑ ∑  
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then: 

( ){ } ( )

( )

( ) ( )
( )

1
1

1 1

1

1
1

1
1

11 1
1

1 1

1 1
1 1

1 11
1 1(1 )

nn n n n
n n r r

n
u uk r k k r k

n k nn

n
u k

n nn
k

n
u uk

un n
R coef u u coef u

k ku

u n u ucoef
k uu

u un
coef u coef

k uu u

− + −
+

= = = =

+

+
=

+
=

 +− −    = + =     − −     
 + −  − =   − −   
 + +−  = −  − −−    

∑ ∑ ∑ ∑

∑

∑
1

1
.

1

n

k

n
k=

 −  
  −   

∑

 

Further: 

( )
( )

( )
( ) ( )

( )
( )

11
1

1

2 1
2 2

1
0 0

11 1
1

11 1

2 1 2 11
2

1

n nn
nk

n n
uk

n n n
n

n
u r r

nu u u
coef u coef u

ku u u u

n nu
coef

n r ru u

−−
+

=

−
−

+
= =

   −+ +    = +    −− −       
  − −+     = = = =     −−      

∑

∑ ∑
 

And: 

( )
1

11
0.

11

n n

u k

nu
coef

ku =

 −+    =  −−    
∑  

From here it follows that 2 22 .nR −=  
Then: 

( ){ }

1
1

1

2
1 1 2 1

1
1 1 1

2 2 1 1 1 1

2

2 2 1

2
2 2 2 2 2 2

2

2 2
2 2 2 2 2 2 2 2

2 2

2
2

n
n n

k
k

n n n
n n n n n

k
k k k

n n n n n n

n n
k S

k k

n n n nnn k S k k n nS n
k k k n

n nn nn n R n n nR n
n n

n

+
−

=

+ − −
−

= = =

− − + −

    
− − −    

    

       
= − − − = − − −       

       
   

= − − − − − = − − −   
   

=

∑

∑ ∑ ∑

12
3 2 .

2
n nnn n

n
− 

− + 
 

 

Taking this and (8) into account, we get: 

( )0 1 .
2
n nMξ

π
= − +  

And the generating function: 
( ) ( ),

,
X Y

p q
X p
Y q

F z zρ

=
=

= ∑  

can be expressed by the following parameters: 
2) if ,nM B⊆ then the family of all subsets of cardinality p, having distances r≥  from M is expressed as  

( )1\n n
rB S M
p
− 

 
 

. Indeed, ( )1
n
rS M−  contains all the points of nB , having distances 1r≤ −  from the set M.  

Hence, the set ( )1\n n
rB S M−  does not contain such points; consequently, for an arbitrary subset  

( )1\n n
rB S M

X
p
− 

∈ 
 

, the expression ( ),X M rρ ≥  holds true. 
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The cardinality of this family is: 

( ) ( )1 12\n n n n
r rB S M S M

p p
− −

   −
=      

   
. 

2) The number of all m-element subsets having the distance r from M is: 

( ) ( )12 2
.

n n n n
r rS M S M

p p
−

   − −
−      

   
 

Summarizing all the previous, we get the following statement. 
Theorem 4. The following expression is true: 

( ) ( ) ( )1
,

1

2 2
.

n n n n
r r r

p q
Y q r

S Y S Y
F z z

p p
−

= =

    − − = −            
∑∑  

2. Sum of Sets in nB  
Let , nX Y B∈ ; we take: 

{ }, ,X Y u v u X v Y+ = + ∈ ∈  

The operation “+” is defined in the family 2
nB  of all subsets of ,nB  and ( 2

nB , “+”) is a monoid with the 
neutral element 0 0n=  [3] [4]. 

Besides, the following inequality holds true:  

{ }max , .X Y X Y X Y≤ + ≤  

Here both limits are reachable. 
The properties of “+” are as follows: 
1) 0 ;X X+ =  
2) X Y X u Y u= → + = +  for all nu B∈ ; 
3) ( ) ( )X Y Z X Y Z+ + = + + -associativity; 
4) X Y Y X+ = + -communacativity; 
5) ( ) ( ) ( )X Y Z X Z Y Z+ = + +  -distributivity; 
6) ( ) ( ) ( )X Y Z X Z Y Z+ = + +  ; 
7) ( ) ( ) ( )\ \X Y Z X Z Y Z+ = + + . 
Examples. 
If X is a subspace in nB , then: 
1) X Х Х+ = ; 
2) ,X Y X+ =  if .Y X⊆  
Let the following holds true:  

min
x X
y Y

X Y x y
∈
∈

+ = + . 

Then ( ), .X Y X Yρ = +  
Thus, there is certain analogy between the norm of the sum of points and the distance between those points, as 

well as between the norm of the sum of the sets and the distance between those sets. 
In the general form, the following statement connecting the operations “∪” и+, is true: 

( ) ( ) ( ) ( ) ( ) ( ).X Y U V X U X V Y U Y V+ = + + + +      

2.1. Sum of Facets in Bn and the Distance between Them 
A facet or interval in nB  is the set of points { } ,J a x b= ≤ ≤  where the partial order x y≤  is defined in the 
classic way [5] [6]:  
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, 1, ,i ix y x y i n≤ ≤ =  for ( ) ( )1 2 1 2, .n nx x x x y y y y= = …  

Every interval J can be written in the form of a word of the length n, in the alphabet { }0,1, ,A c=  the letters 
of which are ordered linearly: 0 1 .c< <  

Examples.  
If 4n =  and ( ) ( ){ }0 1 0 0 0 111 ,J x= ≤ ≤  then every point of J can be presented by the word ( )0 1 cc , 

which means the following: all the points which are obtained from the word ( )0 1 cc  by the substitution either 
0 or 1 for a letter of the given word, are contained in the interval J. Consequently, the cardinality of the interval 
J is 22 4,=  for the given case, i.e. 4.J =  Hence, each interval J has its corresponding code word ( )Jλ  in 
the alphabet A. The number of letters c in the code ( )Jλ  is the dimension of the interval J, i.e. is dim .J  And 
the following formula is obvious: 

dim2 .JJ =  

If the operation “*” is introduced on the alphabet A: 

0* 1
0 0 1

01 1

с
с
с

с с с с

 

then the sum 1 2J J+  of the intervals 1J  and 2J  is the Minkowski sum:  

{ }1 2 1 2, ,J J u v u J v J+ = + ∈ ∈ . 

Examples. 
1) If ( ) ( )1 20 1 , 1 0 0 ,J c Jλ λ= =  then ( ) ( )1 2 11 ,J J cλ + =  i.e. ( ) ( ){ }1 2 11 0 , 111 ,J J+ =  which corres-

ponds to the definition of the sum 1 2.J J+  
2) If ( )1  J c c cλ=  , then 1 2 1

nJ J J B+ = =  for every interval 2.J  
The distance between the intervals 1J  and 2J , having the codes ( )1Jλ  and ( )2Jλ -taking into account 

the introduced definitions-are calculated in the following way.  
Let ( )1 Jλ  be the number of occurrences of letter 1 in the code of the interval J. 
Statement 1. ( ) ( )1 2 1 1 2, .J J J Jρ λ= +  
Thus, the distance between the intervals 1J  and 2J  is the number of occurrences of letter 1 in the code of 

their sum. 
Examples. 
1) Let ( ) ( ) ( ) ( )1 20 11 1 , 11 0 0J c c J c cλ λ= = . 
Then ( ) ( )1 2 1 0    J J c c c cλ + =  and ( )1 2, 1.J Jρ =  

Let { }p
n pJ J=  be the family of all p-dimensional intervals of .nB  Then 2 .p n p

n

n
J

p
− 

=  
 

 

Let us consider the direct product p q
n nJ J×  and introduce uniform distribution on it with the generating func-

tion:  

( ) ( ) ,
,

,

1 .
p
n n

q

p q
n n

J J

qp p
n n J

q
J

F
J

zz
J

ρ
= ∑  

Theorem 5. The following formula is true: 

( ) ( ) ( )
, 1

2 2 11 1 d ,
2π

2

q n q

p q p
n p u r

u u
F z u

n i u
p

−

+
− =

+ + +
=
 
 
 

∮  

where 1.r <  
Let us consider the matrix  i jα  the rows of which are the codes ( ) ( ) ( )1 2, , , mJ J Jλ λ λ  of the intervals 

from the family { }1 2, , , .mJ J J  
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Lemma 2. The following expression is true: 

( ) 0 1

1
, ,

n

i j i i
i j i

J J k kρ
< =

=∑ ∑  

where 0 1
i ik k  is the number of zeros and, respectively, units in the i-th column of the matrix .ijα  

Proof. According to the definition: 

( )
, , 1

, ,
j

n
k

i j i
i j i j k

J Jρ δ
=

=∑ ∑∑                                  (9) 

where 1, if and , ;
0, otherwise,j

k k k k
k i j i j
i

c cα α α α
δ

 ≠ ≠ ≠
= 


 

and ( ) ( )1 2 n
i i i iJλ α α α=   is the code of the interval iJ . 

It follows from (9): 

( )
, 1 ,

, .
j

n
k

i j i
i j k i j

J Jρ δ
=

=∑ ∑∑                                 (10) 

The internal sum in (10) equals the number of such pairs ( ),k k
i jα α  in which one of k

i sα −  is unit and the 
other is zero, i.e. is 1 0.i ik k  The Lemma is proved. 

Example.  
1) Let ( )3S  be the family of all edges in 3B . We consider the matrix of their codes: 

 

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

i j

c
c
c
c

c
c
c
c

c
c
c
c

α =

  

  

 

The total number of the edges in 3B  is 1
32 12

1
n

n

n −
=

 
= 

 
∕ . Each column of the matrix has the length 12, and  

all letters of the alphabet { }0,1,c  occur in equal number, 4 times. Therefore, 0 1 4i ik k= = , 1, 2,3.i =  
From here, we get: 

( )
( )

3 1,

3

, 4 4 48.
i j

i j
J J S i

J Jρ
∈ =

= × =∑ ∑  

2) In the general form, if ( )S n  is the family of all edges in nB , each column contains 12n−  letters c and  

( )
1 1

0 1 22 2 1 2 .
2

n n
n

i i
nk k n

− −
−−

= = = −  From here, we get: 

( )
( ) ( ) ( )2 22 4 2 4

,
, 1 2 1 2 .

i j

n n
i j

J J S n
J J n n n nρ − −

∈

= − = −∑                     (11) 
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Thus, the sum of the pairwise distances between the intervals in nB  is calculated by formula (11). 

2.2. The Sum of Spheres in Bn 
In the general form, the following statement holds true.  

Lemma 3. The following formula is true: 

( ) ( )0 .n n
p pS M M S= +  

Proof. By definition: 

( ) ( ) ( ){ } ( )0 0 .n n n n
p p p px M x M

S M U S x U x S M S
∈ ∈

= = + = +  

Thus, the above introduced parameter ( )n
pS M  of the setМis rather easily expressed in the terms of the oper-

ation “+”. 
Lemma4. ( )( ) ( )n n n

p q p qS S M S M+=  if p q n+ ≤ . 
Proof. If ( )( )n n

p qv S S M∈ , then either v is at the distance p≤  from ( )n
qS M  or there is a point 

( )n
qa S M∈  such that ( ),v a pρ ≤ .  

Then, from ( ) ,n
qa S M∈  it follows that ( ),a z qρ ≤ , for all z M∈ . 

From here we get: 

( ) ( ) ( ), , ,v z v a a z p qρ ρ ρ≤ + ≤ +  

or: 

( )n
p qv S M+∈ . 

Hence, ( )( ) ( ).n n n
p q p qS S M S M+⊆  

And if ( )n
p qv S M+∈ , then there is a point z M∈  such that ( ),v z p qρ ≤ + .  

Hence, ( )( ), n
qv S z pρ ≤  and, consequently, ( )( )n n

p qv S S M∈ , that is, ( ) ( )( )n n n
p q p qS M S S M+ ⊆ , and the 

proof is completed. 
Theorem 6. The following expression is true: 

( ) ( ) ( )1 2 1 2
n n n
p q p qS M S M S M M++ = +                            (12) 

Proof. We have from Lemma 4: 

( ) ( )( )1 2 1 2
n n n
p q p qS M M S S M M+ + = + . 

Then, we have from Lemma 3: 
( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )
1 2 1 2 1 2

1 2 1 2

0 0 0

0 0 .

n n n n n
p q p q p q

n n n n
p q p q

S M M S S M M S S M M

S M S M S M S M
+ + = + + = + + +

= + + + = +
 

And the proof is over. 
Formula (12) defines the rule of “addition” for arbitrary spheres in the space nB . 

2.3. Sum of Layers in Bn 
Let { },n n

pB x B x p= ∈ =  be the p-th layer of the n-dimensional cube, or be the sphere of the radius p with the 
center at zero [7] [8]. 

According to definition, n n
p qB B+  is the sum of the layers in nB  or it is the sum of the points with the 

weights p and q. As x y x y x y− ≤ + ≤ + , then all points from ( )n n
p qB B+  have weights from the in-

terval { },p q p q− + . 
Then, the following statement is true.  
Lemma 5. The following expression holds true: 

( )
( ) ( ){ }

2
2 min 2 ,

.n n n
p q a r

p q r n p q p q
B B B +

− + ≤ − + +

+ =


 

Proof. First, let us note the following. 
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If n n
p qx B B∈ + , and x m= , then n n n

m p qB B B⊆ + . Consequently, every layer n
rB  is invariant with respect 

to the operation of the symmetric group nS  and, for ng S∈ , we have: 

( ) ( ) ( )g x y g x g y+ = + , where , nx y B∈ . 

In standard terms, the symmetric group nS  operates on ,nB  and every layer is a transitive set or an orbit of 
action of the group nS . 

If n n
p qx B B∈ + , then x y z= + , where ,n n

p qy B z B∈ ∈ . Therefore, for each permutation ng S∈  we have: 
( ) ( ) ( ) ( ) ,g x g y z g y g z= + = +  and we get: 

( ){ } n
mg x B⊆  и n n n

m p qB B B⊆ + . 

Taking this into account, to describe the set ,n n
p qB B+  it is sufficient to describe only the weights of the 

points which are included into this sum. The minimal weight of these is d p q= − . 
We discuss the following outline: 

111100z =  

1 110000z =  

2 011000z =  

3 001100z =  

4 000110z =  

5 000011z =  

1 2 3 4 52, 2, 2, 4, 6.z z z z z z z z z z+ = + = + = + = + =  

Here 6, 4, 2n p q= = =  and the “block” of the first 2 units is shifted by a unit in each consecutive word. 
Thus, we get all weights: : 2, 4,6.iz z+  

In the general case, the situation is absolutely analogous, and the weights are arranged as follows:  
, 2, 4, ,p q p q p q− − + − +   

for .p q≥  
Here the condition for z holds true: 

( ){ }2 min , 2p q r p q n p q− + ≤ + − + . 

Examples. 
1) 1 1 0 2

n n n nB B B B+ =  ; 
2) 2 2 0 2 4

n n n n nB B B B B+ =   ; 
3) 2 3 1 3 5

n n n n nB B B B B+ =   . 
Theorem 7. The following expression is true: 

( ) ( ) ( )
1 2

\ ,n n n n
p q l lB S M S M S M+ =  

where ( ) ( )1 2min , , max 0, 1.l p q n l p q= + = − −  
Proof. From Lemmas 3 and 5, we have: 

) ( )

( ) ( ) ( ) ( )

0 0
(

0 \ 0 \ .

q q
n n n n n n
p q p i p i

i i
p q

n n n n n
i p q p qp q p q

i p q

B S M B B M B B M

B M S S M S M S M

= =

+

+ +− −
= −

+ = + + = + +

= + = + =

 



 

The proof is over. 

2.4. Sum of Subspaces in Bn 
As usual, let ( )L X  be the subspace generated by the vectors from the set X, or be the space “worn” on X. 
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Statement 2. ( ) ( ) ( )1 2 1 2L X X L X L X+ = + ,  
and: 

( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 2dim dim dim dimL X X L X L X L X L X+ = + −   

Statement 3. Let ( ).X X L X+ ⊆  
And if: 

( )
,

2
L X

X >                                     (13) 

then the following equality is true: 

( ).X X L X+ =  

Proof. We assume the contrary, that is, ( ) ( )\ .y L X X X∈ +  
Then, we have: 

( )X y L X+ ⊆  and ( )X y X+ = ∅ . 

Hence, ( ) ( ).X X y L X+ ⊆  Consequently, ( ) .X X y L X+ + ≥  That is, ( )2 .X L X≤  
This contradicts the initial condition and the proof is over. 
The following example shows that condition (12) is not necessary. 
Example.  
Let ( ) ( ) ( ) ( ) ( ) ( ){ }0000 , 1000 , 0100 , 0010 , 0001 , 1111 .X =  Then ( ) ,X X L X+ =  although  

166 8.
2

X = < =  

3. Equations in Sets 
The “simplest” equation by sets is the following:  

X Y A+ =                                       (14) 
where , , 2

nBX Y A∈ . 
Equation (14) always has the trivial solution: { } , ,X x Y A x= = +  where .nx B∈  
The significance of Equation (14) is explained by the following circumstances. 
1) The standard problems of covering and partitioning in the Boolean space Bn [6] can be formulated as prob-

lems of describing the set of solutions of Equation (14). 
2) For certain additional conditions, the solution of Equation (14) forms a perfect pair (perfect code) in the 

additive channel of communication [9]. 
3) The set of all solutions of Equation (14) coincides with the class of equivalence of the additive channel of 

communication [3]. 
Examples. 

1) If nA B= , we can take ( ) ( )( )0 , 0 ,
2

n n
p p

nS S p >  as the solution ( ),X Y  for Equation (14). 

2) If A is a subspace of nB , then Equation (14) has the following solution: ,X A Y A= ⊆ . 
The following statements are true: 
Statement 4. If the equations ,X Y A X Y C+ = + =  are solvable, then the equation X Y A C+ = +  also is 

solvable. 
Proof. Let the pairs ( ) ( )0 0 1 1, , ,X Y X Y  be the solutions of the equations X Y A+ =  and X Y C+ = , re-

spectively. Then for the pairs ( ) ( )( )0 1 0 1,X X Y Y+ +  we have 
( ) ( ) ( ) ( )0 1 0 1 0 0 1 1 ,X X Y Y X Y X Y A C+ + + = + + + = +  as was required to be proved. 

Statement 5. For { }2 min , ,p q r p q n− + ≤ +  the equation: 

2
0

n
p q r

r
X Y B − +

=

+ =


 

has the solution , .n n
p qX B Y B= =  
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Statement 6. For 0 p n≤ ≤  and ,nM B⊆  the equation ( )n
pX Y S M+ =  has the following solution: 

( ) ( )
1 21 2,n n

p pX S M Y S M= = , 

where 1 2 1 2, .p p p M M M+ = + =  
Statement 7. For 0 , , np q n M B≤ ≤ ⊆ , the equation ( ) ( )\n n

p qX Y S M S M+ =  has the following solution: 

( )
1 2
, ,n n

p pX B Y S M= =  where ( ) ( )1 2 1 2min , , max 0, 1.p n p p q p p= + = − −  

Statement 8. The sets of solutions ( ),X Y  of the equations X Y A+ =  and 
( ) ( ) ( )1 2 1 2X M Y M A M M+ + + = + +  coincide for all 1 2, .nM M B⊆  

Below, when discussing Equation (14), without violating generality, we may assume 0 ,X Y A∈    if ne-
cessary. 

Statement 9. The equation X X A+ =  has no solution for ( ) { }1
, \ 0 .

2
n
p

n n
A A B

+
> ⊆  

Proof. If n
pA B⊆  and X X A+ = , for ,a b X∈  we have a b A+ ∈  and a b p+ =  or ( ),a b pρ = . 

Thus, X is an equidistant code [2], therefore, 1X n≤ + . Consequently: 

( )1
.

2
n n

A
+

≤  

From here it follows that the equation X X A+ =  has no solution for 
( )1

2
n n

A
+

> , if { }\ 0 n
pA B⊆ .  

Statement 10. The equation X X A+ =  (in “facets”, i.e. X, A are facets in nB ) is solvable iff the code of 
the interval A does not contain the letter 1. 

Let ( )0 0,X Y  be a solution of the equation .X X A+ =  As the following equality: 

( ) ( )0 0 0 0X Y X Y A+ =   

holds iff:  

( )0 0X X A+ ⊆  и ( )0 0Y Y A+ ⊆ , 

then the following statement is true.  
Statement 11. If ( )0 0,X Y  is a solution of the equation X Y A+ = , then ( )0 0X Y  is a solution of the eq-

uation ,X X A+ =  iff ( )0 0X X A+ ⊆  and ( )0 0Y Y A+ ⊆ . 

Statement 12. If A is a subspace from ,nB  then every subset , ,
2
A

X A X⊆ >  is a solution of the equa-  

tion .X X A+ =  
In an additive channel of communication [3] an equivalence class has a unique representation by transitive 

sets of certain “generating” channels. The problem is to order these transitive sets by cardinalities of “generating” 
channels. 

Let ( ) ( ){ }, , .N A X Y X Y A= + =  
We introduce the following parameters: 

( )
( ) ( ),

min
X Y N A

m A X Y
∈

=  , ( )
{ } ( )

( ) ( ),

0 , if
.min

X X N A

A N A
m A X

∈

 = ∅= 




 

Such definition of ( )m A  is justified, because it is not always that the equation X Y A+ =  has 
tions (for instance, if 3, 5,A A= =  or for 0 A∉ ), though the equation X Y A+ =  always has a solution. 

One can easily prove that:  

( ) ( ) { }0 .m A m A A≤ ≤                                 (15) 

Statement 13. For the subspace ,nA B⊆  the following is true: 

( ) ( )m A m A= . 
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Proof. It follows from (15) that it is sufficient to prove that the following equality is true: 

( ) ( ).m A m A≥  

Let ( )0 0,X Y  be a solution of the equation ,X Y A+ =  for which: 

( ) 0 0 .m A X Y=                                    (16) 

On the other hand, it follows from Statement 11 that ( )0 0X Y  is a solution of the equation X X A+ =  
and, consequently, ( )0 0 .X Y m A≥  Taking this and (16) into account, we get: 

( ) ( ).m A m A≥  

Theorem 8. The following estimations are true: 

1) ( ) ( )
1
2

1 8 7 1 ,
2

m A A
  

≥ − +  
  

 for ;nA B⊆  

2) ( ) 2 22 2 2,
k k

m A
   
      ≤ + −  for the subspace ,nA B⊆  for dim  3.A k= ≥  

Proof. We have: 

( ) ( ).A X Y X Y X Y= + ⊆ +   

From this and definition of addition of sets we get:  

( ) ( ) ( ) ( )( )1
1.

2
m A m A

A X Y X Y
−

≤ + ≤ +   

Consequently: 

( ) ( )
1
2

1 8 7 1 .
2

m A A
  

≥ − +  
  

 

To prove the 2nd estimation, we consider such subspaces 1 2,L L A⊆  for which the following is true: 

{ }1 2 1 20 ,dim ,dim
2 2
k kL L L L   = = =      

 . 

Let: 

( ) ( ) ( )1 1 2 2 1 2\ \ ,X L a L a a a= +   

where 1 1a L∈ , 2 2 1 2, 0, 0.a L a a∈ ≠ ≠  
Let us prove that ( ) ( ),X X N A∈ . 
We have: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) { }

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 2 2 1 2 1 1 2 2 1 2

1 1 1 1 2 2 1 1 1 2 1 1

1 1 2 2 2 2 2 2 1 2 2 2

1 1 1 2 2 2 1 2

1 1 1 1 2 2 2 2 1 1 2 2

1 2 1 1 1 2 2 2

\ \ \ \

\ \ \ \ \

0

\ \ \ \ \

\ \

\ .

\ \ \ \

\

X X L a L a a a L a L a a a

L a L a L a L a a a L a

L a L L a L a a a L a

L a a a L a a a

L a L a L a L a L a L a

a a L a a a L a

+ = + + +

= + + + +

+ + + +

+ + + +

= + + +

+ + + +

   

 

  

  

 

 

 

As (Statement 12) ( ) ( ) ( ) ( )1 1 1 1 1 2 2 2 2 2,\ \ \ \L a L a L L a L a L+ = + =  we get: 

( ) ( )( ) ( ) )( ) ( ) ( )( )1 2 1 2 2 1 1 2 1 1 1 2 2 2\ \ .\X X L L L L a L a a a L a a a L a+ = + + + + + +      

Then, using: 

( ) ( ) ( ) ( ) ( )1 1 1 2 1 2 1 2 2 1 2 2 1 2\ ; \ ,\ \L a a a L a a L a a a L a a+ + = + + + = +  



V. Leontiev et al. 
 

 
39 

we get: 

( ) ( )( )( ( )( ) ( )( )1 2 1 2 2 1 1 2 1 2 1 2\ \\ .X X L L L L a L a L a a L a a A+ = + + + + =      

Hence, taking this and Statement 13 into account we get: 

( ) ( ) ( ) ( ) ( ) 2 2
1 2 1 2 1 2 1 2\ 3 1 2 2 2.

k k

m A m A X X L L a a a a L L
   
      = ≤ = + = + − + = + −     

The statement is proved. 
Examples. 
1) 4.A B=  We have: 

( ) ( ) 6.m A m A= =  

2) 5A B= . We have: 

( ) ( )9 10,m A m A≤ ≤ ≤  

but actually: 

( ) ( ) 10.m A m A= =  

3) 7.A B=  We have: 

( ) ( )17 22.m A m A≤ ≤ ≤  

We consider the set: 

{0 0 0 0 0 0 0,  0 0 0 0 1 0 0,  0 0 0 0 1 1 0,  0 0 0 1 1 0 1,  0 0 1 0 0 0 1,  0 0 1 0 1 1 1,
0 1 0 0 0 0 0,0 1 0 0 1 0 0,  0 1 1 0 1 0 0,  0 1 1 0 1 0 1,  0 1 1 1 0 1 1,  0 1 1 1 1 0 0,
0 1 1 1 1 1 0,  1 0 0 

X =

}
0 0 1 0,  1 0 0 1 1 0 1,  1 0 0 1 1 1 0,  1 0 1 0 0 0 0,  1 0 1 1 0 1 1,  

1 1 0 0 1 0 1,  1 1 0 1 1 0 0 .

 

We have: 7 , 20.X X B u X+ = =  Hence, ( ) ( ) 20.m A m A≤ ≤  
4) { }1 0 0 0 0 0 0,  1 0 0 0 0 0,  0 1 0 0 0 0,  0 0 1 0 0 0,  0 0 0 1 0 0,  0 0 0 0 1 0,  0 0 0 0 0 1 .A =  

{ }2 1 0 0 0 0 0,  0 1 0 0 0 0,  0 0 1 0 0 0,  0 0 0 1 0 0,  0 0 0 0 1 0,  0 0 0 0 0 1 .A =  
We have:  

( )16 7m A≤ ≤  and ( )26 7m A≤ ≤ . 

But actually ( ) ( )1 2 7.m A m A= =  
Suggestion. For each nA B⊆  the following is true: 

( ) 2 22 2 2,
k k

m A
   
      ≤ + −  where ( )dim 3.k L A= ≥  
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