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Abstract 
There exist very complicated creative fields of human activities. As a rule, these fields comprise a 
large number of internal objects involving huge amounts of people, where large financial and ma-
terial resources are concentrated. Operative management of such objects is extremely difficult 
due to their complicacy and multidisciplinary character, as well as due to the absence of criteria 
allowing an unambiguous estimation of the completeness of works both at a separate object and at 
the created system on the whole. The availability of such a criterion will make it possible to redi-
rect resources more rationally so that to save time and means while completing the intended 
project. The suggested criterion of such kind is based on the properties of entropy, which is the 
principal invariant of today’s natural science. This parameter is perceived ambiguously, being 
permanently discussed in technical literature. Physical character of this parameter has been vali-
dated in detail by the Author [1] [2] who has shown its universality for the analysis of complicated 
systems at their modification. In the present paper, the development of such a criterion for a com-
plicated engineering project is considered. However, this approach can be used for the analysis of 
complicated technical projects in other fields of human activities, as well. 
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1. Introduction 
Modern construction objects often represent complicated multidisciplinary and multilevel projects. By way of 
example, we can consider the construction of a railway segment, which involves such main activities as excava-
tion works, rails and crossties laying, erection of intermediate station premises, development of a branched sys-
tems of electric power supply, signalization and blocking and, finally, neighborhood improvement. As a rule, 
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there is a manager at each sector of such construction. The amount of such managers can be large enough, and 
all of them can have different qualification and experience. As a rule, any construction is directed by a single 
person who is entrusted with the financing of the entire project. He is responsible for the progress of site works 
and the time frame of their execution. It is very important for him to estimate correctly the progress of works at 
any moment, to reveal backward sectors, to coordinate all the activities. It is important also for the managers of 
smaller subdivisions, for example, those responsible for the buildings of the station premises with a complete set 
of internal equipment, or for those responsible for rails laying, bridge building, etc. Sometimes subordinate 
managers are unable to evaluate objectively the completeness of works entrusted to them. Besides, even if sub-
ordinate managers can give close-to-reality estimations on the basis of their own experience and intuition, it is 
rather difficult for a chief manager to make an unambiguous conclusion about the general situation at the con-
struction site on the basis of the obtained information, the more so because this situation changes daily.  

It appears possible to develop a methodology that can provide a single-valued estimation of the status of both 
the entire project and its constituents. The availability of such a methodology will make it possible to simplify 
the building management and avoid mistakes and distortions in the course of it, which will save time and de-
crease construction costs. To develop such a methodology, it is necessary to solve the problem of numerical 
evaluation of the status of complicated systems. 

2. Unambiguous Evaluation of Complicated Systems 
The main problem is reduced to the development of methodology of unambiguous numerical estimation of the 
state of a system of any complicacy. As a rule, complicated systems consist of several components, their number 
being different. It is very important to have a notion about the relationships between these components in the 
system. Rather often, if the number of components is small, it is sufficient to determine the ratio between them. 
But the most complete idea is provided by the usual percentage reduced to 100%. The estimation can be also 
reduced to fractions of unity, which correlates it with probability. The probability is determined as 

( ) i
i

i

x
P x

x
=
∑

                                    (1) 

Here ix  has any dimension (tons, dollars, kilograms, percentage, pieces, etc.) 
If a system consists of two components, a specified content of one component automatically defines the con-

tent of another, since the sum of their contents is unity. Hence, for a binary system, a single-valued estimation 
can be obtained specifying the content of one of the components. 

The situation is different if a system consists of more than two components. In this case, the content of one 
component does not define those of others. If the contents of all components of the system are specified simul-
taneously, it gives a multiple (and not a single-valued) estimation. Therefore, in this case we use other characte-
ristic instead of the probability—a measure of uncertainty introduced by Hartly in 1929 [3] and then used by 
Shannon in 1948 when developing the theory of information. The notion of the measure of uncertainty can be 
clarified by the following elementary example. We assume that a random value ix  has k  equiprobable out-
comes. (When tossing a coin, 2k = , when casting a die, 6k = ). 

According to the probability definition, 

( ) 1
iP x

k
=                                     (2) 

The uncertainty is a function of the number of outcomes, and it can be denoted by ( )f k . This function must 
satisfy the following requirements: 

1) The more complicated is the system composition (i.e., the greater the number of outcomes), the higher 
must be the measure of uncertainty, i.e. ( )f k  must be a monotonically increasing function. 

2) If a random quantity has one outcome, i.e. the system consists of elements of the same type, the uncertainty 
cannot exist, i.e.  

( )1 0f =  
3) If there are two independent systems, one of them having k  outputs, and another l  outputs, the total 

number of outputs must be ( )f kl . However, this function should not contain a product of uncertainties, since 
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the single-output character of one system eliminated the uncertainty of the combined system, which is false. 
Hence, the uncertainty of a combined system must possess the additivity property:  

( ) ( ) ( )f kl f k f l= +                                   (3) 

Shannon [3] has shown that the only function of the number of outputs satisfying all these requirements is a 
quantity proportional to the logarithm of the number of outputs. 

( ) ( )logf k A k H x= =                                  (4) 

where A  is the proportionality coefficient; ( )H x —the uncertainty of a random value; log k —a quantity 
determined with the accuracy up to a constant, because the base of logarithm is not determined yet. 

The dependence (4) can be interpreted as the static entropy, which determines, together with the dynamic en-
tropy, the uncertainty of any transformation process in nature and technology. A detailed substantiation of this 
issue would take too much space in the article, and those interested can refer to the Author’s book [1]. 

3. Entropy of a Binary System 
A binary system consists of two components. The simplest example of such a system is a bulk mixture of a 
grinded material consisting of fine and coarse particles. The boundary between these materials is usually speci-
fied by the mesh size of a certain sieve. Particles passing through it are considered fine, and those remaining on 
the sieve-coarse. Imagine a system having 1N  coarse particles and 2N  fine ones, their sun being 

1 2N N G+ =  

According to (1), the content or probability of coarse particles in a system is  

1
1

NP
G

=                                         (5) 

and the probability of fine particles is 

2
2

NN
G

=                                        (6) 

According to Fermi’s statistics, the number of outcomes (ways of alternation) for such a system is 

1 2

!
! !
Gk

N N
=  

According to (4), this can be expressed by a relation  

( ) ( )1 2log log ! log ! log !H x A k A G N N= = − −                         (7) 

If the quantities G ; 1N  and N  are large (exceeding 1000), the logarithms of factorials can be computed 
exactly enough using Stirling’s formula  

( )log ! log 1Q Q Q≈ −  

Taking this expression into account, Equation (7) can be written as 

( ) ( ) ( ) ( )1 1 2 2log 1 log 1 log 1H x A G G N N N N= − − − − −    

Removing brackets, we finally obtain 

( ) 1 1 2 2log log
N N N NH x AG
G G G G

 = − +  
 

Taking (5) and (6) into account, this expression can be written as 

( ) ( )1 1 2 2log logH x AG P P P P= − +                             (8) 
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4. Entropy of Multicomponent Systems 
We will show that a dependence of (8) type is valid for multicomponent systems, too. Imagine that a system of 
G  particles of crushed material consists of n  size classed determined by a set of ( )1n −  sieves.  

We denote their content in each class by 1N ; 2N ; 3N ; ; iN ; ; nN . It is clear that .i
n

N G=∑  

Imagine that these particles are obtained from polymetallic ore, and they also differ by density within each 
size class. It is convenient to express the contents of such a composition by a matrix 

11 12 13 1 1

21 22 23 2 2

1 1 3

1 2 3

i n

i n

j j j ji jn

m m m mi mn

M M M M M
M M M M M

M M M M M

M M M M M

 

 



 



 

 

where jiM  is the content of particles with the density j  in size class i . 
Clearly, 

n m

ji
i j

M G=∑∑  

By definition, the probability of ji -th particles contents in the system is 

ji
ji

M
P

G
=  

It follows that 

1
n m

ji
i j

P =∑∑                                       (9) 

The total number of outcomes for the mentioned mixture of particles is  

1 1

!
n m

ji
i j

Gk
M

= =

=

∏∏
 

Hence, the mixture composition entropy in the system is expressed by the dependence 

( ) ( ) ( )
1 1

log log 1 log 1
n m

ji ji
i j

H x A k A G G M M
= =

 
= = − − − 

 
∑∑

 
Taking into account the relation (9), we obtain 

( )
1 1

log
n m

ji ji
i j

H x AG P P
= =

= − ∑∑                              (10) 

Since the probability is expressed in fractions of unity in the relations (8) and (10), G  can be equated to un-
ity, and the components content can be expressed by their probability. The coefficient A  can take any value 
except zero and infinity. For the sake of computations convenience, we also assume that 1A = . Then an ex-
pression for the evaluation of entropy of the mixture can be written as  

( )
1 1

log
n m

ji ji
i j

H x P P
= =

= ∑∑  

As for the bases of logarithms, they can be whatever, any assumed values give results differing by a constant. 
At the comparison of successive computations in the process of the system change, the influence of the loga-
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rithm base is leveled. Therefore, for greater convenience in practical computations, we can recommend to use 
decimal logarithms, and for theoretical derivations-natural logarithms. There are no distinctions in kind between 
them. 

Having clarified all these nuances, we can pass to the consideration of the general situation at the analysis of 
the status of a complicated building project in the process of its erection. 

5. Evaluation of Completeness of a Complicated Object in the Process of  
Construction 

It is known [4] that the construction of industrial enterprises is characterized by a diversity of erected objects 
and their versatility involving various kinds of works. It is usually very difficult to evaluate the extent of com-
pleteness of separate elements at the stage of the construction of such objects. And even if one manages to do 
this as impartially as possible, it is hard to make a conclusion about the state of the entire object at some moment 
of time on the basis of multiple evaluations. This problem can be solved using the parameter of static entropy. It 
is best of all to demonstrate this on a definite object. 

For this purpose, we consider the construction of a railway segment in general. Imagine that according to the 
project, it is planned to build several stations at this railway equipped with railway terminals of various levels 
depending on the population size in the particular locality and on some other causes. At some stations it is 
planned to build repair workshops of various levels and even several depots, other stations being without all this. 
Some sections of the railroad bed will be trailed in a plain terrain, others in hilly and mountainous terrain. It 
means that besides excavation works for the railway track along the entire railroad, it becomes necessary to 
build bridges and tunnels. All the objects can be totally different.  

A schematic diagram of such project is shown in Figure 1. In this diagram, railway terminals are enumerated 
as 1 2 3; ; ; ; ; ;i nx x x x x  . Road segments between them are enumerated according to the number of terminal lo-
cated to the left and denoted by 1 2 3; ; ; ; ; ;i ny y y y y  . 

 

 
Figure 1. Respectively, we denote a list of works 
at the station by the symbol x  and the road sec-
tions by y . 

Xn
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YiXi
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Y3
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Approximate incomplete list of works at the stations: 
1x —excavation works; 
2x —building foundation; 
3x —walls and roof; 
4x —plasterwork; 
5x —plumbing; 
6x —electrical work; 
7x —communication means; 
8x —automation; 
9x —workshops, 

etc., up to: 
mx —arrangement of green spaces. 

For the railroad track: 
1y —on-the-site planning; 
2y —leveling and earthing; 
3y —bridges; 
4y —overhead roads; 
5y —laying crossties; 
6y —laying rails; 
7y —building of railway points and traffic lights; 
8y —automation and block systems; 
9y —communication lines, electricity, 

etc, up to: 
sy —land improvement, clearing of rubble and debris. 

Naturally, the presented list of works is incomplete, otherwise it would take up the volume of a whole book. 
We just consider the principle of unambiguous evaluation of works in such a complicated case. 

Before starting the construction, each kind of works is estimated, e.g., in dollars. In a general form, such ex-
penses for the construction of the first station can be written as follows: 

( ) ( ) ( ) ( ) ( ) ( )11 12 13 1 1 1 1i mQ x Q x Q x Q x Q x Q x+ + + + + + =    
Dividing the left side by the right one, we obtain the share of expenses for each kind of works at the first sta-

tion, which is written as 

( ) ( ) ( ) ( ) ( )11 12 13 1 1 1i mP x P x P x P x P x+ + + + + + =                     (11) 

Each of these summands can be interpreted as a characteristic of the relative cost of works. For each of these 
works at the construction of the first object, the static entropy can be determined using the following formula: 

( ) ( ) ( )1, 1 1lni i iH x P x P x=                                (12) 

As a result, we can write for the entire object 

( ) ( ) ( ) ( ) ( ) ( )11 12 13 1 1 1i mH x H x H x H x H x H x+ + + + + + =                  (13) 

The total value ( )1H x  determines the complicacy of building the station denoted by index 1 in the sche-
matic diagram. 

By changes in the magnitude of (13) in the course of the construction, we can follow the results of the erec-
tion of said station 1.  Imagine that after some time, the contractor performing the works 1ix  has drawn a 
share of means intended for his object ( )/

1iP x . Naturally, before the completion of works at his site, 
( ) ( )/

1 1i iP x P x< . At that, the complicacy of his site decreases by the value 

( ) ( ) ( ) ( ) ( )/ /
1 1 1 1 1ln lni i i i iP x P x P x P x H x− = ∆                        (14) 

which is equivalent to 

( ) ( ) ( )/
1 1 1i i iH x H x H x− = ∆  
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If he has drawn his means completely, this difference is 

( )1 0iH x∆ =  

In case of a single elementary site, it is clear without additional explanations. However, the suggested ap-
proach allows making unambiguous conclusions about the course of the entire project development. In the 
course of construction, changes taking place are analogous to those considered in each summand of the relation 
(13). On a certain specific date of the works performance, we can calculate 

( ) ( ) ( ) ( ) ( )/ / / / /
11 12 13 1 1; ; ; ; ; ;i mH x H x H x H x H x   

A sum of entropies of the drawn funds or performed works is 

( ) ( )/ /
1 1

m

s i
i

H x H x= ∑
 

Incompleteness of works at the project equals 

( ) ( ) ( )/
1 1 1s s sH x H x H x∆ = −                               (15) 

To obtain an habitual estimation in fractions of unity or in percentages, the incompleteness of works can be 
expressed by a parameter, if we divide both expressions in the right-hand side of (14) by ( )1sH x . Then 

( )
( )

/
1

1

s

s

H x
F

H x
=                                     (16) 

Repeat once more that the construction incompleteness at all the objects of the first station is determined us-
ing the relation (16). We can express this relation in percent, which is habitual for builders, writing a relation 

( )
( )

1

1

100%s

s

H x
F

H x
∆

= ⋅                                 (17) 

The construction completeness can be expressed by 

( )
( )

/
1

1

1 100%s

s

H x
E

H x
 

= − ⋅ 
  

                              (18) 

It is clear that E F+  always equals 100%. 
To evaluate the course of construction of all the stations at the same time, we can also obtain a unified estima-

tion using this method. The same method allows obtaining the evaluation of the building of all components of a 
project of any complicacy. 

For this purpose, the expenses for all the stations should be expanded into a matrix 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 21 1 1

12 22 2 2

13 23 13 3

1 2

1 2

i n

i n

n

i i ii ni

m m im nm

Q x Q x Q x Q x
Q x Q x Q x Q x
Q x Q x Q X Q x

Q x Q x Q x Q x

Q x Q x Q x Q x

 

 

 

   

 

   

 

                     (19) 

The sum of the elements of this matrix gives the total cost for the construction of all the stations 

( ) ( )
n

ij
i

Q x Q x=∑                                 (20) 

Dividing all the elements of (19) by (20), we can determine, using the above-described method, the relative 
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complicacy of all the stations in the form of total costs and obtain a generalized matrix of static entropies for 
their characteristics; 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 21 1 1

12 22 2 2

1 2

i n

i n

i i ii ni

H x H x H x H x
H x H x H x H x

H x H x H x H x

 

 

   

 

                    (21) 

The sum of all entropies for n  stations gives the magnitude of the total complicacy of works 

( ) ( )
n

ij
i

H x H x=∑                                 (22) 

As all the works are being accomplished at all the stations at once, their residual complicacies can be deter-
mined by performing all computations with this matrix, finding ( )/H x  and determining 

( )
( )

/

1 100%x

H x
E

H x
 

= − ⋅  
 

                             (23) 

In a similar way, we can unambiguously determine the course of accomplishing works with railroad tracks.  
The costs for the first section can be written as follows: 

( ) ( ) ( ) ( ) ( )11 12 13 1 1sQ y Q y Q y Q y Q y+ + + + =                       (24) 

To obtain a characteristic of the relative complicacy of the performed works, each summand in the left-hand 
part of (24) must be divided by the expression in the right-hand part. Their sum gives 

( ) ( ) ( ) ( ) ( )11 12 13 1 1 1i sP y P y P y P y P y+ + + + + + = 
                    (25) 

The entropy of each summand of this sum is 
( ) ( ) ( )1 1 1lni i iH y P y P y=                                 (26) 

and the sum of these entropies is 

( ) ( )1
1

s

i
i

H y H y
=

=∑                                    (27) 

Their change gives the entropy characterizing the residual complicacy of the works ( )/
1iH y . 

Estimation of the residual complicacy is 

( )
( )

/
1

1

100%j

j

H y
Fy

H y
= ⋅                                  (28) 

The completeness of works is determined by the expression 

( )
( )

/

1 100%ij

ij

H y
E Hy Fy

H y

 
 = − = − ⋅
  

                           (29) 

If someone needs a general pattern of the current state of construction of all railroad tracks, it is necessary at 
first to construct a matrix analogous to (21). Then it is necessary to perform the procedure of computations. In a 
similar way, an overall estimation of the performance of works for railway stations and railway tracks can be 
obtained. For that, the specific weight of costs per each group must be taken into account. 

( ) ( )Q Q x Q y= +                                    (30) 

Hence,  
( ) ( )1 x yϕ ϕ= + , 

where 

( ) ( )Q x
x

Q
ϕ = ; ( ) ( )Q y

y
Q

ϕ =                              (31) 
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Then the total project completion is 

( ) ( )1 100%E Fx x Fy yϕ ϕ= − ⋅ − ⋅ ⋅                            (32) 

Here we can note the following: 
1) In the initial matrices (19) and (21), certain elements can have a zero value.  
2) During the performance of works, some elements of the matrices can remain unchanged, if at those sites 

works were not performed. Similarly, the state of works of the same type at different objects, e.g., assembly, 
blocking, automation at all the stations, electric lines laying, earthworks, etc., can be estimated separately. To do 
this, one must perform horizontal summing in matrices of the type of (19) in a necessary line corresponding to a 
concrete type of works. Then it is needed to compute the fraction of each element by dividing its cost by this 
sum, and after that to determine the entropy of each element according to the described method (25), find the 
total complicacy (26) and perform such analysis while the works (27) and (30) are being performed. 

The exposed method allows a global and unambiguous estimation of the status of a construction system of 
any complicacy. For instance, the Ministry of Transport can build, side by side with the railroad, highways, 
ports, gas stations and many more. The accomplishment of these works at any moment can be unambiguously 
estimated using the proposed method for the entire Ministry. 

We illustrate the application of this method by a specific example. All the computations are presented in a 
Table 1.  

 
Table 1. Example of evaluation of completeness of complicated construction at an intermediate stage. 

N Name 
Enumeration of 

building  
objects 

       

  1x  2x  3x  4x  5x  6x  7x  8x  

1 
Financing fraction  

for each object  
( )iP x  

        

0.05 0.125 0.175 0.25 0.08 0.12 0.13 0.07 

        

2 
Object complicacy 
( ) ( ) ( )lni i iH x P x P x=  

0.150 0.26 0.364 0.347 0.202 0.254 0.265 0.186 

        

3 
Percentage of works 
fulfillment at objects, 

%k  

28% 37% 42% 63% 17% 86% 91% 12% 

        

4 
Fraction of fulfilled 

works, 
( ) ( )/

i iP x kP x=  

0.014 0.046 0.0735 0.1575 0.036 0.1032 0.1183 0.0084 

        

5 
Residual works 
at the objects 

( ) ( ) ( )/
0 i iP x P x P x= −  

0.036 0.079 0.1015 0.0925 0.044 0.0168 0.0117 0.0616 

        

        

6 Residual complicacy 
of works 

( ) ( ) ( )0 0 0lnH x P x P x=  

0.120 0.2 0.232 0.22 0.1374 0.0686 0.052 0.171 

        

         

7 

Relative residual 
complicacy 

( )
( )

0H x
F

H x
=  

0.8 0.77 0.64 0.63 0.68 0.27 0.2 0.92 

        

8 

Efficiency of works 
fulfillment at objects 

( )
( )

01 100%
H x

E
H x

 
= − ⋅ 
  

 

20% 23% 36% 37% 32% 73% 80% 8% 
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The first line of this Table shows the share of financing of each of 8 units. The sum of these shares equals un-
ity. The second line defines relative complicacy of each of the units in compliance with the share of their fi-
nancing. The third line shows the percentage of executed work at each unit. The fourth line defines the share of 
executed work on the basis of lines 1 and 3. The fifth line shows the remaining work at each unit as a difference 
between lines 1 and 3. The sixth line defines the complicacy of uncompleted works on the basis of line 5. The 
seventh line defines the relative residual complicacy of uncompleted works in shares of unity on the basis of 
lines 6 and 2. The eighth line shows the efficiency of the executed works expressed percentagewise on the basis 
of line 7. 

By way of example, here we have presented a construction consisting of 8 objects. All the computations in 
each cell of the Table are explained by formulas placed in the left-hand column.  

Determine the sums of the second and sixth lines on the basis of all computations: 

( )
8

2.028i
i

H x =∑  и ( )
8

0 1.201i
i

H x =∑  

Hence, the relative residual complicacy of the entire construction is  

( )
( )

0 0.59i

i

H x
F

H x
= =∑
∑

 

A unified estimation of the accomplished works is 
1 0.41 41%E F= − + =  

6. Conclusion 
A method of unambiguous estimation of the completeness of complicated construction works at any stage of 
their fulfillment is developed. This creates conditions for simplifying the operative construction management 
and saving time and means for its realization. 
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