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Abstract

In this paper, we study certain non-autonomous third order delay differential equations with con-
tinuous deviating argument and established sufficient conditions for the stability and bounded-
ness of solutions of the equations. The conditions stated complement previously known results.
Example is also given to illustrate the correctness and significance of the result obtained.
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1. Introduction

This paper considers the third order non-autonomous nonlinear delay differential
X"(t)+a(t)h(x(t),x'(t))x"(t)+b(t)g (x'(t— r(t)))+c(t) f (x(t - r(t)))
= p(t, x(t). X' (), x(t=r(t)),x'(t-r(t)), x"(t))

or its equivalent system

(1.1
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X'=Y,
y'=1,
Z’=-a(t)h(x,y)z-b(t)g(y)-c(t)f (x)+b(t)jtir(l)g’(y(s))z(s)ds (1.2)

+c(t)ﬁr(t)f’(x(s))y(s)ds+ p(t,x, yx(t=r(t)), y(t- r(t)),z),

where 0<r(t)<y, r'(t)<pB, 0<f<1,Band y aresome positive constants, » will be determined later,
a(t),b(t),c(t),h(xy),a(y), f(x), p(t,x, y x(t=r(t)), y(t—r(t)),z), teR’, R* =[0,00) are real valued
functions continuous in their respective arguments on R*, R*, R*, R*, R, R and R*xR°® respec-
tively and R* =[0,00) . Besides, it is supposed that the derivatives f’(x), g'(y) are continuous for all x, y,
with f(0)=g(0)=0. In addition, it is also assumed that the functions h(x,y), f (x(t— r(t))) .
g x'(t—r(t))) and p(t,x, y.x(t=r(t)), y(t—r(t) ,z) satisfy a Lipschitz condition in x,y,x(t—r(t)),
y t—r(t)) and z; throughout the paper x(t), y(t) and z(t) are respectively abbreviated as x, y and z.
Then the solutions of (1.1) are unique.

In applied science, some practical problems are associated with Equation (1.1) such as after effect, nonlinear
oscillations, biological systems and equations with deviating arguments (see [1]-[3]). It is well known that the
stability of solutions plays a key role in characterizing the behavior of nonlinear delay differential equations.
Stability is much more complicated for delay equations. Thus, it is worthwhile to continue to investigate the sta-
bility and boundedness of solutions of Equation (1.1) and its various forms.

Equation of the form (1.1) in which a(t), b(t) and c(t) are constants has been studied by several authors
Sadek [4] [5], Zhu [6], Afuwape and Omeike [7], Ademola and Aramowo [8], Yao and Meng [9], Tunc [3] and
Ademola et al [10] to mention a few. They obtain the stability, uniform boundedness and uniform ultimate
boundedness of solutions. In a sequence of results, Omeike [11] considers the following nonlinear delay diffe-
rential equation of the third order, with a constant deviating argument r,

X"(t)+a(t)x" (1) +b(t) g (X' (1)) +c(t)h(x(t-r))= p(t)

and established conditions for the stability and boundedness of solution when p(t)=0 and p(t)=0 while
Tunc [12] considers a similar system with a constant deviating argument r of the form

X"(6)+a(t)w (x(1)x"(6)+b(t) 9 (X (1)) +c(t)h(x(t-r))
= p(t,x(t),x(t=r), X' (t),x'(t=r),x"(t))

and obtains the conditions for its boundedness of solution.

Results obtained are now extended to non-autonomous delay differential Equation (1.1). Results obtained in
this work are comparable in generality to the results of Sadek [7] on analogous third order differential equation
which itself generalizes an analogous third-order results of Zhu [5], and also complement existing results on
third order delay differential equations. We establish sufficient conditions for the stability (when p=0) and
boundedness (when p = 0) of solutions of Equation (1.1) which extend and improve the results of Omeike [11]
and Tunc [12]. An example is given to illustrate the correctness and significance of the result obtained.

Now, we will state the stability criteria for the general non-autonomous delay differential system. We consid-
er:

x=f(t,x),x =x(t+8) -r<6<0,t>0, (1.3)
where f:1xC, — R" isa continuous mapping,
f(1,0)=0,C, ={ge(C[-r,0,R"): ¢ <H|
and for H, <H , there exists L(H,)>0, with
|t (¢)| < L(H,) when |g] < H,.

Definition 1.0.1 ([8]) An element w eC is in the « -limit set of ¢, say, Q(¢), if x(t,0,¢) is defined
on [0,») and thereisasequence {t,}, t, > as n-»ow,with ||xI (¢)—1//||—>0 as n—o where
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Xo (¢)=x(t, +6,0,¢) for—r<6<0.

Definition 1.0.2 ([8] [13]) Aset Q € C,, is an invariant set if for any ¢ < Q, the solution of (1.2), x(t,0,¢),
is defined on [0,0) and x (¢#)eQ for te[0,0).

Lemma 1 ([8,13]) An element ¢ eC,, is such that the solution x, (¢) of (1.3) with x (¢)=¢ is defined
on [0,0) and |x (¢)|<H,<H for te[0,0), then Q(¢) isanon-empty, compact, invariant set and

dist(x (4),Q(4)) >0 ast—oo.

Lemma 2 ([8] [13]) Let V (t,¢):1xC, —R be a continuous functional satisfying a local Lipschitz con-
dition. V (t,¢)=0, and such that:

1) W, [$(0)| <V (t,¢) <W,||¢ where W, (r), W,(r) are wedges;

2) Vi, (tg)<0 for g<C,,.

Then the zero solution of (1.3) is uniformly stable. If we define Z = iqﬁ eC, :V(1_3)( N
solution of (1.3) is asymptotically stable provided that the largest invariant setin Zis Q = {

The following will be our main stability result (when p=0) for (1.1).

0} , then the zero

)=
0}.

2. Statement of Results

Theorem 1 In addition to the basic assumptions imposed on the functions a(t), b(t), c(t), h(x,y),g(y). f (x)
and p, let us assume that there exist positive constants ¢;,¢,,¢,,a,,a,b,c, #,d,,M; and M, such that the fol-
lowing conditions are satisfied:

1) f'(x)<c; ¢>0, f(0)=0, f(X)zc$1>0, Xx#0;

X
()
y
3) 0</ <c(t)<b(t)<d,; —d, <b’(t)<c'(t)<0 and O<a,<a(t)<d,;

4) yh (xy)<0; %a’(t)s€2<£1(b—yc) and [f'(x)|<M,, [g'(Y)|<M,, forallx,y.

Then, the zero solution of system (1.2) is asymptotically stable, provided that

«

2) h(x,y)=1+a; g(0)=0, >b>0, y=0;

o 2.1)
C a,
and
ol PL-nlomje-p| 2w (ta)-1)0-p)
7<ml“{do('\/‘ﬁMz)(l—ﬂ)+do'\/|1(#+1)'ﬂdo(M1+Mz)(l—ﬂ)+doM2(ﬂ+1) : (2.2)
Proof

Our main tool is the following Lyapunov functional V =V (X Y,,z) defined as
V (X, Y2,)= 20(t)joxf (&)de+ Zyb(t)joyg (n)dn
+ 2a(t)joy[h(x,n)—a]ndn +uz® +2yz+2uc(t) f(x)y (2.3)
0 t 0 t
+21j_r(t) LY (0)dods + 25L(t)L+szz (6)dads,

where A and & are positive constants which will be determined later.
We also assume that

lim_, c(t)=c,, lim_, b(t)=h,,

where 0< /¢, <c,<h, <d,.
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By the assumption a(t)>0 and h(x,y)>1+a, from (2.3) we have

2V(x1,yt,zt)220(t)joxf(§)d§+2yb(t)Joyg(n)dn
+a(t )y2+yzz+2yz+2yc( ) f(x )y
+ 1[ y* (6 )d9ds+25j j 0)dods.

t+S

The Lyapunov functional (2.4) can be arranged in the form
2

VlaZ(t)y+ 12 - (2ua(t)-1)z?
2

4a(t)

+b(t)e(t) {ct 9 ; } b t)}ndn
fad
b

1 eyt o[- 110|210

+u
+/1j Sy (0 dads+5j o2 (6)dés.

From Theorem 1, pa(t)> ua, >1 and y>i which makes 2pa(t)-1>0.
a

0

Thus, thereisa &, >0 such that

2

az(t)y+ f
2a’ (t)

1

By (2) and (3) of Theorem 1, we have that the third term on the right in (2.5)

ot G2 s

and next two terms give
y?{f(x)+by}2+c(t).[ox[l—%f’(§)}f(f)dg
> c(t)fox{l—% f'(§)} f(£)de.
Using (2.6), (2.7) and (2.8) in (2.5), we have
V() 2O 1 110 (o Loy 2o
+af [y (@)dods+] [ 2* (6)deds.

> d,x* +252y +252 +AJ' _f y d9d3+5j f z2?

where

1 1
+ 4a(t)(Z,ua(t)—l) z? 25523/2 +Ec$zzz.

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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and integrals

y) I 0)dods and & j j 0)ddds are non-negative.

Thus, for some positive constants ¢,¢,0, and &,, where D, ={%(51£153),%62,%52} small enough such
that
V(% ¥,2) 2 D, (3 +y: +2%). (2.10)
For the time derivative of the Lyapunov functional (2.3), along a trajectory of the system (1.2), we have
d 1.
—V (%, Y12 jf )d& + ub'(t jg )dn + pc'(t (x)y+—a(t)_[oy[h(x,n)—a]ndn
—[b(t)g(y)y—yc(t)f’( y* |-[wa(t)h(x y)-1]z* +a(t yjoyhx(x,n)ndn
j (s))z(s)ds+c(t yj_ f'(x(s))y(s)ds
+yb(t)z ) ( (s))z(s)ds+ pc(t) zj '(x(s)) y(s)ds
! t [ t 2
+Ar(t)y* +or(t)z’ + ar (t)J.t—r(t)y (s)ds+or (t)Lr(t)z (s)ds

t
—/It_() s)ds— 5J' t) s)ds.

From (4) of Theorem 1, |f | M., |g’(y)|§M2 and using 2uv <u” +v?, we have that

Y[, f'(x(s))y(s)dssd0M1|y|j:_r(t)|y(s)|ds

<S4,Mr()y’ +1dUMj ? (s)ds.

? (2.11)
c(t)zf,, ' (x(s)) y(s)ds < ud, M, [2[[ [y (s)]ds

1

Sa'ud“er( )z’ +2yd M j 2(s)ds

Similarly, we obtain
t ! 1 1 t
DY 8 (¥(5))2(5)d0 <5 Mar (O + 5 Mo 2 (5)ds (212)

yb(t)z.[;r([)g’(y(s))z(s)dsS%ydoMzr(t)zz+%yd0M2Lir(t)zz(s)ds
Thus,

iv (%, ¥ z)<cC j f(E)dE+ub'(t jg )dn + pc'( )f(x)y+%a’(t)fﬂy[h(x,n)—a}ndn
—[b(t)g(y)y—,uc(t)f’(x)yﬂ—[,ua (t)h(x,y)-1]z° +a(t yjyhx(x,n)ndry
+%(doMz+d0Ml+/1) (t)y*+= (yd M, + ud,M, +5)r(t)z?
+EdOM1(y +1)-A(1- r'(t))}fr(t)yz (s)ds
+Bo|0|\/|2 (u+1)-5(1- r’(t))}xj:_r(t)zz (s)ds.
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If y=0,then b(t)g(y)y—uc(t)f'(x)y?=0.1f y=0,we can rewrite the term as

b(t)#—ﬂc(t) f ’(x)} y? = [bb(t)— ucc(t) |y* = 4, [b- uc]y?, (2.13)

where by (3) of Theorem 1, b(t)>c(t)>¢,>0.
And by (1) and (2) of Theorem 1,

2O [nxn)-elan-| ) 22 ey (1)
1

<y 20 e 10|y

2
<[, =0, (b—uc)]y?.

According to (2) of Theorem 1, h(x,y)>1+a andby (3), wa(t)>ua, >1 and certainly ua,(1+a)>1
thus,

(2.14)

[ua(t)h(x,y)-1]2° <(ua, (1+a)-1)2?, (2.15)
a(t)yjoyhx(x,n)ndn <0
and by (3) and (4) of Theorem 1, we have that
C'(t) [ 1 (£)dE + b (t) [ g (1) d + e’ (t) £ (%) y <O

forall x,y and t>0.
Thus, from (2.11), (2.12), (2.13), (2.14) and (2.15), we have

%V (%0 Yooz ) S=[ £, =0, (b—uc)]y* —[ ua, (1+a)-1]7?

+%(d0M2 +d,M, +2)r(t)y? +%(,ud0M2 +pd M, +68)r(t)z2?
1 t
+[EdoMl(y+1)—/l(1— ﬂ)} [ (s)es

+ EdOM2 (u+1)- 5(1—ﬂ)} x Lt,r(t)zz (s)ds.

If we choose
B doMl(,u +l)

STy

>0

and
~ d,M, (u+1)

T2 p)

>0

and using r(t), we obtain

%V(xuyuzf-%{zbz-el<b_yc>]—m’(“”z*Ml><1—ﬁ>+doMl<u+l)J}yz

_%{Z[yao (1+a)_1]_y[”d°(M2+M12§1_’B)+d°M2(”+1ﬂ}zz.
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Choosing
i o[, —t,(b-pe)](1-8) 2[ ua, (1+2)-1](1- B)
4 d, (M, +M,)(1=B)+ d,M, (z+1) zzd, (M, + M, ) (1= B)+d,M, (z+1) [
we have
%V(xt,yl,zl)s—54(y2+zz), (2.16)

for some ¢, >0.

Finally, it follows that %V(xt,yt,zt)=0 if and only if y, =z =0, %V (#)<0 for ¢=0 and for

V 2U (|¢(0))=0.

Thus, (2.10) and (2.16) and the last statement agreed with Lemma 2. This shows that the trivial solution of
(1.1) is asymptotically stable.

Hence, the proof of the Theorem 1 is now complete.

Remark 2.1 If r(t) isa constantand (1.1) is the constant co-efficient delay differential equation
X" +ax"+bx'(t—r)+cx(t—r)=0, then conditions (1)-(4) reduce to the Routh-Hurwitz conditions a > 0, ¢ > 0
and ab>c. To show this we set a(t)=b(t)=c(t)=1 and h(x(t),X(t))=a, g(x(t-r(t)))=bx(t-r)
and f(x(t- r(t))z‘z ex(t-r).

Remark 2.2 If (x(t),x’(t)): a and a(t)=b(t)=c(t)=1 in (1.1), the non-autonomous Equation (1.1)
reduces to the autonomous equation considered in Sadek [4].

3. The Boundedness of Solution

Theorem 2 We assume that all the assumptions of Theorem 1 and
|p(t %y, x(t=r (1), y(t-r(1)).2|<q(t),

j;|q(s)|ds <P <o

hold, where P, is a positive constant.
Then, there exists a finite positive constant K such that the solution x(t) of Equation (1.1) defined by the in-
itial function

X(t)=¢(t), xX(t)=¢'(t), x"(t)=¢"(t)
satisfies the inequalities
(<K, [¥(t)<K, [x"(t)<K
forall t>t,>0,where geC?[t,—r(t),t,,R] provided that

2[ro—ti(b-ue)]@-p)  2[ua,(1+a)-1](1-5) }

y < min{do(Mz N Ml)(l—ﬂ)+doM1(ﬂ+l)"UdO(MZ + Ml)(l—ﬂ)+doMz(ﬂ+l)

Proof of Theorem 2

As in Theorem 1, the proof of Theorem 2 depends on the scalar differentiable Lyapunov function V (xt, Yeo zt)
defined in (2.3).

Since p=0,in(1.1).

In view of (2.16),

EV(xt,yt,Zt)é\/'(l_z)(xwynzt)+(y+ﬂ2)\P(tvxl yx(t=r (1) y(t-r(t)).2)

dt
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Since \/'(1.2)30 forall t,x,y,z thus

d
EV(Xx:YpZt)S—@;(yz +22)+(|y|+y|z|)q(t)

Hence, it follows that

OV (0302) <=8, (v 4 2°) (v 12 a(0) < (] + )

for a constant &; >0, where &, = {1, u} .
Making use of the inequalities |y|<1+y® and |z|<1+ 2%, itis clear that

d
Ev(xt,yt,zt)sés(2+y2+22)q(t).

By (2.10), we have (X* +y?+2°) <D,V (x,y,2),
Hence,

2V (%0%02) <6 (24 DV (%, %2))a (1)

or

d
EV(XUyl,zt)S5GQ(t)+56V(xt,y“zl)q(t)

where &, = max{255,55Dl‘1} .
Multiplying each side of this inequality by the integrating factor exp(—ésj';q (s)ds) , We get

SV (%, Y02 )ex0( 3,13 (5)ds) - A (x.v..2)a(t)exp (-2, fa(s) s
<6, (t)exp(—éﬁﬁq (s)ds).
Integrating each side of this inequality from 0 to t, we get, where V (0)=(x(0), y(0),z(0)),
Vexp(—56jsq(s)ds)—v(0)sl—exp(—§6qu(s)ds)
or
V(xt,yt,zt)sv(O)exp(56j;q(s)ds)+exp(§6.[;q(s)ds)—l.
Since exp(—dej;q(s)ds)sl and using the fact that J’;q(s)dsg P, forall t, this implies

V (%, ¥,,2,) <V (0)exp(5;P, ) +[ exp(5,R,)-1] fort=0.

Now, since the right-hand side is a constant, and since V (X, ¥,,z,) > as x*+y*+z°> -, it follows
that there exista K >0 such that

X(t)<K, |y(t)<K, [z(t)<K fort=0.
From the Equation (1.1) this implies
|x(t)|£ K, |x’(t)|£ K,

x”(t)| <K fort>0.

The proof of Theorem 2 is now complete.
Remark 3.1 If r(t) is a constant, g(x'(t—r(t)))=g(x), h(x(t),x'(t))=1 and p=0 in (L1), the
result obtained reduces to Omeike [6] and a result of Tunc [10].

4. Conclusions

The solutions of the third-order non-autonomous delay system are asymptotically stable and bounded according
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to the Lyapunov’s theory if the inequalities (2.1) and (2.2) are satisfied.
Example 3.1 We consider non-autonomous third-order delay differential equation

X" (t)+ (2 +ﬁ][8+ (x(t))+ (x’(t))z] X" (t)

o 2

(-r(0) o
4 x(t—r(t)
9+ —— (| 12X(t —r(t —_
+( +|sint|+l]{ X( r())+ sint+3 :l
_ 1
1+t2+xz(t)+x2(t—r(t))+x’2(t)+x’z(t—r(t))+x”(t)
with equivalent system of (3.1) as:
X'=y
y'=1
, 2
z :_(2+|sint|+1j[8+ X2 (t)+y? (t)]z(t)
18412 [5y+ Y }— 9+ T [12x+#} (3.2)
lsint|+1 sint+1 lsint|+1 sint+3
4 t 1 4 t 1
18+ ——— 54— |d 9+ — 122+—M—1|d
J{ +|sint|+1JL-f(t)[ +sin(s)+1J SJ{ +|sint|+1jj.t-r(f)( +sin(s)+3j s

1
+1+t2+x2(t)+x2(t—r(t))+ y2(t)+ Y (t=r(t))+z(t)

comparing (1.2) with (3.2), it is easy to see that

2+#
lsint|+1

J:a(t)2a0:3

18+mJ:b(t)zbo =20

4
9+WJ:C(1:)ZCO :ll

} , it is clear from the equation that

f(x)

X

The function f (x)= [12x +

sint+3

>12=6,>0, x=0

The function g(y)= {Sy P J , it is clear from the equation that

sint +
g(y)

>5=b>0, y=0

<

f'(x)<12=c, ¢>0
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h(x,y)=8+x*+y?
8+x°+y*>8=1+7, a=7

i> >1 we choose —l
2 "3 M=%

d,>220>11>¢,, wechoose, d, =25and ¢, =10

also,
</?,<8, wechoose, /, =4
| "(X)|=12=M,
l9'(x)|=5
Since
0<p<l wechoose,ﬂ=%,
we have

It follows that |r(t)| <

. 16 84 16
y<min , =
3705 1459 3705

, if the delay is increased beyond this range a limit cycle appear, followed even-

tually by a period-doubling cascade leading to chaos.

Finally,
B[t x(0). ¥(0) x(t-r (1)), y(t-r (1)) 2()
_ 1 1
_1+t2+x2(t)+x2(t—r(t))+y (t)+y*(t=r(t))+z(t) 1+t
and

jq ds_f ! ds=%<oo.

SZ

Thus, all assumptions of Theorem 1 and Theorem 2 are held. That is, zero solution of Equation (1.1) is
asymptotically stable and all the solutions of the same equation are bounded.
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