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Abstract

For a family F of meromorphic functions on a domain D, it is discussed whether F is normal on D if for
every pair functions f(z), g(z)eF, f'—af" and g'—ag" share value d on D when n=2,3, where a,
b are two complex numbers, a = 0,0,b = . Finally, the following result is obtained:Let F be a family of

meromorphic functions in D, all of whose poles have multiplicity at least 4 , all of whose zeros have multi-
plicity at least 2. Suppose that there exist two functions a(z) not idendtically equal to zero, d(z) analytic

in D, such that for each pair of functions f andgin F, f'-a(z)f* and g'-a(z)g

2 share the function

d(z).If a(z) has only a multiple zeros and f(z)= whenever a(z)=0,then F isnormalin D.

Keywords: Normal Family, Meromorphic Function, Shared Value, Differential Polynomial

1. Introduction and the Main Result

In 1959,Hayman[4] proved

Theorem 1.1. Let [ be meromorphic functions in
C, n be a positive integer and a, b be two constant such
that n>5, a#0,0and b+ . If

f'=af" #b

then f is a constant.

Corresponding to Theorem 1.1 there is the following
theorems which confirmed a Hayman’s well-known con-
jecture about normal families in [5].

Theorem 1.2. Let F' be a meromorphic function family
in D, n be a positive integer and a, b be two constant
such that a#0,0and b+ . If n>3 and for each
function f € F, f'—af" #b, then F is normal in D.

This result is due to S. Y. Li [8](n>5), X. J. Li [9]
(n=5), X. C. Pang [10](n=4), H. H. Chen and M. L.
Fang [2](n=3).

In 2001, M. L. Fang and W. J. Yuan [3] obtained

Theorem 1.3. Let F' be a meromorphic function family
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in D, a, b be two constants such that a # 0,00 and b # o .
If. for each function feF ., f'—af* #band the poles
of f(z) are of multiplicity 3 at least, then F is nor-
mal in D.

Let D be a domain in C, f(z) be meromorphic on
D,and. aeC

Ef(a)=f’l(a)mD={ZeD:f(z)za}

Two functions f'and g are said to share the value a if
E,(a)=Eg(a). For a case n>4 in Theorem 1.2, Q.
C. Zhang [14] improved Theorem 1.2 by the idea of
shared values and obtained the following result.

Theorem 1.4. Let F be a family of meromorphic func-
tions in D, n be a positive integer and a, b be two con-
stant such that n>4,a+# 0,0 and b+ o . If, for each
pair of functions f and g in F, f'—af"and g'—ag"
share the value b, then F is normal in D.

In this paper, we shall discuss a condition on which F
still is normal in D for the case 2 <n <3 and obtain the
following result.

Theorem 1.5. Let F be a family of meromorphic func-
tions in D, all of whose poles have multiplicity 2 at least,
and a, b be two constant such that a +# 0,00 and b # © .
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If. for each pair of functions f and g in F, f'—af’ and
g'—ag’ share the value b in D, then F is normal in D.

We denote f #(z):m for the spherical de-

1+ | f (z)|2
rivatives of f'(z) .The following example imply that the
restriction of poles in Theorem 1.5 is necessary.
Example 1. [14] Let D={z:|z|<1} and F={f},

where

1
- zeDn=12-
TR LR

Then for each pair m, n, f!—f. and f'-f>
share the value 0 in D. But F' is not normal at z=0

since f (1/\/2) —> .

But we also have the following examples which imply
that on the same as restriction of poles in Theorem 1.5 F
is not normal in D if for each pair of functions f and
g in F, f'—af* and g'—ag’ share the value b on
D.

Example 2. [3] Let f,(z)= nz/ BN —1)2 for
n=12--,and A= {z : |z| < 1} Clearly,

£(z)+ 12 =n(zn 1) =0,

and f,(z)only a double pole and a simple zero. Since
£/ (0)=n—>w,as n—oo from Marty’s criterion we

have that { £ (z)} is not normal in A In fact, in the-
present paper we also obtain two results as follows.

Theorem 1.6. Let F be a family of meromorphic func-
tions in D, all of whose poles have multiplicity 4 at least,
all of whose zeros have multiplicity 2 at least, and a, b be
two constant such that a # 0,0 and b # o . If, for each
pair of functions f and g in F, f'—af* and g'—ag’
share the value b in D, then F is normal in D.

Theorem 1.7. Let F be a family of meromorphic func-
tions in D, all of whose poles have multiplicity at least 4 ,
all of whose zeros have multiplicity at least 2. Suppose
that there exist two functions a(z)not idendtically equal
to zero, d(z) analytic in D, such that for each pair of
functions fand g in F, f'—a(z)f* and g'-a(z)g’
share the function d(z) in D. If a(z) has only a
multiple zeros and f(z)# o whenever a(z)=0 then
Fis normal in D.

The following example shows that the condition
f(z)#owhen a(z)=0 in Theorem 1.7 is necessary.

Example 3. [7] Let D={z:|z|<1} and Fz{ﬁ,}

1
where f, (z)=—,z€ D,n=1,2,---. We take
nz
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a(z)=-4z" and d(z)=0. Clearly, F fails to be nor-
mal at z=0 However, all poles of f, (z)are of multi-
plicity 4, and for each pair m, n, f,—a(z)f,’ and
f!—a(z)f,; share analytic functions d(z) in A.

2. Lemmas

To prove the above theorems, we need some lemma as
follows:

Lemma 2.1. ([1,2]) Let f(z) be a meromorphic
function in C, n be a positive integer and b be a non-zero
constant. If ["f'#b, then f is a constant. Moreover
if f is a transcendental meromorphic function, then
f”f’(z) assumes every finite non-zero value finitely
often.

Lemma 2.2. ([1]) Letf(z) be a transcendental me-
romorphic function with finite order in C. If f (z) has
only multiple zeros, then it’s first derivative f'assumes
every finite value except possibly zero infinitely often.

Lemma 2.3. ([12]) Letf(z) be a non-polynomials
rational function in C. If f(z) has only zeros of multi-
(cz +d )2

az+

plicity 2 at least, then f = where a, b, ¢, d

are four constants, a#0,c#0.

Lemma 2.4. ([4]) If f (z) be a transcendental mero-
morphic function in C, then either f (z) assumes every
finite value infinitely often or every derivative f" as-
sumes every finite value except possibly zero infinitely
often. If [ (z) is a non-constant rational function and
f(z) #a, ais a finite value, then " assumes every
finite value except possibly zero at least once.

Lemma 2.5. ([11]) Letf(z) be a transcendental
meromorphic function with finite order, all of whose ze-
roes are of multiplicity at least k+1, and let P(z) be
a polynomial, P(z) is not idendtically equal to zero.
Then % (z)—P(z) has infinitely many zeros often.

Lemma 2.6. ([6]) Letf(z) be a non-polynomial ra-
tional functions in C, all of whose zeroes are of multi-
plicity at least 4. Then f'(z)—z" has a zeros at least
often.

Lemma 2.7. ([13]) Let F be a family of meromorphic
functions on the unit disc A, all of whose zeroes have
multiplicity p at least, all of whose poles have multiplic-
ity q at least. Let a be a real number satisfying
—p<a<gq. Then F is not normal at a point z, € A if
and only if there exist

1) points z, e A, z, > z,;

2) functions f, € F ; and

3) positive numbers p, — 0

such that
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oyt (z,+p.8)=g,(5) > g(&)

spherically uniformly on each compact subset of C,
where g(ff) is a non-constant meromorphic function
satisfying the zeros of g(é) are of multiplicities p at
least and the poles of g((f) are of multiplicities q at
least. Moreover, the order of g(ff) is not greater than 2.

3. Proofs of Theorem 1.5.-1.7.
3.1. Proof of Theorem 1.5.

Suppose that there exists one point z, € D such that
is not normal at point z,. Without loss of generality we
assume that z, =0. By Lemma 2.7, there exist points,
z, €A,z —> z,, functions f, € F and positive numbers
P, = 0such that

g (&)=p1(z+p¢)= 2(8) 3.1)

spherically uniformly on each compact subset of C,
where g(f ) is a non-constant meromorphic function
with order <2, all of whose poles are of multiplicities k
at least.

From (3.1) we have

o iz p6)-af) (2,4 p,8) -0 (3.2)

=g)(§)-agj (&) =py b= g'(¢)-ag’
By the same method as [14], from Lemma 2.1 it is not
difficult to find that g'—ag"” has just a unique zero

£=4.
Set g=1/¢ again,if n>3then

g'-ag" =-[p'p” +a]/y’
thus [go’go"’z +a}/(p” has just a unique zero &=¢,.

Thus &, is a multiple pole of ¢ or else a zero of

1 n-2

PP +a.
If &, isamultiple pole of ¢, since

(@9 +a] / 9"

has only one zero &, then ¢'¢"”+a#0. By Lemma
2.1 again, ¢ is a constant which contradicts with g is
not any constant.

So we have that ¢ has no multiple poles and
@'¢p'+a have only a unique zero. By Lemma 2.1, and
Lemma 2.4, we have ¢ is not transcendental.

If ¢ is non-constant polynomial, then

r_n— !
o ra=A4(5-¢) .
Since all zeros of w are of multiplicity 2, then />3 .

Denoting y for go"'l/(n—l) ,=p"" (n—l) , we

Copyright © 2011 SciRes.

have y'=A(E-&) —aand y" = 4l(E-¢&) ™ . Since
all zeros of ¢ are of multiplicity 2(n—1) >4, then
'//(5) * Oaé: * 50 :

If v (é’o) =0, then l//’(§0 ) = 0 which contradicts with
y'(&)=-a#0.So y isa constant.

Next we prove that there exists no rational functions
such as . Noting that w = (p”"/(n —1) and y has
no multiple pole, we may set

(ég_é)ml (é‘—é‘z)mz ...(ét_ggs)m.\-
(77_771 )”_1 (77_772)”_1 -.,(n_nt )nfl

where A4 is a non-zero constant,s >1,>1,m,,m,,---,m

s
are s positive integers,m, >2(n—1),(j =1,2,---,s) . For
a convenience of stating, we denote

w(&)=4 (3.3)

m=m +m,+---+m, (3.4)
then m > 2(n—l)s .
From (3.3), we have

(o (E=8)" - (6-8)" " h(8) _n(9)
v(e)=4 (n-n)" - (n-n)" a(£)’

3.5)

where

h(&E)=[m—t(n=1)]&"" +a,, &+ +a,
p(E)=(&=&)" " (&=& )" (&)
ql(c’?):(n_m)n”'(77_’71)”» (36)

are three polynomials. Since l//’(f)-ka has only a
unique zero ¢&, then there exists a non-zero constant B
such that
/
: B(s-¢
v (§)+a: n ( nO) n’ (37)
(m=m) (n-m)" - (n-n,)

SO

B(£-&) p, (&)

l//"(§)= (77_’71)"+1 (77_’72);“1 ”'(77_77;)

(3.8)

n+l

where p,(&)=(I-nt)& +b_ & +---+b, is a poly-

nomial. From (3.5) we also have

(E-&)" " (¢-&)" " (&)
(’7 _ 771 )/H—l L (77 —I]t )n+1

where p, (&) isa polynomial also.
We denote deg(p) for the degree of a polynomial
p(&), from (3.5) and (3.6) we may obtain

deg(h)<s+t+1

v'(&)=4

(3.9)

3.10
deg(p, ) <m+t+1, deg(q)=nt (3.10)
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From (3.8), (3.9) and (3.10) we may obtain
deg(p,)<t,
deg(p,) <2t+25-2.

(3.11)
(3.12)

Since y'(&)+a has only a unique zero & =¢, and
m]_221 (jzlaza..'as)a

then & =& (j=12,5).From (3.8),(3.9) and (3.11)
it follows that deg(p3 (5)) >[-1 then

m—2s <deg(p,)<t, (3.13)

Since m; >2(n—-1), then m>2(n-1)s, so by (3.13)
we have 2s<¢.
If I>nt, from (3.8), (3.9) and (3.12), we have

nt—lSl—lSdeg(p3)S2t+23—2

Then, #<2s—1. Combining with above inequality
2s <t , we bring about a contradiction.
If [ <nt,then from (3.5) and (3.7) we have

deg(p,) = deg(q)

that is m—s+deg(h)=nt JIf m:t(n—l) , then
deg(h)£s+t—2. So

m—t(n—l)=s+nt—deg(h)—t(n—1)
=s+t—deg(h)
>s+t(s+1-2)=2

this is impossible. Thus, m #¢(n—1) and
deg(h)=s+1t—1.Therefore, m=1+¢(n—1). Again from
(3.8) and (3.9), we have m—2s <t. Thent <2s—1, this
contradicts to 2s <¢.

This completes the proof of Theorem 1.5.

3.2. Proof of Theorem 1.6.

For any points z, € D, Without loss of generality, we
set z, =0 . Suppose that F' is not normal at z, =0, then
by Lemma 2.7, we have that there exist a subsequence
f., < F, points sequence z, € D, and a positive num-
bers p,, p, > 0", such that

g.(&)=1p, £ (z,+pS)—>2($),

spherically uniformly on each compact subset of C,
where g(f ) is a non-constant meromorphic function
with order< 2, all of whose poles are ofmultiplicities at
least 2, all of whose zeros are of multiplicities at least 4.
From (3.14) we have
1

— (g 2y, 8 *a 3.15
gﬁ(g)(g,,(é)w)m a6 (3.15)

If g'(£)+a=0, then g(&)=-aé+c,, this contra-

(3.14)

Copyright © 2011 SciRes.

dicts to which all zeros of g(ff ) have multiplicity at
least 4. If for any point £eC, g'(&)+a#0, then By
Lemma 2.2, we have that g(&) is not transcendental in
C, so g((f ) is non-constant rational function in C. By
Lemma 2.3 we also have that

(c&+d)
&)=
a contradictions. Therefore, [ g'(¢ )+a} / g’ (&) havea
zeros. We may claim that [g'(§)+ azJ/g2 (£) has a uni-

que zero &+ &, . Otherwise, suppose that &,&  are two
distinguish zeros of

[g'(&)+a]/g(¢)

then there exists a positive number 6 >0 such that
N(&,5)NN(&,5)=¢ .On the other hand, by Hur-
witz’s Theorem we can find two point sequences
& eN(&,5), & eN(&,5)Such that

£~ &é > & and
g (&) gl (&) +al+pd=0
(&) (&) a]+p2a=0
then, we have
1z +p8,)-al (z,+p,8,)-d=0,

fn;(Zm +Pm§;)—a,§ (Z,,,+,0,,,§;)—d:0.

From the hypothesis that for every pair functions f,
g in F, f'(z)-af* and g'(z)-ag’ share complex
number d in D, we have

iz +pE)-afl (2, +p&)-d =0,
Iz +p.8)-dfp (2, +p,E)-d=0.

Fixm,let n— oo, then f/(0)—af.(0)-d=0.

Since f) (z) —af? (z) —d has no accumulation points,
so for sufficiently large n we have

Zn +pn§n = O’ Zm +pm§:;l = O
then

P P

This contradicts to N(&,8)\N(&.5)=¢ . Thus,
[g’(§)+a]/g2 (£) has a unique zero¢ =¢,. Further-
more, we have that either & =¢; is a multiple poles of
g(&) or £=¢& is a unique zero of g'(&)+a. If
£=¢& is amultiple poles of g (&), then g'(&)+a=#0,
for any £e C. By Lemma 2.2 and Lemma 2.3, we im-
mediately deduce that g(&) must be a constant in C,
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which contradicts to g(¢&) is a non-constant mero-
morphic functions in C. Therefore, g(&) has only a
simple poles and g'(&)+a has a unique &=¢&. But
since g(&) has only a multiple poles, so we have that
g(&) is entire in C and g'(&)+a has a unique
&=¢&,. Also by Lemma 2.2, we have that g(g“) is a
non-constant polynomials, all of whose zeros are of mul-
tiplicity at least 4. Setting

g(&)=4(5-4)"(¢-&)"

we have

g(&)=A(E-&)"(e=&)" " (e-&)" " h(&)

Where h(&)=m& ™ +a, & ++a_,,A#0,
a,,a,,"++,a,_, are some complex constants,

s Us
j(j—1,2, ,s) are s positive integers, m; >4, and

m=Y/" m,. Thus, we have
g(&)ra=B(¢-4),
where/>3 . So we have that g"(&)+a=BI(&-¢) .
If g(&)=0,then g'(&)=g"(&)=¢g"(&)=0.

But g'(&)=-a=0,a contradictions.
Therefore, F is normalat z=0.

(&-¢&)"

3.3. Proof of Theorem 1.7.

Forany zeD,if a(z)=0, we may give the complete
proof of Theorem 1.7 by the same argument as Theorem
1.6, we emit the detail. In the sequel, we shall prove that
F is normal at which a(z)=0. Set a(z)=zb(z),
where b(z) is analytic at z=0, b(0)=1, r is a
positive integer, r>2.

1

I ={F:F(z)= er(z),f(z)eF}

For every function F(z) in £, from the hypothesis
in Theorem 1.7, we can see that all zeros of F(z) are
of order at least 4, all poles of F (z) are of multiplicity
at least 2.

Suppose that F; is not normal at z=

0, then by

Lemma 2.7, there exists a subsequence F, c F{, a point
n’ Zn
0,> P, = 0", such that

£.(8)=p'F, (z,+p.8)
=p (z,+p8) [ (z,+pE) (3.16)
—g(¢)

spherically uniformly on compact subsets of C, where
g(&) is a non-constant meromorphic function on C,
all of whose zeros are of multiplicity at least 4, and all of
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whose poles are multiple. Moreover, g(&) has an or-
der at most 2.

Now we distinguish two cases:

Case 1. z,/p, — . Without loss of a generalization,
we assume that there exists a point z’such that
z, > z,|/|<r <1, we have

£z, +p.8)
g,; (‘f) _ r
pj (Zn +pn§)r gj (f) o (Zn +pn§)r+]gn (5)

, -1
_ 1 ,. gg+r[zn } 1
p: (Zn +pn) gn '0" g” (é:)

(3.17)

For the sake of convenience, we denote S, for the set
of all zeros of g(&),S, for the set of all zeros of
g'(£),and S; for the set of all poles of g (&) .

nce fim (&) _ (&) 1 i
Since 1 = o) Te@)
ince ,,LIEQ gi (5) gz (5) ng}-}a g, (f) g(é) unit

formly on compact subsets of C\S,, and
r

lim ———
s Zn/(pn +§)

thus lim £, (z, + p,&) =, uniformly on compact sub-

=0 uniformly on compact subsets of C,

sets of C\(S;US,US;). Thus, it is not difficult to see
that

£z, +p.&)—al(z,+p,E) 1 (2, +p.&)
a(z,+p,&) 17 (z,+p,E)—d(z, + &)

B d(z, +p.¢) (3.18)

a(z, +p,&) 17 (2, +p,8)—d(z,+p,&)
g(¢)
b(z")
uniformly on compact subsets of C\(S,US,US;). If
—iéf)—l #0,then g'(&)#—b(2'), for any

b(')
£eC\(5,US,US,). Thus, g'(&)#-b(z') for any
£eC. By Lemma 2.5, we can see that g(&) is not
transcendental in C, but is a rational function. Also from
Lemma 2.3, we deduce that g (5) is constant, which
contradicts to the fact that g(&) is non-constant. On
the other hand, it is easy to see that g'(&) is not iden-
tically equal to —b(z'). Hence, g'(&)+b(z') has one
zeros at least in C. In fact, by the same as the arguments
in Theorem 1.5 and Theorem 1.6, we deduce that g (&)
has a unique zero ¢=¢,. By Lemma 2.5, we can see
that g(&) is not transcendental in C, so g(&) isnon-
constant rational function in C. For a non-constant poly-

%_
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nomials g(&), and noting that g(&) has only a zero
with multiplicity at least 4, we have

g(&)+b(z)=B(£-¢), 123

Thus, g"(&)=BI(¢-¢, )H. Hence, g(¢) has a zero
E=& at most. If £=¢ is a zero of g(&), then
g,(go) = g”(go): gm(go) =0. But g'(go) = —b(z') =0,
a contradiction.

In the sequel, we denote deg(p) for the degree of a
polynomial p(¢&). If g(&) is non polynomials ra-
tional functions, then we set

_Ema)(E-g)" (e 8)
(5‘771)nl (5_772)"2 "'(5_7%)”’

Where m; 24, j=12,5; n;22, j=12,--1.

g(¢) . (3.19)

m =im,- 2 4s,q :2nk > 2t (3.20)
Then,
i P& AE=g)" (g T h(S)
g 5 - = ny+1 n, +1
) 4(%) (E-n )" (e-n)"
(3.21)
where

h(g):(m_q)ésﬂfl +a0§x+t72 +.“+as+t_2’
deg(h)<s+t—1

n (&) A(g_ffl)mH (§—§2)m271 (=€ )m,\-—l n(£)
ql(g):( 771)n]+1(§—772)"2+1 ...(5_77’ )"r+1

i
Since g'(£)+b(z') has a unique zero & =&, so we
set

_ B(g_fo)l
(E=n)" - (E-n)

where B is a nonzero constant. Then from (3.22), we
have

g'(&)+b(2) (3.22)

ny+1

3(5_50)171 D> (5)
(5_771)"1”“'(5_77,)"’”

where p,(&)=(l—g—1)& +b,E™ +---+b_, is a poly-
nomial, deg(p,)<t.
From (3.21), it follow that

oo AE=EYT o (E=E ) py(8)
g é: = m+2 n+2
) (E=m)" " (&=n)"

(3.23)

g"(&)=

(3.24)

where

Copyright © 2011 SciRes.

P(&)=(m=a)(m=g+1)
. §2H2t72 + cong+2t—3 Tt G

is also a polynomial, deg(p;)<2s+2¢-2.
We distinguish five cases to derivative a contradiction:
Subcase 1.1. m=¢q . Then from (3.21), we have
I=g+t.So,

deg(p,)=t—i,,1<i, <t,
deg(h)=s+1—1=hy, 1<h <s+t-1
and
deg(p,)=25+26-2—i;, 1<t, <25+2-2

From (3.23) and (3.24), we have i, =i +1. So also
from (3.23) and (3.24), we also have /—1<deg(p,).
Thus, we have [<2s+2t-1-i =2s+2t—i,.

Since / =g+t andg >2¢, then we have ¢ <2s—1i,.
On the other hand, from (3.23) and (3.24), we also have
m—2s <deg(p,). Since m>4s, we have 2s<7—i,.
This is impossible.

Subcase 1.2. m=¢g—1.Then /=qg+¢,

deg(p,)=t-i,, 1<i,<t, deg(h)=s+t-1
and
deg(p;)=2s+21-2—i5, 1<, <2s+2t-2

Similarly to Subcase (1.1), from (3.23) and (3.24), we
also have that i, =i, +1.

Also from (3.23) and (3.24), we have /—-1<deg(p,),
then, we have #<2s+1-i, On the other hand, simi-
larly to the argument of Subcase (1.1), from (3.23) and
(3.24), we also have m—2s<deg(p,)=t—1i,, then
2s <t-1-1i,. This also is impossible.

Subcase 1.3. m < g—2. Then we still have
l=q+t>3t,deg(p,)=t—i,,1<i, <t,deg(h)=s+1-1,
and deg(p,)=2s+2t—2. Therefor, /<2s+2t-2, so
t<2s—2. Similarly, we have m—2s <2s+¢—1i,, then
2s <t—1i,. This is a contradiction.

Subcase 1.4. m=q+1. Then/ < g+¢,
deg(h)=s+t—1, deg(p,)=2s+2t-2,and
deg(p,)=1t—1,,0<i, <r. From (3.23) and (3.24), we
have m <2s+¢—i,. Thus, 2s<t—i, and t <2s—-1-1i,.
This is impossible.

Subcase 1.5. m>g+2.Then [ >qg+t,
deg(h)=s+t—1,deg(p,)=2s+2t—2, anddeg(p,)=1.
From (3.23) and (3.24), we have
I-1<deg(p;)=2s+2t—1 and m-2s<deg(p,)=t¢.
So, we have that t<2s—1 and 2s<¢. This is a con-
tradiction.

Case 2. Suppose that there exists a complex number

aeC and a subsequence of sequence {zn 2, 1}, still

noting it z,p,', such that z,p,' — . We have a con-
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verges
H,(£)=p,'F,(p,&)=p,'F, (2, +p,(£-2./p,))
—>g(f-a)=2(%)
(3.25)

spherically uniform on compact subsets of C. Clearly, all
zeros of g (&) are of multiplicity at least 4, all poles of
£(&) are of multiplicity at least 2. For each & =0, it
is easy to see that there exists a neighborhood N(&,,5)
of &, such that &"H, (&)= &£"g(&), the convergence
being spherically uniform on N(&),8). For & =0,
since ¢&, is the pole of g(f) , then there exists 6 >0,
such that 1/g(&) is analytic on D, ={§:|§|<25},
I/H, (&) are analytic on D, = {§:|e§| < 25} for suffi-

ciently large 7. Since

VH,(£)=p,& 1, (£,6)
then & =0 is a zero of 1/g(&) has order at least r,
we can deduce that 1/ (g‘f’Hn (f)) converges uniformly

to 1/(5’@(5)) on
Dy, ={&:]¢ < 5/2}

Hence, we have
1

G - -
() oy 1 (2.8)

spherically uniform on compact subsets of C. It follows
that G(0)#0 from f(&)#o whenever a(&)=0 for
& e D, hence all of zeros of G(&) have order at least 4,
all of poles of G(&) have order at least 2. Noting that

(G (£)+b(p,£)¢7 ]G (£)+p,7d (p,€)
=2 =1 (p.E)+a(pE) £ (p,E)+d(p,£)}
N [G’(§)+§’]G’2 (¢)

={'H,(§)>¢"8(8)  (3.26)

(3.27)
If [G'(§)+§f]G-2(§)Eo,then G'(&)+& =0, 50

G'(&)=—-¢, G(&) :_f;l “C,

for any £eC. Since G(0)#0, then C,#0. Also
since G(&) has the zeros of multiplicity at least 4, then
G(&)#0, this is a contradiction. Therefore,

[G'()+¢" ]G ()
is not identically equal to zero.

If [G'(§)+§f]/c;-2 (&) forany &eC,then G(¢&)
has no multiple poles and G'(&)+&"#0. Note that
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G(&) has only multiple poles, so G (&) is entire on C.
Also by Lemma 2.5, we have that G(&) is not tran-
scendental in C, and then G(&) is a polynomial. Thus,
G'(&)=—-&"+C,, where C,#0. We have G"(&)=-ré",
then from G(0)#0 and a multiplicities of every zeros
of G(§) it follows that G(&)#0 forany & e C, this
is impossible. Hence, [G'(§)+§"]/G'z(§) has some
zeros. In fact, by the same argument as the Case 1, we
may deduce that [G'(§)+§’]/G2 (£) has a unique
zero & =&, . Thus, we have that either £ =&, is multi-
ple poles of G(&) or £=¢& is a unique zero of
G(&E)+é".

Similarly, if &=¢, is multiple poles of G(&), from
that [G'(&)+¢"]/G*(£)has a unique zero &=¢, it
follows that G'(&)#—¢" for any &eC. By Lemma
2.5, we have that G(<§ ) is not transcendental. Again by
Lemma 2.6, we have that G(§ ) is a constant, which is
a contradiction. Hence, G(;‘ ) has no multiple pole and
G'(&)+&" has a unique zero & =¢&,. Thus, G(¢&) is
entire on C and G'(£)+¢" has a unique zero &=¢.
By Lemma 2.5, we have that G(&) must be a polyno-
mial. Setting

g(&)=4(£-&)"(¢-&)" (¢-&)",

where, m,m,,---,m_ are s positive integers, m; 2 4

(3.28)

Me

m.

J=L2,s, m=2m,

~.
Il

G'(¢)+& =B(¢-4) . (329)

where [ is a positive integer, />3, we have
G"(&)+rE = BI(£-4,) ", (3.30)
G (&) +r(r-1)&™ =BI(I-1)(¢-&) . (3:31)

For G(0)#0, we have & #0 and & #0. From
(3.29) it follows that ¢ # Esj=12,5.

From (3.29), (3.30)and (3.31), for j=1,2,---,5, we
have

& =B(¢-¢) (3.32)
r& ! =BI(E-¢) (3.33)
r(r-Ng =B -4) T 639
From (3.32) and (3.33), we have
(r=1)& =r&, j=1,2,s (3.35)

If /=7, then & =0, this is impossible. Therefore,
we have [ #r,and so
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p
G=6= =6 =g
r—1
From (3.33) and (3.34), we also have ,
r—1
§=6="=6="—¢
r—I
then r& =(r-1)&,. Thus, we have & =0, a contra-
diction.
Finally, we prove that F is normal at the origin. For
any function sequence {f,(z)} in F, since F, is nor-

mal at z=0, then there exist a positive number
5<1/2 and subsequence {F } of {F,} such that

ny

F, converges uniformly to a meromorphic function

n,

h(z) or « on N(0,25). Noting F,(0)=o00, we de-
duce that there exists a positive number M >0 such
that |Fnk (z)|2M for any zeN(0,8). Again noting
that f (0)# o we have that S (z)# o forall
zeN(0,5), that is, S (z) is analytic in N(0,5).
Therefore, for all n,, we have

1 12 o
Z'F, (z) SH?JZ <2

14, (2)|=

2

By Montel’s Theorem, { S (z)} is normal at z=0,

and thus F is normal at z=0. The complete proof of
Theorem 1.7 is given.
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