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Abstract

In this paper, we establish the existence and uniqueness of fixed points of operator F : X" — X,
when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have
shown examples to verify our work. Our results generalize the recent fixed point theorems cited in
[1]-[4] etc. and include several recent developments.
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1. Introduction

The metric fixed point theory plays a vital role to solve the problems related to variational inequalities, optimi-
zation, approximation theory, etc. Many authors (for detail, see [1]-[10]) have discussed fixed point results in
partially ordered metric spaces. In particular, Bhaskar and Lakshmikantham [3], Nieto and Rodriguez-Lopez
[11], Agarwal et al. [12] and Ran and Recuring [13] proved some new results for contractions in partially or-
dered metric spaces.

Bhaskar and Lakshmikantham [3] proposed the study of a coupled fixed point in ordered metric spaces and as
an application they proved the existence and uniqueness of solutions for a periodic boundary value problem.
Nguyen et al. [14], Berinde and Borcut [15] and Karpinar [8] introduced tripled and quadruple fixed point theo-
rems as a generalization and extension of the coupled fixed point theorem. For comprehensive description of
such work, we refer to [16]-[21]. Very recently, Imdad et al. [22] have introduced the concept of n-tupled coin-
cidence point and proved n-tupled coincidence point results for commuting maps in metric spaces. Motivated by
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the work of M. Imdad, we introduce the notion of compatibility for n-tupled coincidence points and prove
n-tupled coincidence point and n-tupled fixed point for compatible maps satisfying different contractive condi-
tions in partially ordered metric spaces.

Jungck [1] obtained common fixed point results for commuting maps in metric spaces. The concept of com-
muting maps has been generalized in various directions over the years. One such generalization which is weaker
than commuting is the concept of compatibility introduced by Jungck [23].

2. Prilimaries

Definition 2.1 [4] Let (X,=) be a partially ordered set equipped with a metric d such that (X,d) isame-
tric space. Further, equip the product space X x X with the following partial ordering:

For (x,y),(u,v)e XxX , define (u,v)<(x,y)< x=u,y=2v.

Definition 2.2 [4] Let (X,=) be a partially ordered set and F:X x X — X then F enjoys the mixed mo-
notone property if F (x, y) is monotonically non-decreasing in x and monotonically non-increasing in y, that is,
forany x,ye X,

X, X € X, X XX, = F(X,y) 2 F(X,y) and y, Y, e X,y, Xy, > F(X, %) =F(x,y,).

Definition 2.3 [4] Let (X,=) be apartially ordered setand F:X xX — X ,then (X,y)e X xX is called
a coupled fixed point of the mapping F if F(x,y)=x and F(y,x)=y.

Definition 2.4 [4] Let (X,j) be a partially ordered setand F: X xX — X and ¢g:X — X then F en-
joys the mixed g-monotone property if F (X, y) is monotonically g-non-decreasing in x and monotonically g-
non-increasing in y, that is, forany x,ye X,

X% € X,9(%) 2 9(%)=F(x,y)=F(x,y), foranyyeX,
Vi Yo € X,9(v) 2 9(Y,)= F(xy,) = F(x,y,), forany xe X.

Definition 2.5 [4] Let (X,=<) be a partially ordered set and F:XxX — X and g:X — X , then
(x,y)e X x X is called a coupled coincidence point of the maps Fand g if F(x,y)=gx and F(y,x)=gy.

Definition 2.6 [4] Let (X,j) be a partially ordered set, then (x, y) e X x X is called a coupled fixed point
ofthemaps F:XxX - X and g:X » X if gx=F(x,y)=x and gy=F(y,x)=y.

3. Main Results

Imdad et al. [22] introduced the concept of n-tupled fixed point and n-tupled coincidence point given by consi-
dering n to be an even integer but throughout, we will consider n, a positive integer, in this paper.
Definition 2.7 Let (X ,j) be a partially ordered set and F :]_[ir:lxi — X then F is said to have the mixed

monotone property if F is non-decreasing in its odd position arguments and non-increasing in its even positions
arguments, that is, if,

1) Forall x,x e X,x <x;= F(xil,xz,x3,-~~,xr) (xﬁ,xz,x3,-~~,xr),
(X, X7,

3) Forall xf,xgex,xfjxgzF(xl,xz,xf,x“,~~-, )j F(xl,xz,xg,x4,~--,x’),

<F
2) Forall x/,%; e X,xf <x} = F(x',x, %, x") = F
Xr

Forall X{,x; e X,x 2% = F(x',x* %, X ) X F (X', %%+, %) (if ris odd),
Forall x/,x5 € X,x <% = F (X', x% o, )= F (%, x3, %+, x5 ) (if ris even).

Definition 2.8 Let (X,=) be a partially ordered setand F:[], X'— X and g:X — X be two maps.

Then F is said to have the mixed g-monotone property if F is g-non-decreasing in its odd position arguments and
g-non-increasing in its even positions arguments, that is, if,
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1) Forall X, € X,gx < gx, = F(xf,xz,x3,---,x’

2) Forall x,x5eX,gx’ <gx = F(,xl,xf,xﬂ...yxr

12

Forall x,xjeX,gx =<gx; = F(xl,xz,xa,m,x{)j F(x X ,~~,x2r), (if r is odd),
Forall x,x;€X,gx <gx; = F(xl,xz,x3,~--,x{)§ F(xl,xz,---,x;), (if r is even).
Definition 2.9 [22] Let X be a nonempty set. An element (xl,xz,x3,---,x’)e [T, X" is called an r-tupled

fixed point of the mapping F:[] X' —> X if

X" = F(x’,xl,xz,---,xr’l).
Example 1. Let (R, d) be a partial ordered metric space under natural setting and let F :Hir:lXi — X be
mapping defined by
F(xl,xz,x3,-~-,x’)=sin(xl~x2 'x3---x’),for any x4, x2, %3, x" e X,
then (0,0,0,---,0) is an r-tupled fixed point of F.
Definition 2.10 [22] Let X be a nonempty set. An element (xl, X2, %3, xr) e[]., X" is called an r-tupled
coincidence point of the maps F :H::lx‘ ->X and ¢g: X > X if
ox' = F(xl,xz,xa,,xr),
gx? = F(xz,x3,---,xr,xl),

o = F (5, X, x5, X,

ox" = F(x’,xz,x3,--~,xr‘1).

Example 2. Let (R, d) be a partial ordered metric space under natural setting and let F :Hir:lxi — X and
g: X — X be maps defined by

F(xl,xz,x3,-~~,xr):sinxl-cosxz-sinx3~cosx4---sinx“’1-cosxr, g(x)=sinx,
for any x!,x2,x%,---,x" e X , then {(xl,xz,x3,---,xr),xi:mn,meN,lﬁiSr} is an r-tupled coincidence

point of F and g. _
Definition 2.11 [22] Let X be a nonempty set. An element (xl, X2, %3, x’)e [T, X" is called an r-tupled
fixed point of the maps F :H::lx' —>X and g: X > X if
X =gxt = F(xl,xz,xg,---,xr),

r 1

X2 =gx* = F(xz,x3,---,x X )

X =g =F (X, X, x, xP),

X' =gx" = F(x’,xl,xz,'--,x”l).
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Now, we define the concept of compatible maps for r-tupled maps.
Definition 2.12 Let (X,<) be a partially ordered set, then the maps F:[] X' > X and g:X — X
are called compatible if

|imn%(g(F(xﬁ,xj,---,x;)),F(QXﬁ,gan,---,gx;))=
Iimn%(g(F(xn,xn, X n) 9xz, gx3, -, gx,’],gxﬁ))z

Iimn%(g(F( ,~-,xn,xn,x§,)) ( S oxt, o, g ))

i o2 7). 0. 08.08..067) -

whenever, {xl},{ }{ } { } are sequences in X such that

n

lim F (%3, X2, %3, n)_llmg( 1)=x

n—o

lim F (X33, X7, ) = lim g (x7) = x

n—o

4 1 3 3
lim F (%3, X7+, %G, n)_!mg( X5)=x",

n—o0

IimF(x XE, X2 e X )—!l_[gg( ) X"

n?“n?*n?
n—o0

For some x',x*,%x%,---,x" € X.
Imdad et al. [22] proved the following theorem:
Theorem 3.1 Let (X,j) be a partially ordered set equipped with a metric d such that (X, d) is a complete

metric space. Assume that there is a function go:[O,oo)—>[0,oo) with go(t)<t and lim . p(r)<t for

each t > 0. Further, let F :]_[ir:1Xi — X and g:X — X be two maps such that F has the mixed g-monotone
property satisfying the following conditions:

() F(IT.X")=9(x).
(ii) g is continuous and monotonically increasing,
(iii) the pair (g, F) is commuting,

(iv) d(F(xl,xz,xs,---,xr),F(yl,yz,y3,~~-,y’))S¢(%Z;_ld(g(x”),g(y”))j for all
X X Y YA YRy e X, with gxt < gyt, ox? = gy?, ox*<gy®,---,0x" >=gy" if ris even and

gx" < gy" if risodd. Also, suppose that either

a) Fis continuous or
b) X has the following properties:
(i) If a non-decreasing sequence {xn} — X then x <x forall n>0.

(ii) If a non-increasing sequence {yn}—>y then y<y, forall n>0.
If there exist Xg, X2, X3, -+, X, € X such that
(V) 9 < F (5.5, % ),

06 = F (56,06, %. % ),

3 3 1,2
g%y = F(XO,---,XS,XO,XO),
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% < F (%55, %, %, "), ifrisodd,

9%y = F(Xé,Xé,Xé,xg,---,xg'l), if r is even.

Then F and g have a r-tupled coincidence point, i.e. there exist x*, x?,x%,---,x" € X such that
ox' = F (X', x5 ¢, x7),
gx* = F(xz,x3,--~,xr,x1),

gx3:F(x3,~-,x’,x1,x2), (v)

ox" = F(xr,xl,xz,xa,---,xr‘l).
Now, we prove our main result as follows:
Theorem 3.2 Let (X,j) be a partially ordered set equipped with a metric d such that (X, d) is a complete
metric space. Assume that there is a function go:[O,oo)—)[O,oo) with ¢>(t)<t and Iimr_>t+¢;(r)<t for

each t > 0. Further let F :]‘[{:lx‘ — X and g:X — X be two maps such that F has the mixed g-monotone
property satisfying the following conditions:

3D F(IT,X")=9(X),
(3.2) g is continuous and monotonically increasing,
(3.3) the pair (g, F) is compatible,

(3.4) d(F(Xl,lexs,,..’Xr),F(yllyz’ys,...,yr))g(p(max{d(g(x“),g(y“))}) ,
Forall x!,x%, 3, x", vy, y2 ¥3, -y eX,n=12-r, with g =<gy', gx*>gy?,

ox® < gy®,-,ox" = gy", ifrisevenand gx" <gy", ifrisodd. Also, suppose that either
a) Fis continuous or
b) X has the following properties:

(i) If a non-decreasing sequence {x,} — x then x, <x forall n>0.
(ii) If a non-increasing sequence {y,}—y then y =<y, forall n>0.
If there exist Xg, X2, X3, -+, X, € X such that

oxs < F(xé,xg,xg,---,xg),

g% = F (X606, %6, %),

3 3 royl 2
0%, = F(XO’“"XO’XO’XO)l

(3.5)
O%g = F (X5, %5, %3, X5+, %), if 1 is even,
ox; < F (X, 6,6, %5+, %), if ris odd.
Then F and g have a r-tupled coincidence point, i.e. there exist x*, x?,x%,---,x" e X such that
oxt = F(xl,xz,xs,---,x’),
gx? :F(xz,xe’,---,x’,xl),

g = F (-, %, X, %), (3.6)

ox" = F(xr,xl,xz,xg',---,xr’l).
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Proof. Starting with x5, x2,x3,---,x{ € X , we define the sequences {xﬁ}{xf}{xﬁ}{xn
lows:
O = F (),
9 = F (550 % ),
06 = F (X %06, % ),

r r yl 2 3 r-1
gxM:F(xn,xn,x Xyyoey Xy )

nt ™t

Now, we prove that for all n>0,

r

1 1 2 2 3 3 - -
gx: < OX.p, OXT = OX,,, OX) = gxn+l,--~,gxr’] > 0X,,y, if r is even and

g%, =< 0X.,, if ris odd.

n+l?
1 12 3 1
gx0-<F(xo,xo,xo,---,xg)—gx],
2 2 3 1 2
gxo>F(x0,x0,~--,xg,x0)—gxl,

0% < F (36,0, %.%5 ) = 0%,

Xy = F(xg,xé,xg,xg,---,xg‘l): gx, if riseven,
gx; < F(xg,xé,xj,xg,---,xg’l): gx!, if risold.
So (3.8) holds for n = 0. Suppose that (3.8) holds for some n > 0. Consider

1 1 2 3 r
gxn+l: F(Xnixn’xn"“'xn)
1 2 3 r

Xn'Xn"”'Xn)

n+l1

2 3 r

N+l

r

jF(xﬁ X2, XS --,x;)
2 1

( +l'xn+1"“’xn+1):gxn+2'

2

n

0% = F (3. 0 x)
= F (R X0
= F (0 X 1)
= F(Xril'xgﬂl'nlxr:ﬂ,xﬁ)
~F (XﬁJrl'Xril"”'XrLl’ Xﬁu) = gX§+zv
0 = F (X, 3
<F (X 00)
= F(Xr?+1vX:+1""’Xr:’Xﬁlxs)
= F(Xguvx:u""’Xr:+1,xﬁ!xr%)
= F(X:A'Xr?ﬂ’xr?a”'vXr:+1vxi+1vxr?)
=F (ng X:+1""’ Xr:+l’ Xiw X§+1) = ngiz’

} in X as fol-

3.7)

3.8)

3.9)
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r r 1 2 r-1
gxn+1 F(men’xn’ Xn )
= F (XX X %)
r 1 2 3 r-1
iF(Xn+l an’Xn'Xn “'Xn )
r 1 2 r-1
>—_ F(Xn+l Xn 1'Xn+1 Xn )
= F(Xis X X0, X1 ) = OX7,, iF 1 is even
1 2
and gxn+l-< F( n+1? n+1 Xn ' n+1) gxn+2 |fr|S Odd

Thus by induction (3.8) holds for all n>0. Using (3.7) and (3.8)

(940K )) =8 (F (Xha o ) F (X 3 )

(p(maxd(g( ml) g(x;))). (310
Similarly, we can inductively write
d(0(x).0(¥..)) < o(maxd (3 (x2). 5 (x))). (3.11)
d(9(%.).9 (%)) < o maxd (g (x1). 9 ()
Therefore, by putting
7 =max{d (9(x1),9 (%)) (9.(2), 9 (X))o (9 (X0). 9 (%5a))}- (312)
We have,
7 =max|d(g(x),0 (%)) d (9 (2).0(3.0)) o (90 0 (Xhs))}
< o{max(d(9(x2.). 0 ()] -0 o

Since go(t)<t for all t > 0, therefore, y,, <y, for all m so that {;/m} is a non-increasing sequence.
Since it is bounded below, there is some » >0 such that

nove Yo =Y. (3.14)

We shall show that y =0 . Suppose, if possible » >0. Taking limitas m — oo of both sides of (3.13) and

lim

keeping in mind our supposition that lim . p(r)<t forallt>0, we have

y=lim,, 70 <o(rea)=0(r)<7 (3.15)

this contradiction gives y =0 and hence
tim| max{d (9(x,),9(x..)).4 (9 ), 9 (3.0} d (9 (%1), 0 (X5 )} | =0 (3.16)

Next we show that all the sequences {g (x )} -, and {g (x;1 )} are Cauchy sequences. If
g

ERS
L
—_—
—_——
«
—_—
x
ERN)
~—
—_—
—_
«
>

3
possible, suppose that at least one of {g (xﬁn )} , {g (xf1 )} -, and { (x' )} is not a Cauchy sequence. Then there



I. Masmali, S. Dalal

exist ¢>0 and sequences of positive integers {I(k)} and {m(k)} such that for all positive integers k,

m(k)>1(k)>k,
max{d (98, 9 )8 (081 OG0 )+, (O O )} 2 2 (3.17)
and
max{d (gx,l(k), gx;(k)&), d (gxf(k), gxé(k)fl) ..... d (gx,r(k), gx;(k)fl)} <e.
Now,

o (3.18)
< go(max{d (94120 X002 ) n=12r
similarly, d (9,9, ) < go(max{d (940, gx;(k)fl)}) =12t
d (), 0¥y, ) < go(max{d (960 gx:n(k)_l)}) =12t
Thus,
&= max{d (6, O )-8 (9K 950 ) .8 (9% gxr?(k))}
< (p(max {d (gXP(k),l, gx;(k),l)}). N=12,r 19
Again, the triangular inequality and (3.17) gives
(K101 sy < 0 (X2 96 )+ (K001 P ) (3.20)
<d (gx,l(k)fl, gx,l(k))+g, N=12--r
and
(X2 ) < (02 O )6 N =127
(01 Ko ) <8 (K0 08 ) +20 n=L.20.
i.e., we have
mx (O (98 o) 8 (98 K1) 0 (980 9K} (3.21)
< max{g d (gx,”(k)fl, gxln(k))} te N=Ll2.r
Also,
(X D) = 8 (DX ey )+ 8 (9K 1 982+ (96141 95 ) (3.22)
d (gxfn(k), 9X|2<k>) <d (gx;(k), 9Xr2n<k>—l) +d (9Xr2n<k>—1' 9X|2<k>—1) +d (gxf(k)_l, 9X|2<k>)
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d (g"%(k)’ o) ) <d (gxkk)' X2 ) +d (gxkk)—l’ 9X|r<k>—1) +d (gxlrw)—l’ 9X|r<k>)
Using (3.17), (3.19) and (3.22), we have

r

£ < max {d (gx,l(k), gx;(k)),d (gxlz(k), gxm(k)),...,d (gx,r(k), gxm(k))}

r

< max | (X 0601 8 (96100 020 (P DX )

+max {d (gximk)—v gxll(m—l)’ d (gx;(k)_l, gxﬁ(k)_l) o d (gx;(k)_l, gxl’(k)_l)} o
max{d (964, 05 )-8 (00 06 ) -1 8 (95100 08 )
Letting k — o« in above equation, we get
lim,_, (max {d (gxll(k)fl, gx;(k)fl), d (gx,z(k)fl, iy ) -d (gx gxm(k)fl)}) =& (3.24)
Finally, letting k — oo in (3.17) and using (3.19) and (3.23), we get
e< max{d (gx,l(k), Ko ) .d (gxf(k), 9% )d (gxl’(k), X )} <p(e)<e (3.25)

which is a contradiction. Therefore, {g(x# )}{g(xﬁ1 )}{g(xﬁ)}{g(xé1 )} are Cauchy sequences. Since the
metric space (X, d) is complete, so there exist x*,x?,---,x" € X such that

2 r

lim, ., g(x)=x"lim,,, g (%) =% lim,_, g(x)=x". (3.26)

As g is continuous, so from (2.26), we have

lim_ .. g (g (x;)) =g (xl), lim, .9 (g (x;)) =g (xz);--,limm% g (g(x{n)) =g (xr) (3.27)
By the compatibility of g and F, we have
limd (g(F(x;,x;,---,x;)), F(g(x;), g(x,i) g(x{n)))zo, (3.28)

imal(a(F (46, 78)).F (95 05 o)) 0

timd (g(F (Xp X% ) F (9(%0), 9 (%) 0 (x6))) =0.

Now, we show that F and g have an r-tupled coincidence point. To accomplish this, suppose (a) holds. i.e. F
is continuous, then using (3.28) and (3.8), we see that

d(9 (). F(x'x X'))

= limd(o(g (x%m)) F( ).00(x)
—md( (F (05 ;)), (( ) 906) 9 >))=
which gives g(xl) ( . xr) Similarly, we can prove g(xz) F( )

g(xr): F(x X ,"-,xr‘l)
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Hence (xl, x2,~--,x’)e Hir:lxi is an r-tupled coincidence point of the maps F and g.

If (b) holds, since g(xﬂn) is non-decreasing or non-increasing as i is odd or even and g(xin)—>xi as
m — o0, we have g(x;n)j x', when i is odd while g (x:“) > X', when i is even. Since g is monotonically in-
creasing, therefore

g(g(xfn))jg(xi) when i is odd, (3.29)

g (g (x'm )) - g(xi) when i is even.

Now, using triangle inequality together with (3.8), we get

d(g(xl),F(xl,xz,---,xr))
<a(9(¢).0(ka)) 99 (s) F (.1 a0
gd(g(xl),g(xim))+d(g(F(x}n,xfn,-u, i g

—0 asn—oo,

Therefore, g(xl) =F (xl, X2, xr). Similarly we can prove

g(xz): F(xz,---,xr,xl),u-, g(xr): F(xr,xl,---,xr’l)

Thus the theorem follows.
Corollary 3.1 Under the hypothesis of theorem 3.2 and satisfying contractive condition as (3.31)

d(F(xl,xz,-u,x’),F(yl,yz,m,yr))ﬁézrz:ld(g(x"),g(y”)), k e[0,1).

Then F and g have a r-tupled coincidence point.
Proof: If we put ¢(t)=k-t with k[0,1) intheorem 3.2, we get the corollary.

Uniqueness of r-tupled fixed point

For all (xl,xz,---,xr),(yl,y2,~--,y')eXr,
(xl,xz,...,xf)j(ylly2|...,yr)
X =YXyt X =y

We say that (xl,xz,u-,x’):(yl, y2 e, y’)c» =yl 2=y X =y

Theorem 3.3 In addition to the hypothesis of theorem 3.1, suppose that for every

(Xl,le...lxr)’(yl'yzy...’yr)e X'

Then exist (21,22,---,zr)exr such that F((zl,22,-~-,zr),(zz,23,---,2',21),---,(2',zl,---,z"l)) is com-

parable to

And

Then F and g have a unique r-coincidence point, which is a fixed point of g: X — X and F :Hir:lxi - X.

That is there exists a unique (xl, x2,~~~,x’)e X" such that

408
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x‘=g(xi)=F(x‘,xl,~-,xi’l) for all ie{l,2,r} (3.32)
Proof. By theorem 3.2, the set of r-coincidence points is non-empty. Now, suppose that (xl,xz,m,x') and
(yl,yz,---,y’) are two coincidence points of F and g, that is g(x‘)zF(x‘,xl,---,xi’l) forall ie{1,2,r}
and g(y')=F(y'y'y") forall ie{l2-r}.
We will show that g(x')=g(y') forall ie{L,2,-r}.
By assumption, there exists (zl, 2%, z’) e X" such that
F((zl,zz,-n,zr),F(zz,z3,---,z',zl),~-,F(zr,zl,-u,z”))
is comparable to
F((xl,xz,---,xr),F(xz,x3,-~-,x’,x1),---,F(xr,xl,---,xr‘l))
and
F((yllyZ,...,yr),F(yZ,yS,...’yr’yl),...,F(yr,yl,...,yr’l))_
Let zy=2' forall ie{l,2,r}.Since F(X")cg(X),wecanchoose z eX suchthat
g(zl‘)z F(z(‘,,zé,-'-,zg’l) for all ie{L2,,r}. By a similar reason, we can inductively define sequences
{g(z)},neN forall ie{t,2,r} suchthat g(z),.)=F (2,227 forall ie{L2qr}.
In addition, let x;=x" and yy; =y for all ie{L2r} and in the same way, define the sequences
{g(x'n)} and {g(y;)} neN forall ie{12,r}.Since
F(Xl,XZ,"',Xr),F(XZ,X3,"',Xr,X1),"',F(Xr,Xl,"’,Xril)Z(gXi,ng,"',gxlr)
And
F(zl,zz,---,zr),F(zz,z3,~-,z’,zl),-~,F(z’,zl,~--,z”1)=(ng,ng,---,gz{)

are comparable, then
g(x)<g(z) forall ie{L2, - r} ifiisodd,
9(x)>g(z) forall iefl,2,-r} ifiiseven.
We have

) <
Then (g(xl),g(xz),---,g(xr)) and (g(z ,g(zf, ,~~-,g(z;)) are comparable for all ne N . It follows
from condition (3.4) of theorem 3.2

d(g(x),9(z.))=d(F(x' e x7) F (20,20, 2,7))

Summing, we get
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(g(xl),g(zﬁ))+d(g(xz),g(zg))+...+d(g(xf),g(z;))J (3.33)

It follows that

For all nx>1. Note that ¢(0)=0,p(t)<tlim . ¢o(r)<t for t>0 imply that lim " (t)=0 for all
t > 0. Hence from (3.32) we have

lim,.,.. d(g(x),9(z,))=0 for all ie{,2:r}. (3.34)
Similarly, one can prove that

|imn%d(g(yi),g(z‘nﬂ))=o for all ie{l2,-r}. (3.35)
Using (3.34), (3.35) and triangle inequality we get

d(g(x).a(y))<d(9(x').a(z))+d(a(z0).9(v)) >0,

As n—o forall ie{l2: r}.Hence, g (x‘)z g (yi) , therefore (3.32) is proved.
Since g (xi ) =F (x‘,xl,---, xi‘l) forall ie{1,2,,r}, by the commutativity of F and g, we have

g(g(x‘))=g(F(x‘,xl,--~,xi’l))=F(gxi,gxl,---,gx"l) (3.36)
Denote gx' =u' forall ie{1,2,,r}. From (3.36), we have
g(u‘):g(gx‘):F(ui,ul,---,u"l) for all ie{L2,,r}. (3.37)

Hence (ui , ul,---,u“l) is a r-coincidence point of F and g.
It follows from (3.32) y' =u' and so
g(y‘):g(ui) forall ie{l2,,r}.
This means that
g(u‘)=ui forall ie{l2r}.
Now, from (3.37), we have
u‘:g(u‘):F(u‘,ul,-u,u“l) forall ie{l2,r}.

Hence, (ul,uz,m,ur) is a r-fixed point of F and a fixed point of g.

To prove the uniqueness of the fixed point, assume that (vl,vz,---,v') is another r-fixed point. Then by
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(3.32) we have
u' :g(u‘):vi :g(v‘) forall ie{l2,r}

Thus, (u',u?,-,u")=(v*,v,-,v"). This completes the proof.
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