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Abstract 
The differential operator of the ordinary differential equation (ODE) is represented as the sum of 
two operators: basic and supplementing operators. The order of the higher derivatives of a basic 
operator and ODE operator should coincide. If the basic operator has explicit system of funda-
mental solutions it is possible to make integral equation Volterra of II kind. For linear equations 
the approximate solutions of the integral equation are system of the approximate fundamental 
solutions of the initial ODE. 
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1. Introduction 
Connection between the ordinary differential equations (ODE) and integral equations was considered for a long 
time, and the basic outcomes were included into textbooks and handbooks (for example [1]-[6]). For arbitrary 
the ODE there is a method allowing to construct integral equation Volterra of II kind. Such integral equation 
provides a solution of the Cauchy problem with arbitrary initial conditions. Mathematical procedures are famili-
ar and it relieves of necessity to do extensive references to the literature. 

The offered method differs from known. The operator of linear ODE is represented as the sum of two opera-
tors, one of which has explicit system of fundamental solutions. The integral equation is constructed by these 
solutions and solutions of the integral equation are the system (usually approximate) fundamental solutions of 
ODE. Such method can be considered also as a variant of a perturbation method. 

2. Construction of the Integral Equation 
Let’s consider linear differential operator L with the maximum derivative of n-th order which forms the homo-
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geneous ODE 

( )( ) 0L u x = .                                     (2.1) 

We shall present L as a difference of operators 

B SL l l= − .                                      (2.2) 

We shall name: Bl  is the basic operator and Sl  is the supplementing operator. The basic operator should 
contain the highest derivative of operator L, the supplementing operator has no such restriction. 

Let’s consider the inhomogeneous equation with the basic operator 

( ) ( )Bl u F x= .                                     (2.3) 

If the homogeneous equation, corresponding (2.3), has system of fundamental solutions φi(x) and the inho-
mogeneous equation has private solution W(F), where W is integral operator, the general solution of the Equa-
tion (2.3) with arbitrary constants Ci notes in the form 

( )( )
1

n

i i
i

u C W F xϕ
=

= +∑ .                                 (2.4) 

We shall write the Equation (2.1) by means of (2.2) in the form 

( ) ( )B Sl u l u= .                                     (2.5) 

Comparing (2.3) and (2.5) and using (2.4), we receive the integro-differential equation for u(x) 

( ) ( )( )
1

n

i i S
i

u x C W l uϕ
=

= +∑ .                                (2.6) 

The Equation (2.6) is equivalent to the Equation (2.1) on construction. Backwards, if to apply the operator lB 
to the Equation (2.6) we shall receive the Equation (2.1). Thus, the Equations (2.1) and (2.6) are equivalent. 

Integration by parts the integro-differential operator ( )( )SW l u  is led to an integral operator. It is convenient 
for numerical solutions. 

The described algorithm is not absolutely new. There is the familiar example. The differential equation 
( )( ), 0y f x y x′ − =  is equivalent to an integral equation 

( ) ( )( ), d
x

a

y x C f s y s s= + ∫ .                                (2.7) 

Hence, the described algorithm can be applied to the nonlinear equations. 
The offered method enables constructions of system of fundamental solutions. If in the Equation (2.6) to put 

Ck = 1 and remaining Ci = 0 we receive the equation for definition of k-th fundamental solution of the equation 
(2.1) 

( )( )k k S ku W l uϕ= +                                    (2.8) 

In an integral equation requirements to smoothness of functions under an integral are weakened and its solu-
tions can be considered as the generalized solutions of the initial differential equation. 

The supplementing operator it is possible to name perturbation operator in relation to a basic operator. Then 
the algorithm is admissible to consider as a variant of a method of perturbations. 

Sometimes separation on operators under the formula (2.2) is defined either the mathematical form of the eq-
uation or physical sense of the problem. 

3. The Example. Mathieu’s Equation. 
Let’s write down the equation of Mathieu in a kind 

( )cos 2y a q x y x′′ + = .                                   (3.1) 

For it at 2 2, ,0a b b= + −  are received three integral equations 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
0

1 2
0

1 2
0

sin cos sin cos 2 d

sh ch sh cos 2 d

cos 2 d

x

x

x

y x C bx C bx q x z z y z z

y x C bx C bx q x z z y z z

y x C C x q x z z y z z

= + + −

= + + −

= + + −

∫

∫

∫

.                   (3.2) 

Let’s consider a solution of the concrete equation 

( )1 2cos 2y x y x′′ + = .                                    (3.3) 

Let’s search for the first fundamental solution of the Equation (3.3) in the field of x ≥ 0 for which according to 
(3.2) we have an integral equation 

( ) ( ) ( )
0

sin 2sin cos 2 d
x

y x x x z z y z z= + −∫ .                           (3.4) 

The solution of the Equation (3.4) can be found the method of resolvent. Let’s remind its essence. Integral 
equation 

( ) ( ) ( ) ( ), d
x

a

y x f x K x s y s s= + ∫                                 (3.5) 

has the approximate solution 

( ) ( ) ( ) ( ), d
x

m m
a

y x f x R x s f s s= + ∫                                (3.6) 

where ( ) ( )
1

, ,
m

m n
n

R x s K x s
=

= ∑  is the approximate resolvent. 

nK  are iterated kernels defined by formulas 

( ) ( ) ( ) ( ) ( )1 1, , , , , , , d
x

n n
s

K x s K x s K x s K x t K t s t−= = ∫ .                     (3.7) 

For the Equation (3.4) approximate resolvent kernel and solutions are expressed in elementary functions. The 
interval on which the approximate solution practically coincides with an exact solution, increases with magnifi-
cation of the order of a resolvent kernel. We will cite the solution 3y . 

( )
2 2

3

3

sin 7 7sin 5 5sin 3 2033sin sin 3 7 sin
9216 4608 1536 3072 64 64
169 cos cos cos5 13 cos3

384 48 384 128

x x x x x x x xy x

x x x x x x x x

= − + − + − +

+ + + −

.                (3.8) 

In Figure 1 an exact solution (Mathieu’s function) and the approximate solution 3y  are shown at x ≥ 3. At x <3 
these solutions coincide. We will receive the same result, if we will compare 3y  and 4y . 

It is simple to receive the approximate solutions of higher order. Even on a personal computer for small time 
(about 5 minutes) it manages to receive 15y , which practically coincides with the exact solution up to x = 30. 
(The author used the program of series Maple.) The program produces also an exact solution of the Equation 
(3.3) by the Mathieu’s function. For this purpose the Cauchy problem with initial conditions  
( ) ( )0 0, 0 1y y′= =  is solved. 

4. The Example. The Equivalent Equations 
The equation of undamped oscillations of a simple pendulum has form 

( )sin 0y y x′′ + = .                                       (4.1) 

This equation brings to integral equation 
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Figure 1. Comparison of the exact and approximate solutions of the Equation (3.3). Line is the exact solution, 
circles are approximate solution.                                                                  

 

( ) ( ) ( ) ( ) ( )( )
0

0 0 sin d
x

y x y y x x s y s s′= + − −∫ .                           (4.2) 

It is possible to write the Equation (4.1) in the equivalent form 

( ) ( ) ( )siny y x y x y x′′ + = − .                                  (4.3) 

The Equation (4.3) has physical sense: the left part is operator of small oscillations, right part is deviation 
from small oscillations. (4.3) brings to integral equation 

( ) ( ) ( ) ( ) ( ) ( )( )
0

0 cos 0 sin sin sin d
x

y x y x y x x z y z y z z′= + + − −∫ .                   (4.4) 

In spite of the fact that the Equations (4.2) and (4.4) are various, their solutions under identical initial condi-
tions coincide. The reader can establish it if he will solve these equations by means of the quadrature trapezoid 
rule. We see that variants are possible at decomposition of operator L by the formula (2.2). 

5. Conclusions 
The approximate methods cannot replace the general analysis of the equation. However, when existence of a 
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solution of a problem is already proved, the approximate method can appear useful even at presence exact, but a 
complicated solution. 

The offered algorithm is simple and effective and formally it can be applied to any linear ODE. However, if 
factors of ODE have singularities, it demands special research. 
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