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Abstract 
Using the properties of theta-series and Schwarz reflection principle, a proof for Riemann hypo-
thesis (RH) is directly presented and the first ten nontrivial zeros are easily obtained. From now 
on RH becomes Riemann Theorem (RT) and all its equivalent results and the consequences as-
suming RH are true. 
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1. Introduction 
The Riemann zeta function has its origin in Dirichlet series function 
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= ∑                                    (1.1) 

where n runs through all integers, and s itσ= + , is a complex variable. The Dirichlet series is convergent for 
Res > 1, and uniformly convergent in any finite region in which 1 , 0σ δ δ= + > . It therefore defines an analyt-
ic function ( )sζ , regular for 1σ > . 

Euler showed the production formula, 
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where p ranges over all primes. It converges for real s greater than 1. 

Riemann extends ( )
1

1
ss

n
ζ

∞

= ∑ , to the whole complex plane except for s = 1 by introducing theta function  

and Jacobi functional equation in his ground breaking paper (Riemann 1859) [1] [2].  
The function ( )sζ  can be analytically extended onto the entire complex plane in many ways [3]. But there 

exists an unique analytic function A(s) which is defined on the entire s-plane except for s = 1 and has the prop-
erty that when Re s > 1,  
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The convergence of the Euler product shows that ζ(s) has no zeros in the region: Re s > 1, as none of the fac-
tors have zeros. The Riemann hypothesis discusses zeros outside the region of convergence of this series and 
Euler product.  

The Riemann hypothesis is a deep mathematical conjecture which states that the nontrivial Riemann zeta 
function zeros, i.e., the values of s other than −2, −4, −6, such that ( ) 0sζ =  all lie on the “critical line” 
Re 1 2s σ= = . 

Riemann [1] says that he considers it “very likely” that the complex zeros of ( )sζ  all have real parts equal 
to 1/2, but that he has been unable to prove it is true. Edwards [2] summaries that “the experience of Riemann’s 
successors with the Riemann hypothesis that has been the same as Riemann’s—they also consider its truth ‘very 
likely’ and they also have been unable to prove it”. Hilbert included the problem of proving the Riemann hypo-
thesis in his list of the most important un-solved problems which confronted mathematics in 1900, and it is also 
the one of the seven open problems for 21st century listed by Clay Mathematics Institute. “The attempt to solve 
the problem has occupied the best efforts of many of the best mathematicians of the twentieth century. It is now 
unquestionably the most celebrated problem in mathematics and it continues to attract the attention of the best 
mathematicians, not only because it has gone unsolved for more than one and half century but also because it 
appears tantalizingly vulnerable and because its solution would probably bring to light new techniques of far 
reaching importance” [2]. Why is the Riemann hypothesis so important? Why is it the problem that many ma-
thematicians would sell their souls to solve? There are many answers beside the above for these questions. There 
have been many attempts to solve it but no idea on how to efficiently. As with the other old great unsolved 
problems, the Riemann hypothesis is clearly very difficult. It has resisted solution for more than 150 years and 
has been attempted by many of the greatest minds in mathematics. And the key reason for the importance of RH 
is that it relates to many important aspects of mathematics. Here is how Princeton mathematician Peter Sarnak 
describes the broad impact the RH has had. “The Riemann hypothesis is the central problem and it implies many, 
many things… With this one solution you would have proven five hundred theorems or more at once.”  

The other thing makes it is of importance is that it has deep relation with physics. The relation between the 
zeros of Riemann zeta function on the critical line and the properties of random matrix are described in [4]. And 
the relations of prime distribution and dynamical systems and statistical mechanics are discussed in [5]. All 
these related topics root in RH.  

Milestones and great events with the RH have been listed [6] from 1859 to 2004. RH is really a well known 
goose lays gold eggs.  

Edwards [2], E.C. Titchmarsh [3] and A. A. Karatsuba [7] all mentioned the theta function and Jacobi func-
tional equation in dealing with Riemann zeta function. And the way by introducing the functional equation of 
the theta function in a form of Jacobi is a more satisfactory way than the way of Cauchy integral formula. Jacobi 
functional equation has a close relation with Riemann zeta function. The relation between the variable and its 
reciprocal in Jacobi functional equations corresponds to that of complex variable in ( )sξ  of the imagery parts 
of s and s , i.e. t and t− , We are going to investigate the properties of theta-series and Jacobi functional equa-
tion and to use the reflection principle to find the nontrivial zeros of Riemann zeta function and to prove RH. 

2. Lemmas  
To prove the truth of RH, and for convenience, we list some important related results as lemmas as follows [2] 

http://mathworld.wolfram.com/RiemannZetaFunctionZeros.html
http://mathworld.wolfram.com/RiemannZetaFunctionZeros.html
http://mathworld.wolfram.com/RiemannZetaFunctionZeros.html
http://mathworld.wolfram.com/CriticalLine.html


X. Liu et al. 
 

 
195 

[3] [7]. 
Lemma 1. 

( ) ( )1x x xθ θ− = ;                                  (2.1) 

( ) ( )1
2 12 1 2 1x x xω ω− − + = +                                (2.2) 

where  
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0x >  

The relation of (2.1) is a surprising functional equation, and is far obvious and looks barely possible. We can 
find the proofs from various references. (See [7], pp. 8-11) ([8] G. Everest, p. 194). It plays a key role for the 
Riemann zeta function analytic continuation in terms of theta series. 

Lemma 2.  

( ) ( ) ( ) ( )1
2 2 2
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−  Γ = + +  −  ∫                      (2.3) 

The following proof procedure is from [7]. 
We use the integral formula for the gamma-function. For Re s > 0 and n a natural number, we have  
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We now suppose that Re 1s σ= >  and sum the last equality over all n. the result is  
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Changing the order of summation and integration, we obtain 
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Next, for x > 0 we have 
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Thus, we have the equality  
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From (2.2), using this relation and then making the change of variables 1x x−→  in the second integral below, 
we obtain 
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as was to be proved.  
We note that here since ( ) ( )e xx O πω −=  as x → +∞ , it follows that the improper integral on the right in 

(2.3) converges absolutely and uniformly in the half-plane Re s > K for any K. Weierstrass’ theorem then im-
plies that, as a function of the complex variable s, this integral is holomorphic in the entire s-plane. The relation 
(2.3) was proved under the assumption that Re s > 1. But the right side of (2.3) is defined for all s, i.e., this for-
mula gives the analytic continuation of the function ( )sζ  onto the entire s-plane. We take the following to the 
function A(s) mentioned in the beginning of the section 1. 

( ) ( ) ( ) ( )1
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∫  

The gamma-function has the first order pole at the point s = 0; we also have ( )1 2 πΓ = . Thus, A(s) is a 
regular function on the entire s-pane except for the point s = 1, where it has a simple pole with residue 1. Finally, 
it is easy to see that the right side of (2.3) does not change when s is replaced by 1 − s. We define a function 
( )sξ  by the following.  

( ) ( ) ( )21 1
2 2

s ss s s sξ π ζ−  = − Γ 
 

                            (2.4) 

( ) ( )1s sξ ξ= −  

Since the value of ( )sξ  on real axis is real and ( ) ( )s sξ ξ=  by Schwarz reflection principle, we have the 
following lemma. 

Lemma 3. The zeros of the Riemann zeta-function (2.3) are the even negative numbers 2, 4, , 2 ,n− − −   
and the complex numbers ρ  which all lie in the strip ( )0 Re 1s≤ ≤  and are situated symmetrically with re-
spect to the lines Im s = 0 and Re s = 1/2. In other words, when ever ρ  is a zero of ( )sξ , so are the 1 ρ− , 
ρ  and 1 ρ− . 

i.e.  

( ) ( ) ( ) ( )0 1 0 0 1 0ξ ρ ξ ρ ξ ρ ξ ρ= ⇔ − = ⇔ = ⇔ − =  

Proof ([7], p. 22 Th.1) 
Since 
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( ) 0ξ ρ =  

( ) ( )1 0ξ ρ ξ ρ= − =  

For its value is real on the real axis, so by Schwarz reflection principle, it follows that, 

( ) ( ) 0ξ ρ ξ ρ= =  

Hence, when ever nρ  is a zero of ( )sξ , so are the 1 nρ− , nρ  and 1 nρ−  [6] [7]. 
Lemma 4. Suppose that t > 0, and we have  
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∫                   (2.5) 

Lemma 5. If the following integration is convergent, f is monotone  
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∞

=∫  

Then 

( ) ( )0f x x→ →∞  

Now we are ready to prove Riemann theorem (RT) and find the zeros positions.  

3. Riemann Theorem (RT) 
Riemann Zeta-function ( )sξ  satisfies  
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And the RH holds (RT):  
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Proof: Let ( ) 0sξ =  
Then, 
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We consider the imaginary part of the equation (3.2) of both sides. 
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The above integral is real integral of complex parameters. Consider the exponential complex function proper-
ties, we have  
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The many-valued function here the logarithm of x is determined in such a way that it is real for positive value 
of x [1]. 

Suppose 0t >  and let ln
2
t x y= , then (3.4) becomes 
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From lemma 3, replace t by −t for t > 0, or equivalently replace s itσ= +  by .s itσ= −  
We have the following  

( )
( ) ( ) ( ) ( )122

22 2 2
0

2 1
2 e e e sin d

1
tt t

yy yt
y y

t t

σσσ
ω

σ σ

−−∞
−−−  = −    + − + 

∫                  (3.7) 

From Lemma 1, we have 
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And from lemma 4, we get  

( )
( ) ( )

( )12

22 2 2
0

2 1
e e sin d

1
tt

yyt
y y

t t

σσσ

σ σ

−∞−  = − −    + − + 
∫ .                     (3.9) 

And from lemma 5, we have, 
1

e e 0t ty y y
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So  

1σ σ= −  

1
2

σ =  

We have finally proved RT.  

4. The Zeros of Riemann Zeta Function 

Considering the real parts of (3.2), and let 1
2

σ =  in the equation, we have, 
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and the following function 
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where  

( ) 2
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exp n xx πω

∞
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Its roots are the zeros on the critical line of Riemann zeta function. Function (4.2) contains the whole infor-
mation of zeros of Riemann zeta function. Since ( )f t  is a real function and we can calculate the function val-
ues and to find the roots in a computational way. The following results of the values of ( )f t  where 

[ ]10,50t∈  are obtained by matlab. The zeros locations can be roughly estimated by the sign changing of the 
function values in a gap of 0.5. 
 

NO. Zero positions calculated by (4.2) Zeros values from [3] 

1 1/2 ± (14, 14.5) i 1/2 ± 14.1347251 i 

2 1/2 ±(21, 21.5) i 1/2 ± 21.0220396 i 

3 1/2 ± (25, 25.5) i 1/2 ± 25.0108575 i 

4 1/2 ± (30, 30.5) i 1/2 ± 30.4248761 i 

5 1/2 ± (32.5, 33) i 1/2 ± 32.9350615 i 

6 1/2 ± (37.5, 38) i 1/2 ± 37.5861781 i 

7 1/2 ± (40.5, 41) i 1/2 ± 40.9187190 i 

8 1/2 ± (43, 43.5) i 1/2 ± 43.3270732 i 

9 1/2 ± (48, 48.5) i 1/2 ± 48.0051508 i 

10 1/2 ± (49.5, 50) i 1/2 ± 49.7738324 i 

The results are well match to the known zeros of Riemann zeta function. 

5. Conclusion and Remarks 
Simple but substantial solutions for Riemann zeta function zeros are presented by letting imaginary and real 
parts of both sides of the equation (1.1), or its analytic continuation (2.4) and (3.2), to equal. The key step is us-
ing the properties of theta-series and the reflection principle to replace t by –t. The first ten nontrivial zeros posi-
tions are easily obtained. From now on RH becomes Riemann Theorem (RT) and all its equivalent results be-
come true. And we may investigate the properties of function (4.2) to study prime distribution. 
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