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Abstract 
We study the problem of detecting a target that moves between a hiding area and an operating 
area over multiple fixed routes. The research is carried out with one or more cookie-cutter sensors 
with stochastic intermission, which turn on and off stochastically governed by an on-rate and an 
off-rate. A cookie-cutter sensor, when it is on, can detect the target instantly once the target comes 
within the detection radius of the sensor. In the hiding area, the target is shielded from being de-
tected. The residence times of the target, respectively, in the hiding area and in the operating area, 
are exponentially distributed and are governed by rates of transitions between the two areas. On 
each travel between the two areas and in each travel direction, the target selects a route randomly 
according to a probability distribution. Previously, we analyzed the simple case where the sensors 
have no intermission (i.e., they stay on all the time). In the current study, the sensors are stochas-
tically intermittent and are synchronized (i.e., they turn on or off simultaneously). This happens 
when all sensors are affected by the same environmental factors. We derive asymptotic expan-
sions for the mean time to detection when the on-rate and off-rate of the sensors are large in 
comparison with the rates of the target traveling between the two areas. Based on the mean time 
to detection, we evaluate the performance of placing the sensor(s) to monitor various travel 
route(s) or to scan the operating area. 
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1. Introduction 
Search and detection theory has a history of principal importance in operations research. It has fundamental 
military and civilian applications such as anti-submarine warfare, counter-mine warfare, and search and rescue 
operations [1]-[4]. 

Nowadays when combating piracy at sea, detecting and intercepting threat objects (boats) such as terrorists 
and drug or weapon smugglers, or securing coastlines and trade routes, it is important to understand the behavior 
of a target and plan a search and detection strategy accordingly. In a recent work [5] we considered the problem 
of searching for a target that travels between a hiding area and an operating area via multiple routes. By 
assuming certain behaviors of the moving target, we obtained analytic expressions for the mean time to 
detection and thereby were able to determine the optimal placement of m cookie-cutter sensors (i.e. how many 
sensors should we place on which routes and the rest is placed to search the operating area). Interestingly, we 
found that the optimal placement, sometimes, is not the one suggested by intuition. 

In this paper we would like to extend our earlier study to include stochastically intermittent sensors in 
detecting a target moving between a hiding area and an operating area. 

2. Mathematical Formulation for the Case of Sensors without Intermission 
We consider the search problem in which a target moves between a hiding area and an operating area via 
constrained pathways, as depicted in Figure 1. The target can stay in the hiding area where the target is shielded 
from being detected by the sensors. There are N given routes connecting the hiding area and the operating area. 
The target can travel along one of these N given routes from the hiding area to the operating area. The target can 
spend time in the operating area to carry out certain activities/tasks. Afterwards, the target can return to the 
hiding area via possibly a different route. In the hiding area, the target is not detectable. Outside the hiding area, 
the target is detectable along the routes and in the operating area if it comes into the detection range of a sensor. 

In the search problem, variable number of synchronized intermittent cookie-cutter sensors are used to detect 
the target. We will first introduce the mathematical model for the simple case of non-intermittent sensors (i.e., 
they stay on all the time) and then extend the model to accommodate the stochastic intermission of the sensors. 

We start by specifying the target behavior. The target moves stochastically between the hiding area and the 
operating area according to the following rules.  
• The dwell time of the target in the hiding area is exponentially distributed with rate fr , the forward rate of 

the target going from the hiding area to the operating area.  
• On its travel from the hiding area to the operating area, the target takes route k with probability kp , which 

satisfies the constraint 1 1N
kk p

=
=∑  where N is the total number of given routes.  

 

 
Figure 1. A target traveling between two areas. The target 
may stay in the hiding area where it is not detectable; it 
may travel from the hiding area to the operating area along 
one of the N given routes; it may spend time in the 
operating area before returning to the hiding area via 
possibly a different route.                                         
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• The dwell time of the target in the operating area is exponentially distributed with rate br , the backward rate 
of the target going from the operating area back to the hiding area.  

• On its travel from the operating area back to the hiding area, the target chooses route k with probability kq , 
which satisfies the condition 1 1N

kk q
=

=∑ .  
• The travel time between the operating area and the hiding area is negligible in comparison with the dwell 

times in the hiding area and the operating area. Mathematically, we treat the travel time along a route as 
zero.  

The target’s travel between the two areas is mathematically described by a Markov process of two states, with  
forward rate fr  and backward rate br , as illustrated in Figure 2. 

Next, we describe the interaction between the target and sensors. A non-intermittent cookie-cutter sensor is an 
ideal sensor which detects the target instantly once the target comes within distance R to the center of the sensor 
where the radius R is called the detection radius of the sensor. When the target is outside the detection radius, it 
is not detected. In this study, we assume that the detection radius of sensors is large enough to cover the full 
width of any one of the given routes. Consequently, if a non-intermittent sensor is assigned to monitor a route 
and the target happens to move along that route, the target will definitely be detected by the sensor. Of course, 
the situation will be different for an intermittent sensor that turns on and off stochastically. 

When a sensor is used to search the operating area, when the sensor is on, and when the target is in the 
operating area, the interaction between the target and the sensor is modeled using a detection rate dr  (pro- 
bability of detection per time).  

rate of detecting the target in the operating areadr ≡                      (1) 

This detection rate is affected by the size of the operating area, and by the detection radius and the speed of 
the sensor. 

When one or more non-intermittent sensors are deployed to monitor one or more routes or to search the 
operating area, the transitions and detection of the target are governed by a 3-state Markov process of the same 
parameter form as the one shown in Figure 3. The values of p, q, and d depend on how many sensors are used 
and which route(s) and area are monitored/searched. Values of p, q, and d are given below for several cases. 
• When only one sensor is deployed and it is placed to monitor route k, this gives  

, , 0k kp p q q d= = =  

• When only one sensor is deployed and it is used to search the operating area, this corresponds to  
0, 0, dp q d r= = =  

• When two sensors are placed to monitor, respectively, routes k and j ( k j≠ ), it follows that  

, , 0k j k jp p p q q q d= + = + =  

• When two sensors are both used to search the operating area, we find  
 

 
Figure 2. Markov transitions of the target between the hiding area 
and the operating area in the absence of any sensor.                                      
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Figure 3. Markov transitions of the target in the 
presence of non-intermittent sensor(s). Note that 
the parameter form of the Markov process is the 
same for all cases while values of parameter p, q, 
and d vary from case to case.                                      

 
0, 0, 2 dp q d r= = =  

• When one sensor is placed to monitor route k and a second sensor is used to search the operating area, this 
gives  

, ,k k dp p q q d r= = =  

To facilitate our analysis, we divide all transition rates by the sum ( )f br r+  to non-dimensionalize the 
Markov process depicted in Figure 3. Additionally, we introduce two dimensionless parameters:  

,f

f b f b

r d
r r r r

α µ≡ ≡
+ +

                                (2) 

The parameter form of the normalized Markov process is shown in Figure 4. 
In the absence of sensors, at equilibrium, the probabilities of the target being in the hiding area or the 

operating area are, respectively, ( )1 α−  and α . This fact will be used later in the calculation of mean time to 
detection. 

3. Mean Time to Detection in the Case of Sensors without Intermission 
Figure 4 describes the general model for the case of non-intermittent sensors. It can accommodate arbitrary 
number of sensors. For mathematical convenience, we label the hiding area as state 1 and the operating area as 
state 2. We solve for the mean time to detection. 

Let T denote the time to detection (random variable), and ( )S t  denote the state of the target at time t. Time 
0 is defined as the time when the sensors are deployed. We examine the conditional mean time to detection 
given that the target is in state j at time 0.  

( )( )0 , 1, 2jt E T S j j≡ = =                               (3) 

We derive two equations for 1t  and 2t  based on the Markov process in Figure 4. Starting with ( )0 1S = , 
the probability distribution of ( )S t∆  is  

( )
( )

( ) ( )
( )

1, with probability 1
2, with probability 1
detected, with probability

t o t
S t p t o t

p t o t

α
α
α

− ∆ + ∆
∆ = − ∆ + ∆
 ∆ + ∆

                  (4) 

Using the law of total expectation, we have  

( ) ( ) ( )1 1 21 1t t t t p t t o tα α= ∆ + − ∆ + − ∆ ⋅ + ∆  
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Figure 4. The normalized Markov process 
governing the transitions of the target.                                      

 
which, when divided by t∆  and in the limit of t∆  going to zero, yields  

( )1 21 1 0t p tα α− + − =  

This is an equation for 1t  and 2t . Similarly, another equation can be derived starting with ( )0 2S = . The 
two equations for 1t  and 2t  are  

( )
( )( ) ( ) ( )

1 2

2 1

1 1 0
1 1 1 1 0

t p t
t q t

α α
α µ α

− + − =
 − − + + − − =

                           (5) 

Solving linear system (5), we obtain  

( )
1

2

1 1
1 1

1
1 1

1

1

p

t
p q pq

q

t
p q pq

µ
α α α α

µ
α

α α
µ
α

− + + − − =
 + + − −

− + −=
 + + −

−

                                (6) 

Before the deployment of sensors, the equilibrium distribution of the target is  

( )( ) ( )( )Pr 0 1 1 , Pr 0 2S Sα α= = − = =  

Thus, the overall mean time to detection has the expression  

( ) ( )
( ) ( )

1 2

1
1

1

1

p q
E T t t

p q pq

µ
α α α

α α µ
α

− + +
−

= − + =
+ + −

−

                      (7) 

4. Mathematical Formulation for the Case of Synchronized Stochastically  
Intermittent Sensors  

We extend above discussions to consider synchronized intermittent sensors that stochastically turn on or off 
simultaneously. We model the stochastic evolution of sensors as a 2-state Markov process with an on-rate onr  
and an off-rate offr , as illustrated in Figure 5. 

As in the previous section, we divide all rates by ( )f br r+  to normalize the problem. After the non- 
dimensionalization scaling, we write the on-rate and the off-rate as  

onon-rate
f b

r
r r

β
ε

= =
+  
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Figure 5. The 2-state Markov process governing the intermittent 
sensors.                                                                          

  

off 1off-rate
f b

r
r r

β
ε
−

= =
+

                                (8) 

where  

on

on off on off

,f br r r
r r r r

ε β
+

= =
+ +

                              (9) 

Note that the parameter β  defined above corresponds to the equilibrium probability of sensors being on, 
which is also the fraction of time that sensors are on. The quantity ( )1 β−  is the equilibrium probability of 
sensors being off. The choice of notation ε  indicates that we will focus on the parameter regime of 1ε  .  
That is, we will focus on the case of ( ) ( )on off f br r r r+ + . Note that ( )on offr r+  is the rate of sensors relaxing  

to equilibrium between the on- and off-states; ( )f br r+  is the rate of the target relaxing to equilibrium between 
the hiding area and the operating area. Parameter ε  in (9) measures the ratio of these two relaxation rates. 

We now combine the stochastic travel of the target and the stochastic intermission of the sensors into a 5-state 
Markov process for the target-sensors system as illustrated in Figure 6. The normalized version of this 5-state 
Markov process where all transition rates are divided by ( )f br r+ , is shown in Figure 7. In the model, the 
sensors’ intermission and the target’s travel between the two areas are independent of each other. The target- 
sensors system can reside in any of 4 states before the detection. For mathematical convenience, we number the 
4 states as follows: (Figure 7).  
• State 1: the target is in the hiding area and the sensors are on.  
• State 2: the target is in the operating area and the sensors are on.  
• State 3: the target is in the hiding area and the sensors are off.  
• State 4: the target is in the operating area and the sensors are off.  

Figure 7 gives the general model for the target-sensors system with synchronized stochastically intermittent 
sensors. It can accommodate arbitrary number of sensors. We study the mean time to detection in this 5-state 
Markov process. 

Again, let T represent the time to detection (random variable), and ( )S t  denote the state of the target at time 
t. We consider the conditional mean time to detection  

( )( )0 , 1, 2,3, 4jt E T S j j≡ = =                           (10) 

We derive four equations for ( )1 2 3 4, , ,t t t t  based on the 5-state Markov process in Figure 7. Starting with  
( )0 1S = , the probability distribution of ( )S t∆  is  
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Figure 6. The 5-state Markov process governing the target- 
sensors system.                                                                           

 

 
Figure 7. The normalized 5-state Markov process governing the 
target-sensors system. In the non-dimensionalization scaling, all 
transition rates are divided by ( )f br r+ .                                      

 

( )

( )

( ) ( )

( )

( )

11, with probability 1

2, with probability 1
13, with probability

detected, with probability

t o t

p t o tS t
t o t

p t o t

βα
ε

α
β

ε
α

 − − + ∆ + ∆   
 − ∆ + ∆

∆ = 
− ∆ + ∆

 ∆ + ∆

                (11) 

The law of total expectation gives us  

( ) ( )1 1 2 3
1 11 1t t t t p t t t t o tβ βα α
ε ε

 −  − = ∆ + − + ∆ + − ∆ ⋅ + ∆ ⋅ + ∆  
  

 

Dividing both sides by t∆  and taking the limit as t∆  going to zero, we arrive at  

( )1 2 3
1 11 1 0t p t tβ βα α
ε ε
− − − + + − + = 

 
 

This is an equation for ( )1 2 3 4, , ,t t t t . Three other equations are derived using the same approach, starting with, 
respectively, ( )0 2S = , ( )0 3S = , and ( )0 4S = . Putting together, these four equations for ( )1 2 3 4, , ,t t t t  are  

( )1 2 3
1 11 1 0t p t tβ βα α
ε ε
− − − + + − + = 

 
                        (12) 

( ) ( ) ( )2 1 4
1 11 1 1 1 0t q t tβ βα µ α
ε ε
− − − − + + + − − + = 

 
                   (13) 

3 4 11 0t t tβ βα α
ε ε

 − + + + = 
 

                              (14) 
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( ) ( )4 3 21 1 1 0t t tβ βα α
ε ε

 − − + + − + = 
 

                         (15) 

Analytical solutions to the above linear system is hard to obtain. Instead, in the next section, we use this linear 
system to calculate asymptotic expansions for ( )1 2 3 4, , ,t t t t  and for the overall mean time to detection when ε  
is small. 

5. Asymptotic Solutions for the Mean Time to Detection in the Case of  
Synchronized Intermittent Sensors 

We derive asymptotic solutions for the mean time to detection for small ε . We start by writing the conditional 
mean time to detection in the asymptotic form of  

( ) ( )0 1
j j jt t tε= + +                                   (16) 

Substituting this asymptotic form into Equations (12)-(15) and examining terms of the order 1O
ε

 
 
 

, which  

are of the largest magnitude, we obtain  
( ) ( )

( ) ( )

0 0
1 3

0 0
2 4

t t

t t

 =


=
                                      (17) 

From Equations (12)-(15), we will derive two equations that do not contain any coefficient of the order  
1O
ε

 
 
 

. These two equations will then be used to calculate the leading coefficients in the asymptotic form: ( )0
1t   

and ( )0
2t . We rewrite Equations (12)-(15) to separate terms with coefficients 1O

ε
 
 
 

 from other terms.  

( ) ( )3 1 1 2
1 1 1t t t p tβ α α
ε
−

− − = − + −                           (18) 

( ) ( )( ) ( ) ( )4 2 2 1
1 = 1 1 1 1t t t q tβ α µ α
ε
−

− − − − + + − −                     (19) 

( )3 1 3 41t t t tβ α α
ε

− = − +                                (20) 

( ) ( ) ( )4 2 4 31 1 1t t t tβ α α
ε

− = − − + −                            (21) 

The two equations are constructed by  

( ) ( ) ( )equation 18 1 equation 20β β× + − ×  

( ) ( ) ( )equation 19 1 equation 21β β× + − ×  

The resulting two equations are  

( ) ( ) ( )1 2 3 41 1 1 1 0t p t t tβα βα β α β α− + − − − + − =                      (22) 

( )( ) ( )( )
( )( ) ( )( )

2 1

4 3

1 1 1 1

1 1 1 1 0

t q t

t t

β α µ β α

β α β α

− − + + − −

− − − + − − =
                          (23) 

Substituting asymptotic form (16) into the two equations above, keeping only terms of order ( )1O , and using 
result (17), we arrive at  

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

0 0
1 2

0 0
2 1

1 1 ) 0

1 1 1 1 0

t p t

t q t

α α β

α βµ α β

 − + − =

− − + + − − =

                        (24) 
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System (24) is of the same parameter form as system (5) except that p, q, and µ  in (5) are replaced by pβ , 
qβ , and βµ  in (24). The solution of (24) immediately gives us the leading coefficients:   

( ) ( ) ( )

( ) ( )

0 0
1 3

2

0 0
2 4

2

1 1
1 1

1
1 1

1

1

p

t t
p q pq

q

t t
p q pq

βµ β
α α α α
βµ β β β
α

β
α α

βµ β β β
α

− + + − − = =
 + + − −

− + −= =
 + + −

−

                          (25) 

We introduce quantity ( ) ( ) ( )( )0 0
1 2

1
t t

α α
σ

β
−

≡ − , which will be useful in the subsequent calculation. Quantity  

σ  has the expression   
( ) ( ) ( )( ) ( )0 0

1 2
2

1 1

1

p q
t t

p q pq

α α µ α α
σ βµβ β β β

α

− − + −
≡ − =

+ + −
−

                    (26) 

Next, we calculate coefficients ( ) ( ) ( ) ( )( )1 1 1 1
1 2 3 4, , ,t t t t . Substituting the asymptotic form (16) into equation (20)- 

(21), and using the fact that all leading coefficients are already known, we find expressions for ( ) ( )( )1 1
3 1t t−  and 

( ) ( )( )1 1
4 2t t− .   

( ) ( ) ( ) ( )( )1 1 0 0
3 1 1 2

1 11
1

t t t t σα α
β β α

− = − + = −
−

                       (27) 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 0 0
4 2 2 1

1 11 1 1t t t t σα α
β β α

− = − − + − = +                    (28) 

( ) ( )( ) ( ) ( )( ) ( )
1 1 1 1

4 2 3 1 1
t t t t σ

α α
− − − =

−
                          (29) 

Substituting the asymptotic form (16) into Equations (22)-(23), collecting all terms of the order ( )O ε , and 
using results (27)-(28), we obtain two equations for ( )1

1t  and ( )1
2t .   

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 1
1 2

1 1
1 2

11
1

11 1
1 1

t p t

q t t

ββ σ
α α

βµ ββ σ
α α α

− − − = −


−  − − + =  − − 

                       (30) 

The solution of (30) gives us expressions for coefficients ( ) ( ) ( ) ( )( )1 1 1 1
1 2 3 4, , ,t t t t .  

( )

( )

( )

( )

( ) ( )

( ) ( )

1
1

2

1
2

2

1 1
3 1

1 1
4 2

11
1

1
1
1

1
1

1

1

p
t

p q pq

qt
p q pq

t t

t t

βµ β βα σ
βµ α αβ β β
α

β β σ
βµ α αβ β β
α

σ
β α

σ
β α

 + −−= ⋅
− + + −

−
 − −
 = ⋅ −+ + −

−
  

= + −  −  
   = + +   

                      (31) 

Before the sensors are assigned to monitor/search routes, the equilibrium distribution of the target-sensors 
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system is  

( )( ) ( ) ( )( )Pr 0 1 1 , Pr 0 2S Sα β αβ= = − = =  

( )( ) ( ) ( ) ( )( ) ( )Pr 0 3 1 1 , Pr 0 4 1S Sα β α β= = − − = = −  

It follows that the overall mean time to detection has the expression  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2 3 4

0 0 0 0
1 2 3 4

1 1 1 1
1 2 3 4

1 1 1 1

1 1 1 1

(1 ) 1 1 1

E T t t t t

t t t t

t t t t

α β αβ α β α β

α β αβ α β α β

ε α β αβ α β α β

= − + + − − + −

= − + + − − + −

+ − + + − − + −

 

Therefore, the overall mean time to detection has the asymptotic expansion  

( ) ( ) ( )0 1E T t tε= + +                                  (32) 

where the coefficients ( )0t  and ( )1t  are given by   

( ) ( )0

1
1

1

p q
t

p q pq

µ
α βα α

µ β
α

− − +
−

=
+ + −

−

                               (33) 

( ) ( )( ) ( )( )

( )

( )1
2

1 1

1
1

p p q q p q
t

p q pq

µ α µ α β β
β βµ β α α

α

+ − + + − + − −
= ⋅ +

 + + − − − 

                 (34) 

The normalized transition rates and parameters (shown in Figure 7) are related to the physical transition rates 
(shown in Figure 6) as follows  

f b

d
r r

µ ≡
+

 

f

f b

r
r r

α ≡
+

 

on

on off

r
r r

β ≡
+

 

on off

f br r
r r

ε
+

≡
+

                                     (35) 

6. Behaviors of the Mean Time to Capture 
We examine behaviors of the mean time to detection, ( ) ( ) ( )0 1E T t tε= + , as a function of parameters µ , α , 
β , p, q, and ε . 

Observation 1: t(0) is a decreasing function of µ. 
We differentiate ( )0t  as defined in (33) with respect to µ  and find that  

( ) ( )

( )( ) ( )( )

( )

0

2
2

1
1d d

d d
1

1 1 1 1
0

1
1

p q
t

p q pq

p q

p q pq

µ
α βα α

µµ µ β
α

β α β α

µβα α β
α

 − − + − =
 + + − − 
− − − −

= − <
 − + + − − 
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In the derivative above, the right-hand side is negative because factors ( )1β α− , p, and q are all positive and 
bounded by 1. This property of ( )0t  is not surprising. Recall that µ  is the normalized detection rate in the 
operating area. For a larger µ , it is reasonable to expect that the target will be detected sooner. 

Observation 2: t(0) is a decreasing function of p and a decreasing function of q. 
We differentiate ( )0t , respectively, with respect to p and q and obtain that  

( ) ( ) ( )0

2

11
1 1d 0

d
1

p q pq q p q
t
p

p q pq

µ µβ β
α α βα α

µ β
α

  + + − + − − − +    − −   = − <
 + + − − 

 

( ) ( ) ( )0

2

11
1 1d 0

d
1

p q pq p p q
t
q

p q pq

µ µβ β
α α βα α

µ β
α

  + + − + − − − +    − −   = − <
 + + − − 

 

Both ( )0d dt p  and ( )0d dt q  are negative, which follows directly from the fact that all terms in the 
numerators are positive. In particular, it is true that  

0
1

p q pq p q pqµ β
α
+ + − > + − >

−
 

( ) ( ) ( ) ( )1 1 4 0
1 1

p q p q p qµ
α βα α α α
− − + > − + > − + >

− −
 

This property of ( )0t  is also expected. Remember that p and q are, respectively, the probability of the target 
being detected on its way to the operating area and the probability of being detected on its way back to the 
hiding area. Increasing either p or q while keeping the other unchanged will speed up the detection of the target. 

Observation 3: While (p + q) keeps fixed, ( )0t  becomes an increasing function of (pq). 
In the expression of ( )0t , while the sum ( )p q+  is fixed, the combination ( )pq  appears only in the 

denominator.  

( ) ( )0

1
1

1

p q
t

p q pq

µ
α βα α

µ β
α

− − +
−

=
+ + −

−

 

When the product ( )pq  is increased, the denominator is decreased, and as a result, ( )0t  is increased. This 
behavior tells us that when evaluating several options with the same value of ( )p q+ , the optimal option is the 
one with the smallest value of ( )pq . 

Observation 4: t(0) is a decreasing function of β. 
We differentiate ( )0t  with respect to β  to get  

( ) ( )( ) ( )

( )

( ) ( )( )
( )

22
0

2
2

2

2
2

1 1 2d 1
d

1
1

1 1
0

1
1

pq p q pqt

p q pq

p q pq

p q pq

µ β α β
α

β µβ α α β
α

β β α α

µβ α α β
α

− − + + −
−= −

 − + + − − 

+ − + −
− <

 − + + − − 

 

This property of ( )0t  is expected. β  is the fraction of time that the sensors are on. Increasing the value of 
β  leads to an increase in the probability that the sensors are on at a random time. and thus reduces the time to 
detection. 
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Observation 5: When p = q = 0, t(0) is a decreasing function of α. 
When sensors are deployed only to search in the operating area and no sensor is used to monitor any of the 

routes, we have 0p q= = . In this case, ( )0t  has the simple expression  

( )0 1 11 1t
α β µ
 

= + − 
 

 

which is a decreasing function of α . When only the operating area is searched, the target can only be detected 
in the operating area; the target cannot be detected on its travels between the two areas. Consequently, the 
detection probability increases with the fraction of time that the target spends in the operating area, which is 
given by α . 

Observation 6: In general, t(0) is not necessarily a decreasing function of α. 
When the condition 0p q= =  is not satisfied, ( )0t  may not be monotonic with respect to variable α . 

Figure 8 shows a plot of ( )0t  vs α  while other parameters are fixed at 0.55β = , 0.45p = , 0.23q = , and 
0.14µ = . ( )0t  initially decreases as α  is increased from 0. It attains a minimum around 0.6α = . For 
0.6α > , ( )0t  appears to be an increasing function of α . It is clear that in general, ( )0t  is not monotonic with 

respect to α . 
Next we study how the mean time to detection changes with ε , the normalized time scale of sensors relaxing 

to equilibrium between the on- and off-states. For that purpose, we examine coefficient ( )1t  in the asymptotic 
expansion ( ) ( ) ( )0 1E T t tε= + + . 

Observation 7: t(1) is always positive.  
We write ( )1t  as  

( )

( )

( )1
2

1

1
1

ht
p q pq

β
βµα α β

α

−
= ⋅

 − + + − − 

 

where h is a function of ( ), , , ,p qα β µ , given by  

( )( ) ( )( ) ( )
2

1
1

h p p q q p q p q pqµµ α µ α α α β
α

 = + − + + − + + − + + − − 
 

To prove that ( )1t  is always positive, we only need to show 0h >  is always true. 
As a first step, we establish that h is an increasing function of µ , which is reached by differentiating h with 

respect to µ .  
 

 

Figure 8. Plot of ( )0t  vs α  for 0.55β = , 0.45p = , 0.23q = , 

and 0.14µ = . Note that in general, ( )0t  is not monotonic with 
respect to α .                                                       
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( ) ( )d 2 2 2 0
d 1

h p q pq p q pqµ αβ
µ α
= + + − > + − >

−
 

Thus, to prove 0h > , we only need to show 
0 0h

µ=
> . This can be verified directly:  

( )( ) ( )( ) ( )( )

( ) ( ) ( )( )

2
0

2

1 0

1 2 1 1 0

h p p q q p q p q pq

pq p q pq
µ

α α α α β

α α β α α β

=
= − + − + + − + − >

= − − + + − >
 

In the above, we have used the facts  

( ) ( )11 and 2
4

p qα α− ≤ + <  

Therefore, we conclude that ( )1t  is always positive. It follows that as a function of ε  while other para- 
meters are fixed, the mean time to detection ( )E T  decreases as ε  is reduced. In other words, when the 
fraction of time that sensors are on is fixed (i.e., β  is kept at a constant), and when the normalized time scale 
of sensors relaxing to equilibrium between the on- and off-states is reduced (i.e., ε  is made smaller), the 
detection performance of sensors is improved (i.e., the mean time to detection is shorter). 

Finally, we demonstrate the accuracy of the asymptotic solution for the mean time to detection. Figure 9 
compares an accurate numerical solution and the asymptotic expansion ( ) ( )0 1t tε+  for ( )E T , in the range of 

[ ]0, 0.3ε ∈ . It is clear that the dependence of ( )E T  on ε  is well captured in the asymptotic solution 
( ) ( )0 1t tε+  even at 0.3ε = . 

7. Conclusion 
We have addressed the performance of stochastically intermittent sensors when used to detect a target that 
moves between a hiding area and an operating area via multiple routes. We have derived asymptotic expansions 
for the mean time to detection when the on-rate and off-rate of the sensors are large in comparison with the rates 
of the target moving between the hiding area and the operating area. Using the mean time to detection, we have 
evaluated the performance of placing sensor(s) to monitor various travel route(s) or to scan the operating area. 
 

 

Figure 9. Comparison of an accurate numerical solution of ( )E T  and the asymptotic 

solution ( ) ( )0 1t tε+  for 0.4α = , 0.25β = , 0.37p = , 0.21q = , and 1.4µ = .                    
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