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Abstract 
Assume that a target is hidden or lost in one of several possible locations and is to be found by the 
unmanned aerial vehicle (UAV). A target can be either a hostile object or missing personnel in re-
mote areas. Prior probabilities of target locations are known. Inspection operations done by the 
UAVs are imperfect, namely, probabilities of overlooking the hidden target and probabilities of 
false alarms exist for any possible location. The UAV has to sequentially inspect the locations so 
that to find the target with the minimum loss or damage incurred by the target before it is de-
tected subject to a required level of confidence of target identification. A fast (polynomial-time) 
priority-based algorithm for finding an optimal search strategy is developed. 
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1. Introduction 
The need for searching for hidden or lost objects arises in many applications. Common civilian applications are 
policing, control of air/water/soil pollution, fire fighting, prevention of natural disaster like floods, and others. 
Common military applications are the battlefield surveillance, detection of enemy intrusion or hidden hostile 
targets, rescuing lost people or objects in the open sea, and many others. We refer the interested reader to Stone 
[1] and Benkoski et al. [2] for further examples.  

Suppose a target is hidden in some region. Until being found, it may cause loss or damage to the environment, 
the damage scale being dependent on the location of the target and the time needed to detect and neutralize it. 
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The problem is to efficiently detect and remove or neutralize the target with the help of unmanned aerial 
vehicles (UAV). The UAV (also called drone) is an aircraft without a human pilot on board. It is controlled ei-
ther autonomously by on-board computers or by an operator (or a group of operators) on the ground or in anoth-
er aircraft. The UAVs are preferred for missions that are dangerous, complicated or just impossible for manned 
aircraft. Numerous examples of advanced practical applications of UAVs can be found in Valavanis [3]. 

A typical example arising in military logistics is a discrete-time search optimization problem in which a single 
automatic searcher (a military robot or an UAV) moves through a discretized 3-dimensional airspace and needs 
to find a static target located/hidden in a finite set of possible geographical locations. The searching automated 
device is subject to search-time constraints, fuel consumption and other factors. The typical objective of the 
search is to maximize the probability of detection or minimize the cost (or time) of the search (see, e.g., Dell et 
al. [4], Kress et al. [5], Sato and Royset [6], Kress et al. [7]). The resulting optimization problems are quite 
challenging from the computational point of view. General resource-and time-constrained min-cost and max- 
probability problem versions are proved to be NP-hard (Wegener [8]; Trummel and Weisinger [9]). In the 
present paper, we consider a different setting, namely, we intend to minimize the incurred loss or damage. Such 
problem arises in military search, surveillance, and reconnaissance operations with patrol aircraft and UAVs, 
where physical, logistic and operational constraints limit the search time.  

The choice of a search strategy strongly influences the search costs and losses incurred by the search as well 
as the probability of finding the target within a specific time limit. In military search-and-detection missions of 
the UAVs, the problem of finding good strategies has its own specificity because, unlike manned aircraft, these 
mobile agents need to operate in autonomous regime, without human advice and involvement. Under hostile or 
sabotage circumstances, like radio interference, two types of errors in search-and-detection operations usually 
occur: 1) the so-called “false-negative detection error”, wherein a target object is overlooked; and 2) the “false- 
positive detection error”, also called “a false alarm”, in which a decoy or a false target is wrongly classified as a 
correct target. Unfortunately, the problem of selecting the best search strategy is fundamentally hard due to its 
probabilistic nature, combinatorial structure and nonlinearity induced by the detection probability. In particular, 
looking twice into the same location by a searcher generally does not double the detection probability. 

There exist hundreds of reviews, papers and texts providing a deep background and presenting wide applica-
tions of the discrete search problems (see, e.g., Benkoski et al. [2], Washburn [10], Song and Teneketzis [11], 
Kress et al. [5], Sato and Royset [6], Wilson et al. [12], Chung and Burdick [13], Kriheli and Levner [14], Kri-
heli et al. [15] [16], and the numerous citations in those works).  

In the present work, we study a search-and-detection process subject to the false-negative and false-positive 
inspection outcomes. The general resource-constrained problem being NP-hard, we restrict our study to finding 
optimal strategies in a certain special scenario described below. The search is to minimize the losses incurred 
during the search. We organize the search process using a greedy strategy in which, at each step, the on-board 
computer used by the UAV computes a current search effectiveness for each location and sequentially searches 
for a next location with the highest current search effectiveness.  

Complementary to the discrete search model developed by Chung and Burdick [13], in which the search ob-
jectives are to maximize the probability of detecting the targets or to minimize the search time, in the present 
study we consider the objective function of the min-loss type; we investigate the different search scenario and 
stopping rule, develop a new greedy index-based search strategy and, finally, prove its properties. In contrast to 
the works by Kress et al. [5] and Chung and Burdick [13], our model does not require human interference. Spe-
cifically, the decision to stop the search is generated automatically by the on-board computer program basing on 
the input data, sensors’ assessments and the search history. 

In the scenario studied in the present paper, the local-optimal (greedy) strategy yields a global optimal. Being 
attractive due to its simplicity and computational efficiency, such local-search strategy guarantees finding an op-
timal search sequence with a pre-specified confidence level of target identification. Several earlier known dis-
crete search models, in particular, the search model with only false-negative outcomes (Kadane [17]; Levner 
[18]) and the search model for perfect inspections (Rabinowitz and Emmons [19]) are special cases of the model 
developed in the present paper. 

The remainder of the paper is organized as follow. The next section overviews the related work. Section 3 in-
troduces the discrete search problem in more detail. Section 4 analyses the problem and introduces its solution 
algorithm. Section 5 presents numerical examples and computational results. Section 6 concludes the paper.    
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2. Related Work 
The discrete search problem is one of the oldest and most popular problems of Operational Research. Its pio-
neering study was made by Bernard Koopman and his team during the World War II to provide efficient me-
thods for detecting submarines (Koopman [20]). The search theory has been used by the US Navy in the search 
for the H-bomb lost in the ocean near Palomares, Spain, in 1966. Adetailed historical survey of search theory 
and the bibliography of the discrete search literature can be found in Stone [1], Benkoski et al. [2] and Wash-
burn [10]. In recent decades, new models and methods for different modifications of the discrete search prob-
lems have been introduced. A wide range of general optimization methods are being used for solving basic 
search problems, among them the Lagrange multipliers, convex programming, dynamic programming, and 
branch-and-bound enumeration. The extensive bibliography can be found in the excellent survey by Benkoski et 
al. [2]. In the present paper, we complement the latter survey. Notice, however, that our survey is much more 
selective, being restricted to the overview of the discrete search for a stationary target under imperfect inspec-
tions. The review deals with the results related to the efficient local (greedy) solution methods, with an emphasis 
on those obtained in recent two decades. In such algorithms, the search effectiveness (also called the location at-
tractiveness) is defined, step by step, for each location. The greedy (index-based) algorithm proceeds by search-
ing, at each next step, the location with the highest search effectiveness. Typically it is the ratio of the detection 
probability to the corresponding cost, but, as we shall show, it may be of a more complicated structure.  

For the sake of completeness, we start with a brief overview of related classic results obtained in the 1970s. 
Sweat [21] suggested an efficient optimization strategy for maximizing the expected total discounted reward. 
Kadane [17] and Stone [1] considered a more general scenario in which the times and probabilities of fault de-
tections can change during the search. Chew [22], Wegener [8], Assaf and Zamir [23], and Levner [18] consi-
dered varying costs of inspecting different locations. Chew [22] and Kadane [17] studied the problem of max-
imizing the detection probability subject to cost constraints and showed that a locally-optimal strategy is global-
ly optimal when the cost is proportional to the number of searches. Kadane and Simon [24] proposed a general 
approach to the min-cost and max-reward (finite-horizon) search problems. Notice that in the above flow of 
early works, the assumption has been imposed that only the false-negative detection tests occur in the system, 
the false-positive outcomes (the false-alarms) being totally ignored.  

Trummel and Weisinger [9] and Wegener [8] have showed that the general min-cost, min-time, max-proba- 
bility-of-detection and min-cost-with-switches search problems are NP-hard.  

When the location inspections are imperfect, such a problem type may need an infinite sequence of steps as its 
solution. Thus, the problem is to find an optimal strategy rather than an optimal sequence itself. The latter se-
quence depends upon a random instant when the searcher finds the target. A typical stopping rule for the random 
search process is the following: “Stop at the step when the target is found for the first time”. Obviously, this rule, 
being applicable for the case of no-positive-false tests is not valid if the positive-false error occurs. Other criteria 
for the termination of the search process are treated by Chew [22] and Ross [25]; however, their termination 
conditions correctly capture only the false-negative search operations, that is, rely on the assumption that false- 
positive detection probabilities are zeros. More detailed analysis of the early works can be found in the excellent 
texts by Ahlswede and Wegener [26], Stone [1], Chudnovsky and Chudnovsky [27], and Benkoski et al. [2]. 

In recent decades, the operational research community has made great strides in the problem of sequential 
search under discrete time and space. Research results in Chung and Burdick [13] and the references therein 
presented a Bayesian construction for the problem of searching for multiple targets by imperfect autonomous 
devices such as robots, wherein the probability of detection of these targets is an objective for the optimal search 
trajectory. Kress et al. [5] and Chung and Burdick [13] are the first researchers known to us who address the 
possibility of false-positive detections. They analyzed several myopic and biology-inspired search strategies mi-
nimizing the search time and have shown that a local index-based policy is optimal when each detection by an 
autonomous search device is followed by a reliable work by a human verification team. 

In the present work, we continue and extend the results mentioned above, focusing on studying the search 
scenario in which the imperfect inspections can be either false-positive, or false-negative, or of the both types. A 
main contribution of our work is that, complementary to the works of Kress et al. [5] and Chung and Burdick 
[13], we study the practically important scenario where the interference of a human verification team is ex-
tremely expensive or practically impossible, in which case the UAV’s on-board computer should decide whether 
to stop or not to stop the search basing on the search history and the sensors’ assessment, without the interference 



B. Kriheli et al. 
 

 
156 

of the human team. 

3. Problem Formulation 
We define the sequential discrete search problem as follows. A discrete search area of interest (AOI) is a com-
plex geographical area which contains a set of N possible locations of a stationary target. The objective of the 
search is to detect and neutralize a hidden or lost hostile target. A target is to be found by a single searcher. 
Given the stationary nature of the target, it is assumed to be present throughout the entire duration of the search 
process, i.e., the target does not leave the search area and new targets do not appear. A target location in the 
search area is uncertain. In other words, an inspection of each location can be imperfect. This means that there 
given prior probabilities αi of the false alarm (if the UAV’s sensors falsely announce that the target is found 
when the location i is clean, and, besides, there given prior probabilities βi of overlooking the target-when ac-
tually location i contains a target,   1, ,i N=  . The imperfect quality of inspections implies that examination of 
each location can happen more than once. Hence, the search sequence, in general, may be infinite. After the 
search starts, the single mobile searcher should perform a set of sequential inspections in order to identify the 
target. The durations and costs of the inspections of all the locations being given, the goal of the search is to de-
termine a search strategy that the searcher should employ in order to locate the target with the minimum cost or 
maximum detection probability. 

A formal description of the problem is as follows. A system contains N modules 1, 2, , N . The input data 
are the following: Each location i,   1, ,i N=  , is characterized by the following known parameters: 
• pi—prior probability that location i contains a target; 
• αi—prior probability of a “false alarm”, or a false-positive outcome; this is a conditional probability that 

sensors of the autonomous UAV, after inspecting location i, declare that the target is discovered in location i 
whereas, in fact, it is not in this location;  

• βi—prior probability of overlooking, or a false-negative outcome; this is a conditional probability that the 
sensor of the UAV declares that target is not in location i whereas, in fact, it is exactly there; 

• ti—expected time to inspect location i; 
• ci—search cost rate per unit time when searching location i; this is the amount (in monetary or physical units) 

of loss or damage incurred during one time unit of search; 
• CL0—a pre-specified confidence level, this is a measure of confidence that the target is identified correctly; 

this value is close to 1 and will be exactly defined below. 
Each sequential inspection strategy is specified by an infinite sequence of steps:  

[ ] [ ] [ ] [ ]0 , 1 , 2 , , ,S s s s n=s    

where s[n] denotes the location number (further called the element number), more exactly, the number of the 
location which is inspected at the n-th step of sequence s, all [ ] { }1, 2, ,s n N∈ 

, and S[0] is an initial sub-se- 
quence with which strategy s starts, which will be defined below. 

In what follows, the terms strategy and sequence are used interchangeably.  
We suppose that the UAV makes its search moving in a certain sequence of steps s. In order to exactly define 

the stopping rule of the search process, we first introduce a notion of the confidence level CL. Without loss of 
generality, we suppose that the on-board computer, at each step of s, say i, may count and memorize the search 
history, that is, how many times, denoted hi, the sensor has already observed that the location i contains the tar-
get. (Recall that, due to the presence of the false positive outcomes, we are not obliged to immediately stop 
searching in the case when the sensor claims for the first time that it discovered the target).  

Notice that in the scenario studied by Kress et al. [5] and Chung and Burdick [13], as soon as the automated 
device (UAV) detects a target location (for brevity’s sake, we shall call such a test positive), a ground human 
team is sent to this location to verify the detection. Thus, the human team is involved to verify the search quality 
of the imperfect device. In contrast, we consider a search scenario for a completely autonomous aircraft. In order 
to enhance automatically the search quality level, the on-board computer analyses the input data and the overall 
search history, and then computes the conditional probability p[i,h] that the examined location i indeed contains 
the target under the condition that, during the previous sequential inspections, the (imperfect) UAV’s sensors 
have already declared h times that the location i contains the target. Naturally, the conditional probability p[i,h] 
increases with h growing, and we require that the p[i,h] should be sufficiently high. More concretely, the p[i,h] 
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value should not be less than a pre-specified value that we called the confidence level and denoted by CL (for 
example, one can take CL = 0.95 or 0.99). Further we show that the on-board computer can me programmed to 
compute how many times, during their sequential inspections, the UAV’s sensors has to observe that the cell i 
does contain the target, in order to guarantee that p[i,h] ≥ CL. A specific feature of this scenario is that the com-
puter memorizes the entire history of the sensors’ observations during the UAV’s search.  

The minimum positive integer h, such that the probability a[i,h] exceeds or equals the confidence level CL is 
called the critical height Hi; this value will be precisely determined below from the non-linear Equation (1) be-
low depending on the values of the input probabilities. Notice that all the values Hi, for each cell i, can be com-
puted and memorized before the search process starts. In this scenario, the basic idea is that, instead of using the 
human involvement at each positive test, like in the Kress’s et al. [5] scenario, the fully autonomous search stops 
when for some cell i, the outcome of a current inspection will be that, for the Hi-th time, cell i is discovered to 
contain the target. It is clear that in this case the probability of the correct decision will be guaranteed to be suf-
ficiently high, without the human-made additional testing. After arriving to such a case, the UAV carrying an 
explosive payload may hit a hostile target, or a human involvement, like sending a rescue team, is performed. 

The number accumulated up to a certain step n, counting that last step, and associated with the location 
searched at step n in s is called the (current) height of the cell s[n] = i and denoted by hi. As explained above, the 
conditional probability p[i,h] is defined as “the probability of that the target is correctly identified under condition 
that the sensors have repeatedly declared a fixed number of times that the target is indeed in location i”. Clearly, 
the p[i,h] values can be different for different location i, depending upon given probabilities pi, αi and βi. The pre-
cise meaning of the term repeatedly declared a fixed number of times will be explained below in detail.  

Let us summarize the said above. Without loss of generality, we suppose that the on-board computer of the 
UAV, in each step of the search sequence s, say n, counts and memorizes the entire search history, that is, how 
many times the UAV’s sensors had claimed, before the current step n, that different locations (indexed s[n] = i) 
contain the target. Such a number, accumulated up to step n and associated with any location searched at that 
step in s is called the height of the location s[n] = i at step n and denoted by hi = hi(n). For brevity, in the fol-
lowing we shall omit the index n in hi(n) if this does not lead to confusion. Notice that, due to existence of the 
false alarms the search should not stop when at a step n the sensors declare for the first time that they discovered 
the target. We need to continue the search until the probability a[i,h] reaches the pre-specified value CL.  

Now we can give the exact definition: for a given n value, the confidence level CLi at step n is defined as the 
desired lower bound for the conditional probability [ ], ii hp  that location s[n] = i is indeed contains the target 
under condition that the sensors have totally declared hi times (that is, in hi previous steps) that the target is lo-
cated in location i. When the hi(n) value at each step n of s is known, there is a direct way to compute the cor-
responding probability [ ], ii hp  for any hi, as the following claim states.   

Claim 1. (a) The conditional probability [ ], ii hp  relates to the height hi = hi(n) as follows: 

[ ]
( )

( ) ( ),

1

1 1

i

i i i

h
i i

i h h h
i i i i

p
p

p p

β

β α

⋅ −
=

⋅ − + −
                            (1) 

(b) Probabilities [ ], ii hp  increase with the growth of hi. 
The proof of Claim 1 is given in the next section. 
Given the input probabilities, the optimal search scenario is specified by the following conditions: 
1) the elements (locations) are inspected sequentially and independently of each other; 
2) for any search strategy and any target location, the outcomes of inspections are independent;  
3) the stopping rule is defined as follows: Given a required (permitted) value of the confidence level CL0, say 

CL0 = 0.95, the search process stops when, at some step n for some location s[n] = i and the corresponding 
height hi, the requested confidence level of identifying the target is achieved, that is:  

[ ] 0, ii hp CL≥ .                                  (2) 

Claim 2. If, for any location i, the probability 1 − βi of “no-overlooking” exceeds the false-alarm probability 
αi (that is, 1 − βi ≥ αi), then the probabilities [ ], ii hp  increase with the growth of n, for any pair of constant values 
(αi, βi).  

The proof follows immediately from two following facts: (a) the height hi of any location i increases with the 
growth of n in any search strategy s, and, (2) the function  
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[ ] [ ] ( ) ( )
( ) ( )

( ) ( )

, ,

1

1 1
1

1 1 1

i

i i i i

i

h
i i

ii h i h h h
i i i i

h
i i i i

p
p p h

p p

p p

β

β α

α β

⋅ −
= =

⋅ − + −

=
   + − −   

 

is obviously increasing in hi, whenever ( )1 1i iα β− ≥ . (Index n is omitted in hi = hi(n) and [ ] [ ] ( ), ,i ii h i hp p n=  
in the above formulas for the sake of simplicity).  

Corollary. Given the probabilities pi, αi and βi, for all i, and the required confidence level CL0, one can solve 
the inequality (2) with respect to hi. By virtue of Claim 2, the minimum integer hi that satisfies (2) presents the 
minimum number of positive tests of location i guaranteeing the required confidence level of the search. We 
denote this minimum hi-value by Hi and call it a critical height of location i. 

The CL0 value being given in advance, all the Hi values can be computed from (2), for all locations, before the 
UAV starts its search process. Now we are able to formulate the stopping rule. 

The stopping rule. The search process stops at the step at which the number of positive tests provided by the 
sensors for some location i* reaches, for the first time, its critical height value, Hi*. Thus, our model does not re-
quire human operator interference at each positive test for defining the stop moment; indeed, the search is 
stopped automatically by the on-board computer program as far as the Hi values are computed from (2) for all i 
and for the given CL0 values, and the search history is known. 

4. Problem Analysis 
In the following analysis, for a given sequence s, we need the following notation:  
• [ ] [ ]( ),s nT T s n s= -(accumulated) time spent by the UAV when moving from s [1] to location s[n] on the  

n-th step of strategy s; [ ] [ ]
1

n

s sn m
m

T t
=

= ∑ , 

• Ps[n]—unconditional probability that the sensor has totally declared in Hs[n] steps that the location s[n] con-
tains the target, up to the n-th step of strategy s. (The values Hs[n] and Ps[n] depending on parameters αi and βi, 
and guaranteeing a required confidence level CL0 will be computed below). 

• F(s)—the expected total loss incurred by the target before the latter is found and neutralized. 
In accordance with the above conditions (i) and (ii) of the considered search scenario, the expected (linear) 

total loss, F(s), is defined as follows: 

( ) [ ] [ ] [ ]
1

ss n s n n
n

F P c T
∞

=

= ∑s . 

In this notation, the stochastic infinite-horizon search problem is to find an optimal sequence s* minimizing 
the expected total loss F(s) incurred by the target before the search is stopped. 

We add the following notation: 
Event Bi = {after a single inspection, the sensor declares that location i contains the target}.  
Event Ci = {Location i is really contains the target}. 
In terms of the events, the location probabilities pi and probabilities of the errors of two types are expressed as 

follows: 

( ) ( ) ( ); / ; / .i i i i i i i ip P C P B C P B Cα β= = =  

The probability fi that the sensor declares that location i is detected as containing the target is: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

sensor declares that location  contains the target

/ / 1 1
i i

i i i i i i i i i i

f P B P i

P C P B C P C P B C p pβ α

= =

= + = ⋅ − + −
 

The conditional probability of the event that the location i contains the target under condition that the sensor 
has declared that the location i contains the target in a single inspection, is computed as follows: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

/ 1
/ .

1 1/ /
i i i i i

i i
i i i ii i i i i i

P C P B C p
P C B

p pP C P B C P C P B C
β

β α
⋅ −

= =
⋅ − + −+
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Let us return to Claim 1 from Section 3. Recall that we need to prove that the conditional probability [ ], ii hp  
of the event that the location i indeed contains the target under condition that the sensor has declared in exactly 
hi steps of the sequence s that the location I contains the target, satisfies the following relation: 

[ ]
( ) ( ) ( )( ) ( )

( ) ( )
1 2

,

1
/

1 1

i
i

i i i

h
h i i

i i i ii h h h
i i i i

p
p P C B B B

p p

β

β α

⋅ −
= ∩ ∩ ∩ =

⋅ − + −
  

Proof. Since the sequential inspections of locations made by the UAV are independent, we have that for any 
pair of indices { }, 1, 2, ,i j N∈ 

 the following equalities hold: 
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1 1

1 1

/ /

and

/ /

k k k
i i j i i

k k k
i i j i i

P B C B P B C

P B C B P B C

+ +

+ +

 ∩ =




∩ =  
Then 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

1 2

1 2

1 2 1 2

/

/

/ /

i

i

i i

h
i i i i

h
i i i i i

h h
i i i i i i i i i i

P C B B B

P C P B B B C

P C P B B B C P C P B B B C
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⋅ ∩ ∩ ∩
=

⋅ ∩ ∩ ∩ + ⋅ ∩ ∩ ∩





 

 

Next, using the relation  

( ) ( ) ( )/ / / ,P A B C P A C P B A C∩ = ∩  

we obtain: 
( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )( )
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( )( ) ( )( ) ( )( )
( )( ) ( )
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Therefore, 
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Claim 1 is proved.   Consider in more detail the search strategy s which is defined as an infinite-horizon sequence of location 
numbers, where, at each step n, location s s[n] is inspected and tested whether or not it contains the target: 

[ ] [ ] [ ]0 , 1 , , ,s S s s n=   . 

In this sequence, the initial sub-sequence denoted by S(0) starts the search process. It is defined in such a way 
that the search cannot stop during this initial sub-sequence. For instance, we selected S(0) in the following way 

[ ]
1 21 1 1

0 1,1, ,1, 2, 2, , 2 , , , , ,
NH H H

S N N N
− − −

  =  
  

   

 


 

Let us compute the problem’s objective function F(s). For this aim, we need, first, to compute the uncondi-
tional probability Ps[n] of the event that a location s[n] = i is detected by the sensor as a target-containing location 
exactly Hi times up to the nth step of strategy s (not necessarily successively). We introduce an auxiliary para-
meter s*[n] as follows: For any given sequence s and the location s[n] inspected by the sensor on step n, let s*[n] 
be the total number of inspections of location s[n] (not necessarily successively) up to the nth step of strategy s. 
Obviously, s*[n] ≤ n, for all n, and Hs[n] ≤ s*[n], for all n in s. 

Notice that the on-board computer of the UAV can easily count and store the s*[n] value in its memory as 
soon as the sequence s is known up to the n-th step. 

Claim 3. The probability Ps[n] can be computed as follows: 

[ ]
[ ]
[ ]

[ ]( ) [ ] [ ]
[ ]( ) [ ]

** 1
1

1
s n s ns n H H

s n s n s n
s n

s n
P f f

H
− −

= −  − 
 

for 1n ≥  and [ ] 0s nP =  for 0n = . 
This claim immediately follows from the above definitions of Hs[n] and s*[n], using the binomial distribution 

of Hs[n] − 1 inspections of the location s[n] in which the sensor has revealed the target in s[n], within the total 
number s*[n] of inspections of the location s[n] up to the n-th step of s. 

All the components of the problem’s objective function F(s) can be now computed as follows.  
• The time Ts[n] spent for the inspection of all the elements [ ] [ ]0 , ,S s n

 up to the nth step of strategy s is: 

[ ] ( ) [ ]
1 1

1 , 1.
N n

i is n s m
i m

T t H t n
= =

= − + ≥∑ ∑  

• The unconditional probability Ps[n] of the event that a location s[n] is detected by the sensor as a tar-
get-containing location exactly Hi times up to the nth step of strategy s-as defined in Claim 3. 

Our main result is the index-based greedy algorithm below that permits to find the search strategy. The fol-
lowing theorem completely describes the algorithm. 

Theorem. Define ratios [ ]s nQ  as follows: 

[ ] [ ] [ ]( ) [ ]
[ ]

[ ]( ) [ ] [ ]
[ ]

[ ]
** 1

1
1

s n s n
s n H H

s n s n s n s n s n
s n

s n
Q c t f f

H
− −

= − ⋅  − 
 

The strategy s* is optimal iff the ratios [ ]s nQ  are arranged in non-decreasing order, for all n ≥ 1. 
The proofs of Lemma and Theorem are done straightforwardly by the standard interchange argument (the in-

terested reader is referred, for example, to Levner [18], Pinedo [28] and Kress et al. [5], for further details of this 
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method). 
The search procedure in Theorem is index-based and greedy, so far as at each step the searcher selects for in-

spection the next minimum-ratio location. When all the αi = βi = 0, for all i, we have a special case of the 
so-called search scheduling problem with perfect inspections well known in scheduling literature (see, for ex-
ample, Kadane and Simon [24] and Rabinowitz and Emmons [19]. When all αi = 0, but βi ≠ 0, this is the case of 
false-negative inspections; if αi ≠ 0, but all βi = 0, this is the case of the false-positive inspections only 

5. Examples: Imperfect Search in a Small Area  
The following examples illustrate the validity and applicability of the suggested model. 

Example 1. Consider a problem of searching for a lost target by a single automatic device in a stochastic set-
ting. The model and application are motivated by those described in Chung and Burdick [13]. An area of interest 
is divided into N possible locations in one of which a target object is hidden. The specificity of the considered 
automatic search is that this autonomous device, at each step of search, has a limited memory and so does not 
remember the full history of all the outcomes of its previous search steps. The on-board computer only rememb-
ers how many times a target has been detected in each location, up to a current step in the search sequence. The 
search terminate as soon as the number of such outcomes in one of the locations reaches its pre-specified critical 
height, Hi, which, in turn guarantees the required confidence level in identification of the target. For simplicity, 
we consider an area with only three locations numbered 1, 2 and 3. The input data are given in Table 1; the re-
quired confidence level CL is 0.95. 

The results of intermediate computations are given in Table 2. 
The ratios Qi in decreasing order and corresponding location numbers are presented in Table 3. 
The search process stops at the ninth step. The optimal strategy obtained up to the ninth step is:  

[ ]* 0 ,1, 2,1, 2,3,3,3,3, 2,S=s  ; here [ ]0 1, 2S = . The minimum value of losses incurred by the obtained 
solution F(s*) is 49.398. We compared the obtained minimum losses with the losses incurred by another strategy, 
s1, in which the locations are visited periodically, being arranged in each period in decreasing order of location 
probabilities: 1 3, 2,1;  3, 2,1;  3, 2,1;s = 

. In this case, F(s1) = 57.484, which implies that F(s*) is essentially 
better. 

Example 2. Consider another area of interest with N = 6 possible locations in one of which a target object is  
 

Table 1. Input data for Example 1.                                                                                                          

Locations 1 2 3 

pi = P(Ci) 0.1 0.15 0.75 

( )/i i iP B Cα =  0.04 0.06 0.12 

( )/i i iP B Cβ =  0.1 0.07 0.05 

it
 

5 8 10 

ic
 

1 1 1 

 
Table 2. Intermediate results for Example 1.                                                                       

Locations 1 2 3 

Hi 2 2 1 

fi 0.126 0.190 0.743 

 
Table 3. Locations selected at each step and ratios Qi.                                                                       

Step no. in s 1 2 3 4 5 6 7 8 9 

Ratio Qi 0.1527 0.0819 0.0384 0.0312 0.0257 0.0191 0.0141 0.0105 0.0089 

No. of  
location 1 2 1 2 3 3 3 3 2 
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hidden. In this example, we explore experimental data similar to those used in the failure search model devel-
oped by Levner [18]. The data are given in Table 4 and a confidence level 0.95CL = . 

The results of intermediate computations are given in Table 5. 
The ratios Qi in decreasing order and corresponding location numbers are presented in Table 6. 
The optimal search strategy obtained up to the 13th step is: [ ]* 0 ,1, 2,3, 4,5,3, 4, 4, 4,3, 4, 4, 4S=s , where 
[ ] { }0 1,3,5,6S = . The minimum losses incurred by this solution F(s*) is 79.912. In the both numerical examples 

the ratios Qi, as well as the probability that the search stops in a wrong location caused by a false alarm, quickly 
decrease as the number of steps in the search sequence grows. We compared the obtained minimum losses with 
the losses incurred by strategy s2, in which the locations are visited periodically, being arranged in each period 
in decreasing order of location probabilities: 2 4,3, 2,5,1,6; 4,3, 2,5,1,6;=s 

. In this case, F(s2) = 85.143, 
thus, the optimal search strategy s* is indeed advantageous. 

6. Computational Experiments  
In order to find the exact solutions of the considered problem on the random data, the developed algorithm was 
implemented using MATLAB v. 7.1 and executed on the following hardware: Dell PowerEdge R410 server, 
CPU-2x Intel Xeon X5660 @ 2.8 GHz (12 cores total), 64 GB RAM. The problem instances were generated 
randomly as shown in Table 7. 

A total of 10,000 different instances were tested by the MATLAB solver. For all experiments, the calculation 
time was limited to 0.01 CPU-hour per problem instance. For each instance, the solver provided a greedy-gen- 
erated solution and the best solution generated by the full search over 1000 randomly generated feasible strate-
gies. The following phenomenon similar to the “80/20 rule” (also known as the Pareto rule, or “the law of the 
vital few”, see Rushton et al. [29]) has been empirically observed. Namely, in our calculation for approximately 
82% of the problem instances, about 20% of the randomly generated strategies provided a better solution than  

 
Table 4. Input data for Example 2.                                                                                                          

Location 1 2 3 4 5 6 

pi = P(Ci) 0.08 0.05 0.15 0.65 0.05 0.02 

( )/i i iP B Cα =  0.05 0.01 0.07 0.1 0.02 0.03 

( )/i i iP B Cβ =  0.06 0.05 0.1 0.01 0.07 0.03 

it
 

5 3 7 13 3 2 

ic
 

1 1 1 1 1 1 

 
Table 5. Intermediate results for Example 2.                                                                       

 
Locations 

1 2 3 4 5 6 

Hi 2 1 2 1 2 2 

fi 0.1212 0.057 0.1945 0.6785 0.0655 0.0484 

 
Table 6. Selected locations at each step and ratios in Example 2.                                                                       

No. of step 0 1 2 3 4 5 6 

No. of location 1, 3, 5, 6 1 2 3 4 5 3 

Ratio Qi  0.3421 0.3154 0.2865 0.2361 0.2101 0.1840 

 
No. of step 7 8 9 10 11 12 13 

No. of location 4 4 4 3 4 4 4 

Ratio Qi 0.161 0.123 0.089 0.061 0.032 0.012 0.009 
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the yielded greedy solution. 
The results for different average cost values (from $10 to $500) are presented in Figure 1. 
In addition, we have observed that for the values of the confidence level CL varying in interval [0.8; 0.96], for 

different number of cells varying in interval [10; 30], the number of instances for which the greedy algorithm 
behaved better than all other strategies, slowly increased with the CL growing (see Figure 2). 

In Figures 3-5, we present the average number K of steps before the search is terminated, as a function of the 
confidence level CL for 10,000 instances and different numbers of cells (N = 10; 20; 30). 

It is worth noticing that the number of steps of the algorithm becomes approximately the same, for large val-
ues of the confidence level. 

 
Table 7. The input data characteristics.                                                                       

Data type Range 

Number of cells Unif (10, 30) 

Expected inspection time (in Min) Unif (1, 10) 

Location probabilities Unif (0.04, 0.95) 

Probabilities of false alarms Unif (0.03, 0.5) 

Probabilities of overlooking Unif (0.04, 0.5) 

Search cost rate (in relative units) Unif (10, 40) 

 

 
Figure 1. The average number of strategies yielding a better solution than the greedy solution.                                    

 

 
Figure 2. The number of instances for which the greedy algorithm was the best search algorithm, for different CL.                                    



B. Kriheli et al. 
 

 
164 

 
Figure 3. The average number K of steps for the number of 
cells N = 10.                                                                       

 

 
Figure 4. The average number K of steps for the number of 
cells N = 20.                                                                       

 

 
Figure 5. The average number K of steps for the number of 
cells N = 30.                                                  
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7. Conclusions 
We have studied the sequential discrete search problem for a lost or hidden target and considered a practice- 
oriented case where the automatic device performs imperfect inspections subject to the false-negative and false- 
positive inspection outcomes. For optimizing the search process minimizing the expected loss or damage, we 
suggest a greedy strategy. Being attractive due to its computational efficiency and simplicity, such local search 
strategy guarantees finding an optimal (minimum-loss) search sequence, for a pre-specified confidence level.  

We believe that the suggested approach can be applied for a wider range of search scenarios (e.g., with mul-
tiple mobile agents, multiple targets, resource—and precedence constraints, agents with—and without memory). 
Notice that in the considered scenario the on-board computer program uses only partial information about the 
history of all search outcomes. Incorporating more complete information into the search model (for instance, 
joint probabilities of several locations) leads to a more complicated dynamic setting, which is an attractive di-
rection for further research. The suggested greedy method could be combined with more general and sophisti-
cated solution methods such as dynamic programming, branch-and-bound, and biology-motivated algorithms. 

Another prospective future research is to compare the computational efficiency of different sequential and 
non-sequential search methods using analytical and simulation tools. It is known that the min-cost and max- 
probability versions of the discrete search problem with general resource-and time constraints are NP-hard 
(Wegener [8]; Trummel and Weisinger [9]). We conjecture that the min-loss versions of the considered problem 
also have this property. This is a challenging topic for future research. 
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