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Abstract 
A new numerical evaluation of the Newtonian component of Mercury’s perihelion advance over 
more than two centuries starting from about the year 2000 is made. Results are given for about 
the last 30 years of this interval. Comparison with perturbation theory calculation results indi-
cates necessity of revision of previously held estimates of this quantity. 
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1. Introduction 
Over the last few decades numerical computation of the dynamics of the planetary system and its application to 
the study of the orbital elements of Mercury have become commonplace. To give a few examples see [1] [2]. 
Numerical analysis can be more accurate than perturbation theory as it aims to solve the exact equation of mo-
tion with decreasing time step to enhance the accuracy whereas perturbation theory yields a fixed value of a 
quantity like the advance of Mercury’s longitude of perihelion per century under the assumption that corrections 
to the two body problem are small. Also perturbation theory that has been used till today [3] cannot predict short 
term fluctuations in the advance as it is readily obtained in a numerical analysis (see Figure 1). We show that 
such a fluctuation in the Newtonian component of the perihelion advance when the total time period of study is 
slightly over two centuries from a suitable starting point can be quite large as the figure shows. This in our 

http://dx.doi.org/10.4236/oalib.1100958
http://www.oalib.com/journal
mailto:rajatroy@ece.iitkgp.ernet.in
http://creativecommons.org/licenses/by/4.0/


R. Roy 
 

OALibJ | DOI:10.4236/oalib.1100958 2 September 2014 | Volume 1 | e958 
 

 
Figure 1. The advance in the longitude of perihelion of Mercury as obtained from 
a numerical solution of coupled system of N ordinary differential equations. The 
initial time is JJ = 2451600.5 and the total period of computation roughly 217 
years. The plot is that for the last 10,000 days.                                   

 
opinions can be source of error in the observation as the total time period of an accurate observation of this pla-
net is hardly a few centuries old. 

2. Formulation of the Problem and Its Solution Using MATLAB Ordinary  
Differential Equation Solver 

The N-body problem of celestial mechanics can be formulated in terms of the heliocentric co-ordinate system 
and given for example by Arminjon [2] or Le Guyader [4] as 
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where all symbols have the same meaning as in reference [2]. The masses of the planets are taken from Rana [1] 
except that of Pluto which is a much smaller planet than what it was thought to be previously [4]. The initial or 
starting positions (and velocities) of all bodies on Julian ephemeris date JJ = 2451600.5 from reference [4] have 
been used. The heliocentric gravitational constant NGm  is taken from the book by Taff [5]. The solver used is 
ODE113 of MATAB as recommended by Arminjon [2] and we accept 13RelTol 5 10−= ×  and 15AbsTol 10−= . 
Given the small mass of Pluto we have neglected it altogether and considered the eight body system excluding 
Sun. The post processing needed to calculate the longitude of perihelion of Mercury from the coordinates and 
velocity of the planet at any point of time is obtained by calculating first the elements of the osculating ellipse a 
and e. From the direction of the angular momentum vector with respect to the ecliptic it is possible by the appli-
cation of vector product law to locate the direction of the ascending node. The scalar product can then be used to 
find the argument of latitude and finally the true anomaly from the property of the (osculating) ellipse [5]. The 
longitude of perihelion is the quantity (longitude of ascending node + argument of latitude − true anomaly). 
Most perturbation calculations as we will see in the next section do not take this three dimensional nature of this 
quantity called the longitude of perihelion into consideration while applying it to Mercury and hence we need to 
apply corrections to the results quoted in these computations before comparing with our numerical calculations. 
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3. Results Obtained in Our Computations and Those by the Perturbation Method 
First we present the longitude of perihelion advance per century from the initial or the starting date of computa-
tions quoted in Section 2, to the final time which is about 217 years in the future from this starting date. Results 
are shown in Figure 1 for roughly a period of 27 years ending at the final date. In order that there is no confu-
sion as to the quantity plotted along the y-axis in Figure 1, we state that it is the difference between the longi-
tudes of perihelion (which has been defined in Section 2) at the time under consideration as shown in the figure 
and the longitude of perihelion at JJ = 2451600.5 is divided by the difference between the two times. Thus it is 
different from the quantity plotted in ref. [1] which has the unit arc sec. (and the one in the figure has the unit arc 
sec/cy). We find a fluctuation in the computed advance to be about 17 arc sec/cy from a mean value of 532.8 arc 
sec/cy. If we add this mean to the general relativistic contribution to the advance estimated by Stewart [3] to be 
42.98 arc sec/cy, we exceed the observed value of the precession rate slightly. Moreover what is to be kept in 
mind is that the observed advance (per century) will depend on exactly when the observation is made since the 
fluctuations in Figure 1 are quite rapid. These fluctuations will certainly reduce if we calculate the precession 
rate over a longer time period but time period of accurate observational astronomy is only a few centuries in the 
past.  

From a study of this figure, the least claimed observed value of 575 arc sec/cy [3] for the longitude of perihe-
lion advance of Mercury is within an error of ±3 arc sec/cy. Let us now turn to perturbation calculations based 
on Laplace-Runge-Lenz vector as presented in ref. [3]. The angular velocity of this quantity gives a value of its 
advance per unit time which is strictly confined to the plane of Mercury’s orbit. Any change in the orientation of 
the orbital plane and its consequent effect on the node and through this on the longitude of perihelion is totally 
neglected. In fact the value obtained by Stewart [3] which is 532.23 arc sec/cy needs to be corrected for the mo-
tion of the node which yields an extra −3.35 arc sec/cy. The actual value of longitude of perihelion advance is 
only about 528.9 arc sec/cy from perturbation theory. To see how we obtain the quantity −3.35 arc sec/cy we 
write the full expression for the advance of Mercury’s longitude of perihelion as given by Taff [5] for example 
(see page 314 of this reference) 
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where all notations used are explained in this reference. Now the terms R  and T  are related to the radial 
and tangential (that is perpendicular to the radial) perturbing force in the orbital plane and hence must yield the  

same result as the motion of the Laplace-Runge-Lenz vector. The term ( )2d2 sin 2
d

i
t
Ω  is on the other hand re-

lated to the motion of the node and the value of d
dt
Ω  as given by Rana [1] which is −451 arc sec/cy will yield  

−3.35 arc sec/cy for this extra term in Equation (2). In fact only the R  and T  contributions to precession 
that had been used in ref. [3] can be verified by studying Equation (4.2) of this reference and the sentences 
which appear below it. Finally in conclusion we take a look at a recent contribution in published literature by 
Smulsky [6]. This author states that the observed perihelion advance is not 575 arc sec/cy but somewhere around 
582.5 arc sec/cy. Although the author has rightly pointed out that the ecliptic is not stationary with respect to a 
fixed co-ordinate system that cannot be identified with saying the x-y plane eternally, its motion is so small that 
it cannot make a difference in Mercury’s perihelion precession rate by about 7 to 8 arc sec/cy. Right now our 
code is not equipped with the calculation of the inclination of the orbital plane of the earth but it can be easily 
incorporated in the near future to prove our point. We feel that other concerns like decreasing the time step of 
integration is more urgent for more accurate results and this has been pointed out by one of the referees. 
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