
American Journal of Operations Research, 2016, 6, 147-152 
Published Online March 2016 in SciRes. http://www.scirp.org/journal/ajor 
http://dx.doi.org/10.4236/ajor.2016.62017   

How to cite this paper: Mohammadi, G. and Mohammadi, D. (2016) Minimizing Products Rates Variation in Just-in-Time 
Mixed-Model Manufacturing. American Journal of Operations Research, 6, 147-152.  
http://dx.doi.org/10.4236/ajor.2016.62017  

 
 

Minimizing Products Rates Variation in 
Just-in-Time Mixed-Model Manufacturing 
Ghorbanali Mohammadi1*, Darius Mohammadi2 
1Department of Industrial Engineering, College of Engineering, Qom University of Technology, Qom, Iran 
2Electrical and Computer Engineering Department, College of Engineering, Iowa State University, Ames, IA, USA 

     
 
Received 7 December 2015; accepted 6 March 2016; published 9 March 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Mixed-Model assembly lines are often used in manufacturing based on just-in-time techniques. 
The effective utilization of these lines requires a schedule for assembling the different models be 
determined. The objective is to minimize the total deviation of actual production rates from the 
desired production rates. Mathematical method with the optimization algorithm is proposed here 
to solve this problem. To prove the efficiency of the proposed algorithm, a number of test prob-
lems are solved. The results show that the proposed algorithm is an efficient and effective algo-
rithm which gives better results with the large problem sizes. This paper presents a practical pro-
cedure to minimize total product variation rates, and easy to use by practitioner. 

 
Keywords 
Mixed-Model Assembly Lines, JIT, Scheduling, Optimization, Manufacturing 

 
 

1. Introduction 
Mixed-Model assembly lines mainly used due to the following advantages: They provide a continuous flow of 
materials, reduce the inventory levels of final items, and very flexible with respect to model changes [1]. How-
ever, this flexibility requires expensive equipment, which reduces or even eliminates delays due to set-up activi-
ties ([2] chapter, 6). The Just-in-time (JIT) production system has been well known worldwide for achieving 
high efficiency. Just-in-time was originally developed by Toyota Motor Company in Japan to respond to various 
changes of circumstance such as fluctuating demand and diversified products [3]. To deal with frequent changes 
in demand and increasing variety in models, producing mixed-models on an assembly line become widely 
adopted in the manufacturing industry around the world to achieve flexibility and smooth part usage rates. The 
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effective utilization of these lines requires the following problems be solved [4]:  
1) Determination of line cycle time;  
2) Determination of the number and sequence of stations on the line;  
3) Line balancing;  
4) Determination of the sequence schedule for producing different products on the line.  
The sequence of introducing models to the mixed-model assembly lines is different due to the different goal 

or purposes of controlling the line. In sequencing mixed-model assembly lines, two goals are commonly consi-
dered. 

1) Levelling the workloads (total assembly time) among all stations within the Line (goal chasing 1). This 
goal smoothes out the workload on the final assembly line to reduce the line inefficiencies described as idleness, 
work deficiency, utility work and work congestion. (See, for example, [5]-[8].) 

2) Keeping a constant rate of usage for every part used by the line (goal chasing 2). This is called “balancing” 
or levelling the schedule by [9] [10]. For most of the industrial applications, determining an optimal balanced 
schedule is a very difficult combinatorial problem [11]. This goal should be to schedule models on the mixed- 
model final assembly line in such a way that production of each model is synchronized with the demand for that 
model. Sequencing models that go along a production or assembly line, with the objective of attenuating the 
variations in the rates of resource consumption is a problem that has received growing attention during last years. 
The SA approach presented by author previous work [12] can handle both goals for smoothing the workload. 
Kubiak [13] has defined that as the objective of the product rate variation (PRV) problem, which is the minimi-
zation of variation in the production rate of different final models produced on the final assembly line. Kubiak 
and Sethi [14] have shown that the product rate variation problem can be reduced to an assignment problem that 
can be solved efficiently, for example, Balas et al.’s [15] algorithm. Miltenburg et al. [16] proposes a dynamic 
programming algorithm to the product rate variation problem. Inman and Bulfin [17] propose the EDD approach 
for the Product rate variation problem with the objective function of minimizing the sum of both squared earli-  

ness and tardiness. Defining the time when jth unit of model i is needed-due-date-as 1
2ik T it K D d  = −    

  

and considering each unit of a model as a separate job, the sequencing problem is treated as a single-machine 
scheduling problem with earliness and tardiness objective. The optimal sequences are found by ordering the jobs 
following the EDD rule. Ding and Cheng’s algorithm is another approach for the product rate variation problem. 
Ding and Cheng, [18] [19] propose a procedure to minimize the next-two-stage (k and k + 1) total squared devi-
ation when a unit of a model is selected at a stage k. The problem also presented by Sumichrast and Russel [20], 
and Yeomans [21], and Bautista, [22], among others.  

The plan of this paper is as follows. Product rate variation described in Section 2. In Section 3 practical Solu-
tion algorithm is presented. Mathematical procedure conducted in Section 4.      

2. The Product Rate Variation Problem (PRV) 
The PRV problem can be stated as follows: one has to produce id  units of each one of the TD  models of a  

product with 
1

TD

i
i

d U
=

=∑ ; the production system is flexible that is, it adapt to the production of any model in a  

negligible time. This PRV problem can be formulated as a non-linear integer-programming problem as follows 
(Miltenburg [9]; Kubiak [13]). 

Notation 
n number of models or products types. id  demand for models, 1 2, , , nd d d . k number of stages per unit time  

period, 1, 2, , TDk =  . TD  total model demand (units of models to be produced), 
1

n

T i
i

D d
=

= ∑ . F number of  

times that minimal part set is repeated. i index, model to be produced, i = 1, 2, …, n. ir  production ratio, the  

proportion of model i demand to the total model demand, i
i

T

d
r

D
= . ,i kx  total cumulative production of model i  

in period 1 through k. Where 1, 2, , TDk =   
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3. Mathematical Model 
Assume that there are n models to be produced within the planning horizon with demands 1 2, , , nd d d , for a 
total demand of units. An implied time horizon of time units can be inferred, where one unit of model i, i = 1,  

2, …, n, will be produced in each time period. If i
i

T

d
r

D
=  then the level scheduling objective is to keep the total  

production per time period as close to r as possible, i.e., ideally, units of model i should be produced in the first 
k time period ( 1, 2, , TDk =  ).  

Let, ,i kx  I = 1, 2, n, k = 1, 2, TD  be the total production of product i in time periods 1 through k. Then the 
model can be written as: 

( ) ( )2
, ,

1 1

,
1

, , 1

.

PRV Minimize

ST

1,2, ,

0 1 for 1,2, , ; 1, 2, ,
is non-negative intneger ,

TD n

i k r i
k i

n

i k T
i

i k i k T

i k k i

Z F x K

x K k D

x x i n k D
x

= =

=

−

= −

= =

≤ − ≤ = =

∀ ∀

∑∑

∑ 

 

 

Constraint (1) ensures that exactly k units are scheduled in period 1 through k. Constraints (2) and (3) ensure 
that, for each model, either one unit is scheduled in a given period or else it is not scheduled at all. Define the  

point ( )1, 2, ,, , , n
k k k n kX x x x R= ∈  where , ,

1

n

i k i i k
i

x Kr x K
=

= =∑ , and R is the set of real numbers. Our objective  

is to find minimum product variation rates. Minimizing variation means: ( )2
,

1
min

n

i k i
i

x Kr
=

−∑ . An optimal solution  

to product rate variation can be constructed from any optimal solution of the following assignment problem [17] 
[18]. 
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The optimal schedule for the PRV is to order the jobs following the EDD rule [21]. 

( )2

1 1

, 1 , 1
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,
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4. Algorithm 
Step 1. Set k = 1 and Set ,0 0iX =  for all i 



G. Mohammadi, D. Mohammadi 
 

 
150 

Step 2. Among the n models, schedule the models with smaller ( ), 1 0.5i k ix K r− − +  (Break ties arbitrary). 
Step 3. Schedule all ,i kx ’s for all models. 
If Tk D=  stop, this is the lowest objective function value, otherwise, k = k + 1, go to step 2. 
At step 2, models with lowest ( ), 1 0.5i k ix K r− − +  value have higher priority to be selected at stage k.  

5. Computational Procedure 
To compare Miltenburg Algorithm 3 with heuristic 1 with this practical procedure, we take example 3 conducted 
by Miltenburg [9]. The schedule suggested by MA3H1 was 1-2-3-4-5-1-2-3-4-6 for 10 stages in that example 
with the total variation 9.953.  

In our procedure the schedule is 1-2-3-4-1-2-3-4-5-6 with total variation of 8.1488, this solution is optimal 
and much better than MA3H1 (see Table 1). 

Example 3. There are n = 7 models with demands 1 2 3 4 25d d d d= = = =  and 5 6 7 4d d d= = =  
Hence 1 2 3 4 25 112r r r r= = = =  and 5 6 7 4 112r r r= = =   

Stage k ( )1 2 7, , ,kX x x x=   

1 0.223 0.223 0.223 0.223 0.036 0.036 0.036 

2 0.446 0.446 0.446 0.446 0.072 0.072 0.072 

3 0.670 0.670 0.670 0.670 0.107 0.107 0.107 

4 0.893 0.893 0.893 0.893 0.143 0.143 0.143 

5 1.116 1.116 1.116 1.116 0.179 0.179 0.179 

6 1.339 1.339 1.339 1.339 0.214 0.214 0.214 

7 1.563 1.563 1.563 1.563 0.250 0.250 0.250 

8 1.786 1.786 1.786 1.786 0.286 0.286 0.286 

9 2.009 2.009 2.009 2.009 0.321 0.321 0.321 

10 2.232 2.232 2.232 2.232 0.357 0.357 0.35 

 
Table 1. Example problem.                                                                                             

stage 
Product 

Scheduled 
product Variation Total 

Variation 1 2 3 4 5 6 7 

K ( ), 1 0.5i k ix K r− − +  

1 −0.335 −0.335 −0.335 −0.335 − 0.054 −0.054 −0.045 1 0.787 0.787 

2 0.442 −0.558 −0.558 −0.558 −0.089 −0.089 −0.089 1-2 1.038 1.825 

3 0.442 −0.558 −0.558 −0.558 −0.089 −0.089 −0.089 1-2-3 0.802 2.627 

4 0.004 −0.004 −0.004 −1.004 −0.161 −0.161 −0.161 1-2-3-4 0.0778 2.7048 

5 −0.228 −0.228 −0.228 −0.228 −0.196 −0.196 −0.196 1-2-3-4-1 0.87 3.5748 

6 0.549 −0.451 −0.451 −0.451 −0.232 −0.232 −0.232 1-2-3-4-1-2 1.17 4.7448 

7 0.326 0.326 −0.674 −0.674 −0.268 −0.268 −0.268 1-2-3-4-1-2-3 0.99 5.7348 

8 0.103 0.103 0.103 −0.897 −0.304 –0.304 −0.304 1-2-3-4-1-2-3-4 0.320 6.0588 

9 −0.121 −0.121 −0.121 –0.121 −0.339 −0.339 −0.339 1-2-3-4-1-2-3-4-5 0.726 6.7808 

10 0.334 −0.344 −0.344 −0.344 0.625 −0.375 −0.375 1-2-3-4-1-2-3-4-5-6 1.368 8.1488 
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6. Schedule Large Problems 
For scheduling large problem we take minimal part set of demand and repeated to the frequency of demand. A 
minimal part set will be defined as the smallest possible set as parts in the same proportion as the demands mix 
during the whole working period. Suppose if the model A, B, and C have the demand of 700, 200, and 100 units, 
respectively, it is difficult to sequence a total of 1000 or more work-piece at one time. This demand set {700, 
200, 100} is divided by its largest common divisor (which is 100 in this case) to obtain the minimal part set a {7, 
2, 1}. The problem of scheduling all products during the working period is then reduced to finding the assigned 
order of models to stations in minimum part set {7, 2, 1} order. The numbers of times that a minimal part set 
repeat in order to complete the demand during the entire working period is the largest divisor, called frequency, 
F. In this case is F = 100. Motivation for working with the minimum part set is as follows: First, it is becoming 
common practice in industry to plan for production in terms of the minimum part set, especially in flexible 
manufacturing. Second, the approach greatly simplifies the computations, thereby permitting the derivation of 
optimal solution for problems of realistic size. Third, the results obtained from working with the minimum part 
set MPS rather than the full part are surprisingly better [23] [24]. It was stated by the Miltenburg [13] that a 
good assembly line sequencing algorithm should generate sequences made up of many repeating basic sequences. 
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