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Abstract 
 
In this work, we have exposed a recent method for modeling crack growth without re-meshing. The main 
advantage of this method is its capability in modeling discontinuities independently, so the mesh is prepared 
without any considering the existence of discontinuities. The paper covers the formulation and implementa-
tion of XFEM, and discusses various aspects of the approach (enrichments functions, level set representation, 
numerical integration…). Numerical experiments show the effectiveness and robustness of the XFEM im-
plementation. 
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1. Introduction 
 
The method finite element is widespread in applications 
of industrial design, and much of various software pack-
ages based on techniques of FEM were developed. It 
proved appropriate for the study of the fracture mechan-
ics. However, modelling the propagation of a crack by a 
finite element mesh proves to be difficult because of the 
topology alteration of the mesh. Besides, the singularity 
of the crack end has to be represented exactly by the ap-
proximation [1].  

Recently a new class has been proposed that simulates 
the singular nature of discrete models within a geometri-
cally continuous mesh of finite elements. The extended 
finite element method XFEM has emerged from this 
class of problems, and is based on the concept of parti-
tion of unity for enriching the classical finite element 
approximation to include the effects of singular or dis-
continuous fields around a crack [2]. An overview of the 
early developments of the X-FEM method has been 
given by Abdelaziz [3,4]. 
 
2. Basic Works 
 
The method of X-FEM originators were Belytschko and 
Black [2]. They introduced a method to develop the fi-
nite approximations element so that problems of the 
crack progression could be solved with remeshing mini-
mal. Dolbow et al. [5] and Moes et al. [6] came up with 

a more clever technique by adapting an enrichment in-
cluding asymptotic at the field and a Heaviside function 
of H(x). 

A significant advance of the extended finite element 
method was given by its coupling with level set methods 
(LSM): The LSM is employed to represent both the 
crack position and that of the crack ends. The X-FEM is 
employed to calculate the fields of stress and displace-
ment that is important to determine the crack growth 
ratio [7]. 

The results of the X-FEM method have been so en-
couraging that some authors have immediately seized the 
opportunity to apply this method for solving many kinds 
of problems where discontinuities and moving bounda-
ries are to be modeled.   
 
3. Key Ideas 
 
3.1. X-FEM Approximation 
 
In the X-FEM method, a standard displacement based 
finite element approximation is enriched by additional 
functions using the framework of partition of unity (Fig-
ure 1).  
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where 
 Ni is the shape function associated to node i, 
 I is the set of all nodes of the domain, 
 J is the set of nodes whose shape function support is 

cut by a crack, 
 K is the set of nodes whose shape function support 

contains the crack front, 
 ui are the classical degrees of freedom (i.e. displace-

ment) for node i, 
 bj account for the jump in the displacement field 

across the crack at node j. If the crack is aligned with 
the mesh, bj represent the opening of the crack, 

 H(x) is the Heaviside function, 
 ckl are the additional degrees of freedom associated 

with the crack tip enrichment functions Fl, 
 Fl is an enrichment which corresponds to the four as-

ymptotic functions in the development expansion of 
the crack tip displacement field in a linear elastic solid 
(Figure 2). 

 
3.2. Tip Element 
 
The nodes whose the corresponding shape function sup-
port contains the crack tip are enriched by singular func-
tions that can model the singular behavior of the dis-
placement field at the crack tip. 

The crack tip enrichment functions in isotropic elastic-
ity Fi(r, ) are obtained from the asymptotic displace-
ment fields: 

  4

1

 sin
2

 cos
2

,

sin sin
2

cos sin
2

j
j

r

r

F r

r

r






 

 



  
    

  
  
     

  
   

 
  
    

          (2) 

Note that the third singular function F3 is the only en-
richment function which is discontinuous across the 
crack. Thus, the discontinuity of the displacement field at 

π    in the singular enrichment zone is only modeled 
by F3 on the element containing the crack tip. 
 
3.3. Split Element 
 
The nodes whose the corresponding shape function sup-
port is totally cut by the crack, are enriched by an 
Heaviside function (Figure 3).  

The function of Heaviside jump is a discontinuous 
function through the surface of slit and constant on both 
slit sides: +1 on a side and –1 on the other.  
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Figure 1. X-FEM enrichment strategy. 
 

 

Figure 2. 2D view of near tip asymptotic functions. 
 

 

Figure 3. Heaviside jump function. 
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3.4. Numerical Integration 
 
For the slit cut elements that are enriched with the jump 
function H(x), Moes [6] altered the routines quadrature 
element for the weak form assembly. Because the slit can 
be randomly directed in an element, the standard squar-
ing of Gauss may not properly integrate the field of dis-
continuity. This process is generally carried out by 
means of dividing them into standard sub-triangles (Fig-
ure 4). Consequently whenever the slit propagates, a 
new sub-triangles set and a new set of gauss points are 
used. 
 
4. Method of the Level Set  
 
The description of discontinuities in the context of the 
extended finite element method is often realized by the 
level-set method. The Method of level set is a numerical 
design of Osher [8] for interfaces movement modeling. 
The method is believed to represent an interface by the 
zero of a function, called the function of the level set, 
and the Hamilton-Jacobi’s equations modernized the 
function of the level set so as to know the interface speed 
in the normal direction to this interface (Figure 5). 

A crack is described by two level sets (Figure 6): 
 a normal level set, (x), which the signed distance to 

the crack surface, 
 a tangent level set (x), which is the signed distance to 

the plane including the crack front and perpendicular 
to the crack surface. 
In a given element, min and max, respectively, be the 

minimum and maximum nodal values of  on the nodes 
of that element. Similarly, let min and max, respectively 
be the minimum and maximum nodal values of  on the 
nodes of an element: 
 If  < 0 and min max  0, then the crack cuts through 

the element and the nodes of the element are to be en-
riched with H(x).  

 If in that element min max  0 and min max  0, then 
the tip lies within that element, and its nodes are to be 
enriched Fi(r, ). 

 
5. Programming Procedure 
 
One can apply the method of finite extended element 
within one finite element code with relatively slight al-
terations: variable degrees numbers of freedom per node; 
interaction of mesh geometry (a manner to detect ele- 
ments intersecting with discontinuity geometry); matri-
ces of enriched rigidity; numerical integration. Sukumar 
and Prévost [9] described the X-FEM execution to model 
discontinuities of cracks within Dynaflow [10], as a 
package of standard finite element. Huang et a1. [11]  
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Figure 4. Numerical integration schema. 
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Figure 5. Level set representation. 
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Figure 6. Coupling XFEM/LSM. 
 
concentrated on the X-FEM application to problems of 
cracks in isotropic and bi-material media. Nisto et al.’s 
suggestion [12] of a numerical establishment in an ex-
plicit code was to treat the propagation of active cracks. 
The explicit dynamic FEM code (DynELA) [13] devel-
oped in the LGP with an object-directed framework to 
support the X-FEM application as a new module called 
DynaCrack. Bordas extended finite element library [14], 
the structure program, was conceived to fit all natural 
modularity, extensibility and robustness requirements. 
(C++) and of a commercial package of solid modeling/ 
finite element. 

The XFEM method can be implemented within a finite 
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element code with relatively small modifications: vari-
able number of degrees of freedom per node; mesh ge-
ometry interaction; enriched stiffness matrices; numeri-
cal integration [9]. 

1) Input data: defining various object entities (crack, 
holes, inclusions, interfaces…), enrichment types and 
crack growth law. 

2) Nodal degrees of freedom: a part from the classical 
degrees of freedom, additional unknown enriched de-
grees of freedom is introduced via the displacement ap-
proximation. 

3) Mesh-geometry interactions: This sub-category de-
tects the selection of the enriched nodes, then touches 
upon the computation of enrichment functions, and de-
tects the partitioning of the finite elements that are inter-
sected by the crack. 

4) Assembly procedure: The stiffness matrix and force 
vector assembly are done on an element level, which is 
similar to classical finite element implementation. The 
distinction herein is that the dimensions of the element 
stiffness matrix can differ from element (unenriched) to 
element enriched). 

5) Post-processing: This sub-category addresses the 
main objectives of a fracture analysis by determining the 
interaction integral, and controlling the crack growth 
criteria. 

The task of incorporating the X-FEM capabilities 
within a general-purpose finite element program can be 
broken down into the following schema (Figures 7 and 8, 
Table 1): 
 
6. Numerical Experimentation  
 
The Figures 9, 10, 11 and 12 show tow examples of 
crack growth modeling without re-meshing obtained by 
X-FEM code. 
 
7. Conclusions 
 
The extended finite element method (X-FEM) uses the 
partition of unity to remove the need to mesh physical 
surfaces or to remesh them as they evolve. It allows to 
model cracks, material inclusions and holes on non con-
forming meshes. The methodology of X-FEM that dif-
fers from that of the traditional method of finite element 
is of very particular concern since it does not force dis-
continuities to go with the borders. It solves the techno-
logical problems in the various complex fields accurately; 
the thing that can hardly be achieved impossible when 
using the traditional method of finite element alone. In 
this work, we present the basic concepts and the implan-
tation of the X-FEM. The work discusses general algo-
rithms for implementing an efficient X-FEM. A numerical  

 

Figure 7. Structural scheme of the X-FEM code. 
 

 

Figure 8. Structural scheme of Rigidity bloc. 
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Table 1. List of X-FEM functions. 

List Description 

Input Input data 

Mesh Mesh generation 

Crack Determination of the tip segment  

LSM Level set 

Node_E Extraction of the enriched node 

Resolution Construction and solving of linear equations 

Graphics Plotting 

Dmat Constrictive matrix 

Rigidity Compute stiffness matrix  

Condition Boundary condition 

Solution Solution of equations 

Extraction Stress intensity factors computation 

Int_H Partition of the crack split element  

Int_F Partition of the crack tip element 

Gauss Gauss quadrature 

Bmat Stiffness Matrix computation 

Delaunay Delaunay triangulation  

Function Shape function  

Func_H Crack split element enrichment  

Func_P Crack tip element enrichment 

 

 

Figure 9. Crack growth modeling by X-FEM (SEN speci-
men) 

 

Figure 10. Crack growth modeling by X-FEM (CN speci-
men). 
 

 

Figure 11. Stress distribution for different crack lengths 
(SEN specimen). 

 

 

Figure 12. Stress distribution for different crack lengths 
(CN specimen). 



Y. ABDELAZIZ  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 ENG 

718 

experiment is provided to demonstrate the effectiveness 
and robustness of the X-FEM implementation. 
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