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Abstract 
Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the pro-
jection of a given point onto the intersection of some closed convex sets. In this paper, we first ap-
ply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric 
positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial 
iterative matrix X0 = 0, the least Frobenius norm symmetric positive semidefinite solution of these 
matrix equations is obtained. A numerical example shows that the new algorithm is feasible and 
effective. 
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1. Introduction 
Throughout this paper, we use m nR ×  and n nSP ×  to stand for the set of m n×  real matrices and n n×  
symmetric positive semidefinite matrices, respectively. We denote the transpose and Moore-Penrose generalized 
inverse of the matrix A by TA  and +A , respectively. The symbol nI  stands for n n×  identity matrix. For 
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, ,m nR ×∈A B  ( )T, trace=A B B A  denotes the inner product of the matrix A and B. The induced norm is the 
so-called Frobenius norm, that is, 1 2, ,=A A A  then m nR ×  is a real Hilbert space. In order to develop this 
paper, we need to give the following definition. 

Definition 1.1. [1] Let M be a closed convex subset in a real Hilbert space H and u be a point in H, then the 
point in M nearest to u is called the projection of u onto M and denoted by ( )MP u , that is to say, ( )MP u  is 
the solution of the following minimization problem  

,min
x M

x u
∈

−                                     (1.1) 

i.e.  

( ) .minM
x M

P u u x u
∈

− = −                                 (1.2) 

In this paper, we consider the matrix equations  

, ,= =AXB E CXD F                                  (1.3) 

and their matrix nearness problem. 
Problem I. Given matrices ,p nR ×∈A  ,n qR ×∈B  ,s nR ×∈C  ,n tR ×∈D  ,p qR ×∈E  s tR ×∈F  and 

,n nR ×∈X  find ˆ ∈ΩX  such that  

ˆ = ,min
X∈Ω

− −X X X X                                 (1.4) 

where  

{ }, .n nSP ×Ω = ∈ = =X AXB E CXD F  

Obviously, Ω  is the symmetric positive semidefinite solution set of the matrix equations (1.3). It is easy to 
verify that Ω  is a closed convex set, then the solution X̂  of Problem I is unique. In this paper, the unique 
solution X̂  is called the optimal approximate symmetric positive semidefinite solution of Equation (1.3). 
In particular, if 0,=X  then the solution X̂  of Problem I is just the least Frobenius norm symmetric positive 
semidefinite solution of the matrix equations (1.3). 

This kind of matrix nearness problem occurs frequently in experimental design, see for instance [2] [3]. Here 
X  may be obtained from experiments, but not satisfy Equation (1.3). The nearest matrix X̂  satisfies Equa- 

tion (1.3) and is nearest to the given matrix X . Up to now, Equation (1.3) and their matrix nearness problem I 
have been extensively studied for the past 40 or more years. Navarra-Odell-Young [4] and Wang [5] gave 
necessary and sufficient conditions for Equation (1.3) having a solution and presented the expression for a 
general solution. By the projection theorem and matrix decompositions, Liao-Lei-Yuan [6] [7] gave some 
analytical expressions of the optimal approximate least square symmetric solution of Equation (1.3). Sheng- 
Chen [8] presented an efficient iterative method to compute the optimal approximate solution for the matrix 
equations (1.3). Ding-Liu-Ding [9] considered the unique solution of Equation (1.3) and used gradient based 
iterative algorithm to compute the unique solution. Peng-Hu-Zhang [10] and Chen-Peng-Zhou [11] proposed 
some iterative methods to compute the symmetric solutions and optimal approximate symmetric solution of 
Equation (1.3). The (least square) solution and the optimal approximate (least square) solution of Equation (1.3), 
which is constrained as bisymmetric, reflexive, generalized reflexive, generalized centro-symmetric, were 
studied in [11]-[17]. Nevertheless, to the best of our knowledge, the optimal approximate solution of Equation 
(1.3), which is constrained as symmetric positive semidefinite, (i.e. Problem I) has not been solved. The 
difficulty of Problem I lies in how to characterize the convex set Ω . In this paper, we first divided the set Ω  
into three sets 1,Ω  2 ,Ω  3 ,Ω  and then adopt alternating projections to overcome the difficulty. 

Dykstra’s alternating projection algorithm was proposed by Dykstra [18] to treat the problem of finding the 
projection of a given point onto the intersection of some closed convex sets. It is based on a clear modification 
of the classical alternating projection algorithm first proposed by Von Neumann [19], and studied later by 
Cheney and Goldstein [20]. For an application of Dykstra’s alternating projection algorithm to compute the 
nearest diagonally dominant matrix see [21]. For a complete survey on Dykstra’s alternation projection 
algorithm and applications see Deutsch [22]. 
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In this paper, we propose a new algorithm to compute the optimal approximate symmetric positive 
semidefinite solution of Equation (1.3). We state Problem I as the minimization of a convex quadratic function 
over the intersection of three closed convex sets in the vector space .n nR ×  From this point of view, Problem I 
can be solved by the Dykstra’s alternating projection algorithm. If we choose the initial iterative matrix 

0 0,=X  the least Frobenius norm symmetric positive semidefinite solution of the matrix equations 
,= =AXB E CXD F  is obtained. In the end, we use a numerical example to show that the new algorithm is 

feasible and effective. 

2. Dykstra’s Algorithm for Solving Problem I 
In this section, we apply Dykstra’s alternating projection algorithm to compute the optimal approximate 
symmetric positive semidefinite solution of Equation (1.3). We first introduce Dykstra’s alternating projection 
algorithm and its convergence theorem. 

In order to find the projection of a given point onto the intersection of a finite number of closed convex sets 
1 2, , , ,nC C C  Dykstra [18] proposed Dykstra’s alternating projection algorithm which can be stated as follows. 

This algorithm can be also seen in [1] [23]-[25].  
Dykstra’s Algorithm 2.1  
1) Given the initial value 0x ;  
2) Set (0) (0)

0 , 0, 1, 2, ,n ix x I i n= = =    
3) For 1, 2,3,k =    

( ) ( 1)
0

k k
nx x −=  

For 1, 2, ,i n=    
( )( ) ( ) ( 1)

1
k k k

i C i ii
x P x I −

−= − , 

( )( ) ( ) ( ) ( 1)
1

k k k k
i i i iI x x I −

−= − −  

End  
End  
The utility of Dykstra’s algorithm 2.1 is based on the following theorem (see [23]-[25] and the references 

therein). 
Lemma 2.1. ([23], Theorem 2) Let 1 2, , , nC C C  be closed convex subsets of a real Hilbert space H such 

that 1 2 .nC C C ≠ ∅   For any 1,2, ,i n=   and any 0 ,x H∈  the sequences { }( )k
ix  generated by 

Dykstra’s algorithm 2.1 converge to ( )
1 1 0 ,

nC C CP x
 

 that is,  

( )
1 1

( )
0 , 1, 2, , , .

n

k
i C C Cx P x i n k→ = → +∞

 

  

Now we begin to use Dykstra’s algorithm 2.1 to solve Problem I. Firstly, we define three sets  

{ } { }1 2 3, and .n n n n n nR R P× × ×Ω = ∈ = Ω = ∈ = Ω =X AXB E X CXD F S  

It is easy to know that 1 2 3 ,Ω = Ω Ω Ω   and if the set Ω  is nonempty, then  

1 2 3 .Ω = Ω Ω Ω ≠ ∅                                  (2.1) 

On the other hand, it is easy to verify that 1,Ω  2Ω  and 3Ω  are closed convex subsets of the real Hilbert 
space n nR × . 

After defining the sets 1,Ω  2Ω  and 3Ω , Problem I can be rewritten as finding 1 2 3
ˆ ,∈Ω = Ω Ω ΩX    

such that  

1 2 3

ˆ .min
X∈Ω Ω Ω

− = −X X X X
 

                             (2.2) 

By Definition 1.1 and noting that the equalities (2.2) and (1.2), it is easy to find that  

( )1 2 3
ˆ .PΩ Ω Ω=X X

 

                                 (2.3) 
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Therefore, Problem I can be converted equivalently into finding the projection ( )1 2 3
PΩ Ω Ω X

 

. Now we will 
use Dykstra’s algorithm 2.1 to compute the projection ( )1 2 3

PΩ Ω Ω X
 

. By (2.3), we can get the optimal 
approximate symmetric positive semidefinite solution X̂  of the matrix equations (1.3). 

We can see that the key problems to realize Dykstra’s algorithm 2.1 are how to compute the projections 
( )

1
P ZΩ , ( )

2
P ZΩ  and ( )

3
P ZΩ  of a matrix Z onto 1,Ω  2Ω  and 3Ω , respectively. Such problems are 

perfectly solvable in the following theorems. 
Theorem 2.1. Suppose that the set 1Ω  is nonempty. For a given n n×  matrix Z, we have  

( ) ( )
1

.P + +
Ω = + −Z Z A E AZB B  

Proof. By Definition 1.1, we know that the projection ( )
1

PΩ Z  is the solution of the following minimization 
problem  

1

.min
X∈Ω

−X Z                                     (2.4) 

Now we begin to solve the minimization problem (2.4). We first characterize the solution set 1,Ω  and then 
find X̂  such that (2.4) holds. Noting that the set 1Ω  is a closed convex set, then the minimization problem 
(2.4) has a unique solution. Hence ( )

1
ˆ .P ZΩ=X  The singular value decomposition of the matrices A and B are 

given by  

T T0 0
, ,

0 0 0 0
W   

= =   
   

A U V B U V 

Γ
                          (2.5) 

where ( )1 2, ,p pR ×= ∈U U U  ( )1 2, n n×= ∈V V V R  are orthogonal matrices, 1
p r×∈U R , 1

n r×∈V R , 
( )r rank= A , ( )1 2, , , rdiag t t t= Γ  and ( )1 2, ,n nR ×= ∈U U U    ( )1 2, q q×= ∈V V V R    are orthogonal matrices, 

1 ,n sR ×∈U  1 ,q sR ×∈V  ( ) ,s rank= B  ( )1 2, , , sdiag w w w=W  . According to the definition of the 
Moore-Penrose generalized inverse of a matrix, we have  

1 1
T T0 0
, ,

0 0 0 0

− −
+ +   
= =   

   

W
A V U B V U 

Γ                       (2.6) 

and  
T T T T T T

1 1 1 1 1 1 2 2 1 1 2 2, , , .+= = + = + =+A A V V BB U U V V V V I U U U U I                     (2.7) 

Substituting (2.5) into the matrix equation ,=AXB E  we obtain 

T T0 0
,

0 0 0 0
   

=   
   

W
U V XU V E 

Γ
 

which implies  

T0 0
.

0 0 0 0
T   

=   
   

W
V XU U EV 

Γ
 

Let  

( )
T T T

11 12T T 1 1 1 1 2
1 2T T T

21 22 2 2 1 2 2

, .
    

= = =    
     

X X U U EV U EV
V XU U EV E V V

X X U U EV U EV

 

   

 

 

Then the matrix equation =AXB E  can be equivalently written as  

T T
11 12 1 1 1 2

T T
21 22 2 1 2 2

0 0
,

0 0 0 0
     

=      
      

X X W U EV U EV
X X U EV U EV

 

 

Γ
 

which implies that  
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T
11 1 1,=X W U EVΓ                                   (2.8) 

T
1 20 ,=U EV                                     (2.9) 
T
2 10 ,=U EV                                    (2.10) 

T
2 20 .=U EV                                    (2.11) 

By (2.8) we have  
1 T 1

11 1 1 .− −=X U EV WΓ  

Noting that the set 1Ω  is nonempty, by (2.5) it is easy to verify that (2.9), (2.10) and (2.11) are identical 
equations. Hence the general solutions of the matrix equation =AXB E  can be expressed as  

1 T 1
11 12 T 1 1 12

21 22 21 22

,T
− −  

= =   
   



 

X X U EV W X
X V U V U

X X X X
Γ                  (2.12) 

where ( ) ( ) ( ) ( )
12 21 22, ,r n s n r s n r n sR R R× − − × − × −∈ ∈ ∈X X X  are arbitrary, which implies that the entries of the set 

1Ω  can be stated as (2.12). 
Consequently,  

1 T 1
T1 1 12

21 22

1 T 1
T T1 1 12

21 22

1 T 1 T T
1 1 12 1 1 1 2

T T
21 22 2 1 2 2

1 T 1 T T
1 1 1 1 12 1 2

T T
21 2 1 22 2

V

− −

− −

− −

− −

 
− = − 

 
  

= −  
   

   
= −   
   

− −
=

− −

U EV W X
X Z V U Z

X X

U EV W X
V ZU U

X X

U EV W X V ZU V ZU
X X V ZU V ZU

U EV W V ZU X V ZU
X V ZU X V







 

  

 

  



Γ

Γ

Γ

Γ

2

.
 
 
 ZU

                (2.13) 

By (2.13) we know that 
1

min
X∈Ω

− =X Z  if and only if  
T T T

12 1 2 21 2 1 22 2 2, , .= = =X V ZU X V ZU X V ZU    

Therefore, the solution of the minimization problem (2.4) is  

( )
1 T 1 T

T1 1 1 2
T T1

2 1 2 2

ˆ .P
− −

Ω

 
= =  

 

U EV W V ZU
X Z V U

V ZU V ZU

 



 

Γ                      (2.14) 

Combining (2.14) and (2.5)-(2.7), we have  

( )

( )

( )
( ) ( )

1 T 1 T
T1 1 1 2

T T1
2 1 2 2

1 T 1 T
1 1 1 2 1

1 2 T T
2 1 2 2 2

1 T 1 T T T T T T
1 1 1 1 2 2 1 1 1 1 2 2 2 2

T1
1

1 2 1 2T
2

0
0 0

T

T

P
− −

Ω

− −

− −

− −

 
=  

 
  

=   
  

= + + +

  
=   

  

U EV W V ZU
Z V U

V ZU V ZU
U EV W V ZU U

V V
V ZU V ZU U

V U EV W U V V ZU U V V V V ZU U

U W
V V E V V

U

 



 

  

  

     

 

Γ

Γ

Γ

Γ

( )
( )

( )

T1
T T T1

2 2 1 1 2 2T
2

T T T
1 1 1 1 2 2

T T T T
1 1 2 2 1 1 1 1

0
0 0

.

+ +

+ +

+ + + +

+ +

  
+ +  

  
= + − +

= + + −

= + −
= + −

U
V V ZU U ZU U

U
A EB I V V ZU U ZU U

A EB Z U U U U V V ZU U
A EB Z A AZBB
Z A E AZB B
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The theorem is proved. □  
Theorem 2.2. Suppose that the set 2Ω  is nonempty. For a given n n×  matrix Z, we have  

( ) ( )
2

.P + +
Ω = + −Z Z C F CZD D  

Proof. The proof is similar to that of Theorem 2.1 and is omitted here. □  

For any ,n nR ×∈Z  it is easy to verify that 
T

2
+

=
Z ZE  is a symmetric matrix. Then the spectral 

decomposition of the matrix E is  
T ,= ΛE U U  

where T
n=UU I  and ( ) ( ) ( )( )1 2, , , .ndiag λ λ λΛ = E E E  Then by Theorem 2.1 of Higham [26] and 

Definition 1.1, we have 
Theorem 2.3. For a given n n×  matrix Z, we have 

( ) ( )
3

T
1 2, , , ,nP Udiag t t t UΩ =Z   

where  

( ) ( )
( )

, 0;
0, 0.

i i
i

i

t
λ λ

λ
 ≥=  <

E E
E

 

By Dykstra’s algorithm 2.1 and noting that the projection ( ) ( )
1 2

,P PΩ ΩZ Z  and ( )
3

PΩ Z  in Theorems 2.1, 
2.2 and 2.3, we get a new algorithm to compute the optimal approximate symmetric positive semidefinite 
solution X̂  of the matrix equations (1.3) which can be stated as follows. 

Algorithm 2.2 
1) Set the initial value 0 ;=X X   
2) Set (0) (0)

3 0 , 0, 1, 2,3;i i= = =X X I   
3) For 1, 2,3,k =    

( ) ( 1)
0 3

k k−=X X  

For 1, 2,3i =   

( )( ) ( ) ( 1)
1i

k k k
i i iP −

Ω −= −X X I , 

( )( ) ( ) ( ) ( 1)
1

k k k k
i i i i

−
−= − −I X X I  

End  
End  
By Lemma 2.1 and (2.1), and noting that 1,Ω  2Ω  and 3Ω  are closed convex sets, we get the convergence 

theorem for Algorithm 2.2. 
Theorem 2.4. If the set Ω  is nonempty, then the matrix sequences { }( )

1 ,kX  { }( )
2

kX  and { }( )
3

kX  
generated by Algorithm 2.2 converge to the projection ( )1 2 3

,PΩ Ω Ω X
 

 that is  

( ) ( ) ( )1 2 3 1 2 3 1 2 3

( ) ( ) ( )
1 2 3, , , .k k kP P P kΩ Ω Ω Ω Ω Ω Ω Ω Ω→ → → → +∞X X X X X X

     

 

Combining Theorem 2.4 and the equalities (2.3) and (2.2), we have 
Theorem 2.5. If the set Ω  is nonempty, then the matrix sequences { }( )

1 ,kX  { }( )
2

kX  and { }( )
3

kX  
generated by Algorithm 2.2 converge to optimal approximate symmetric positive semidefinite solution X̂  of 
the matrix equations (1.3). Moreover, if the initial matrix 0 0,= =X X  then the matrix sequences { }( )

1 ,kX  
{ }( )

2
kX  and { }( )

3
kX  converge to the least Frobenius norm symmetric positive semidefinite solution of the 

matrix equations , .= =AXB E CXD F   

3. Numerical Experiments  
In this section, we give a numerical example to illustrate that the new algorithm is feasible and effective to 
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compute the optimal approximate symmetric positive semidefinite solution of the matrix equation (1.3). All 
programs are written in M ATLAB 7.8. We denote  

Error ,= − + −E AXB F CXD  

and use the practical stopping criterion 10Error 1.0 10−≤ × . 
Example 3.1. Consider the matrix equation (1.3) with  

3 0 4 5 1 2 2
2 3 1 4 0 2

2 3 4 2 4 1 3
1 3 2 4 5 1

5 6 3 0 2 3 1
, ,0 2 3 5 0 4

2 3 1 3 0 5 2
7 8 2 13 5 4

19 15 3 12 4 6 4
2 2 8 12 10 6

9 9 9 10 6 12 2

− − − 
− −   − − − −   − − −   − − − −

 = =−  
− − −   − −   − − − −   − − − −   − − − − − 

A B  

1 1 3 4 0 7
16 24 96 48 4 36 40

2 3 1 5 2 0
8 12 48 24 2 18 20

5 4 1 3 0 1
, ,20 30 120 60 5 45 50

15 11 8 12 2 17
76 114 456 228 19 171 190

31 29 8 30 6 5
96 144 576 288 24 216 240

6 4 10 10 0 26

− 
− − − −   − −   − − −   −

 = =− − − −  
−   − − − −   − −   − − −   − 

E C  

2 0 4 1 168 224 504 574
1 4 4 6 36 48 108 123
3 2 6 1 72 96 216 246

, .
8 10 22 21 516 688 1548 1763

4 2 6 5 468 624 1404 1599
22 30 66 75 528 704 1584 1808

− − − −   
   − − − −   
   − − − −

= =   
− − − −   
   − − −
      − − − −   

D F  

Here we use ( )ones n  and ( )zeros n  to stand for n n×  matrix of ones and zeros. It is easy to verify that 
( )5X ones=  is a solution of the matrix equations (1.4), that is to say, the set Ω  is nonempty. Therefore we 

can use Algorithm 2.2 to compute the optimal symmetric positive semidefinite solution of the matrix equation 
(1.3). 

1) Let 0 6 .= =X X I  After 41 iterations of Algorithm 2.2, we get the optimal approximate symmetric 
positive semidefinite solution  

41

1.0690 1.0000 0.7931 1.1379 0.9655 1.0345
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7931 1.0000 1.6207 0.5862 1.1034 0.8966ˆ
1.1379 1.0000 0.5862 1.2759 0.9310 1.0690
0.9655 1.0000 1.1034 0.9310 1.0172 0.9828
1.0345 1.0000 0

≈ =X X ,

.8966 1.0690 0.9828 1.0172

 
 
 
 
 
 
 
  
 

 

and its residual error  
10

41 41Error 9.67 10 .−≈ − + − = ×E AX B F CX D  

By concrete computations, we know that the distance from X  to the solution set Ω  is  

41
ˆ 5.3852.min

X∈Ω
− = − ≈ − =X X X X X X  
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2) Let 0

1 2 3 4 0 1
2 2 3 5 6 4
3 3 2 6 1 0

.
4 5 6 5 3 2
0 6 1 3 1 4
1 4 0 2 4 0

− 
 − − 
 − −

= =  
− 

 − − − −
  
 

X X  After 88 iterations of Algorithm 2.2, we get the optimal 

approximate symmetric positive semidefinite solution  

88

1.0321 1.0000 0.9037 1.0642 0.9839 1.0161
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9037 1.0000 1.2889 0.8074 1.0482 0.9518ˆ
1.0642 1.0000 0.8074 1.1284 0.9679 1.0321
0.9839 1.0000 1.0482 0.9679 1.0080 0.9920
1.0161 1.0000 0

≈ =X X ,

.9518 1.0321 0.9920 1.0080

 
 
 
 
 
 
 
  
 

 

and its residual error  
10

88 88Error 9.95 10 .−≈ − + − = ×E AX B F CX D  

By concrete computations, we know that the distance from X  to the solution set Ω  is  

88
ˆ 18.7825.min

X∈Ω
− = − ≈ − =X X X X X X  

3) Let ( )0 6 .zeros= =X X  After 116 iterations of Algorithm 2.2, we get the optimal approximate solution  

6

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000ˆ
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.

≈ =X X ,

0000 1.0000 1.0000 1.0000

 
 
 
 
 
 
 
  
 

 

which is also the least Frobenius norm symmetric positive semidefinite solution of the matrix equations (1.3), 
and its residual error  

10
6 6Error 8.76 10 .−≈ − + − = ×E AX B F CX D  

By concrete computations, we know that the distance from X  to the solution set Ω  is  

116
ˆ 6.0000.min

X
X

∈Ω
− = − ≈ − =X X X X X  

Example 4.1 shows that Algorithm 2.2 is feasible and effective to compute the optimal approximate 
symmetric positive semidefinite solution of the matrix equations (1.3). 

4. Conclusion 
In this paper, we state Problem I as the minimization of a convex quadratic function over the intersection of 
three closed convex sets in the Hilbert space n nR × , then we can use Dykstra’s alternating projection algorithm 
to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations (1.3). If 
we choose the initial matrix 0 0,=X  the least Frobenius norm symmetric positive semidefinite solution of the 
matrix equations (1.3) can be obtained. A numerical example show that the new algorithm is feasible and effec- 
tive to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations (1.3). 
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