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Abstract 
 
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues 
problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge 
an NIEP whether is solvable. 
 
Keywords: Inverse Eigenvalues Problem, Nonnegative Inverse Eigenvalues Problem, Solvability, 

Nonnegative Matrix, Spectrum of Matrix 

1. Introduction 
 
In 1937, Kolmogorov [1] asked the question: When is a 
given complex number an eigenvalues of some (en-
try-wise) nonnegative matrix? The answer is: Every 
complex number is an eigenvalue of some nonnegative 
matrix [2]. Suleimanova [3] extended Kolmogorov’s 
question in 1949 to the following well known problems 
which are called the nonnegative inverse eigenvaluese 
problems (NIEP) (also see [4]).  

Problem 1 (NIEP). Determine necessary and suffi-
cient conditions for a set of  complex numbers to be 
the eigenvalues of a nonnegative matrix of order .  

n
n

Problem 1 is open for . The case  is easy 
while then  is due to Loewy and London [5] 
(R.Loewy and D.D.London, A note on an inverse prob-
lem for nonnegative matrices, Linear and Multilinear 
algebra, 6 (1978), 83-90).  

4n  2n 
3n 

In the same paper [3] Suleimanova also considered the 
following real nonnegative inverse eigenvalues problem 
and gave a sufficient condition.  

Problem 2 (RNIEP). Determine necessary and suffi-
cient conditions for a set of  real number to be the 
eigenvalues of a nonnegative matrix of order n . 

n

Problem 2 is open for . Fiedler [6] posed the fol-
lowing symmetric nonnegative inverse eigenvalues pro- 
blem in 1974. 

5n 

Problem 3 (SNIEP). Determine necessary and suffi-

cient conditions for a set of n real number to be the ei-
genvalues of a symmetric nonnegative matrix of order n. 

Throughout the article, denotes set of real numbers, 
denotes set of complex numbers. 

R
C

Problem 1, Problem 2 and Problem 3 have not been 
solved yet since they were presented. To find the solv-
ability of these three problems, people have been study-
ing them in the recent 70 years (refer to the references), 
the achievements people have got and their limitations 
and practical application depict were evaluated in schol-
arly treatise [7] (Moody T. Chu, Gene H. Golub, Inverse 
Eigenvalue Problems: Theory, Algorithms, and Applica-
tions, Oxford University press. P 93-122) and article [8] 
(Ricardo L.SoTo, Reliability by symmetric nonnegative 
matrces, http://www.scielo.cl/pdf/proy/v24n1/art06. pdf). 
Readers also may refer to [9-26] for some previous re-
sults. In some articles, some necessary conditions and 
sufficient conditions for the three problems above have 
been given under some small dimension or special cases 
[7]. Also See the survey paper [26] and the book [2, 
Chapter VII]. The earliest study on the subject of NIEP 
was perhaps due to the Russian mathematician Suleima- 
nova (1949) on stochastic matrices, followed by Perfect 
(1953, 1955). The first systematic treatment of eigenval-
ues of symmetric nonnegative matrices can probably be 
attributed to Fiedler (1974). A more comprehensive 
study was conducted by Boyle and Handelman (1991) 
using the notion of symbolic dynamics to characterize 
the conditions under which a given set is a portion of the 
spectrum of a nonnegative matrix or primitive matrix. 
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General treatises on nonnegative matrices and applica-
tions include the classics by Berman and Plemmons 
(1979) and Minc (1988). Both books devote extensive 
discussion to the NIEPs as well. 

As [7, p94] said, most of the discussions in the litera-
ture center around finding conditions to qualify a given 
set of values as the spectrum of some nonnegative ma-
trices. A short list of references giving various necessary 
or sufficient conditions includesBarrett and Johnson 
(1984), Boyle and Handelman (1991), Friedland (1978), 
Friedland and Melkman (1979), Loewy and London 
(1978), de Oliveira (1983), and Reams (1996). The dif-
ficulty is that the necessary condition is usually too 
general and the sufficient condition too specific. Under a 
few special sufficient conditions, the nonnegative ma-
trices can be constructed numerically (Soules, 1983). 

In this paper, we will use a general method to give the 
solvability conditions of Problem 1 and Problem 2, we 
also discuss problem 3 and pose some new topics which 
caused by the Problem 3. Our approach is quite straight-
forward, but it offers an effective way to judge whether 
an NIEP is solvable. 

To facilitate discuss the solvability condition of NIEP, 
we will integrate NIEP with IEP, is the following prob-
lem 4. Firstly we will solve problem 4, and then with 
some additional conditions, the solvability conditions of 
Problem 1 and Problem 2 can be give accordingly.  

Problem 4. (Inverse eigenvalue problem-IEP) Given a 
list of complex numbers 

 1 2, , , n     , investigate whether there is a 

n n  real matrix with spectrum and how to determine 
such a matrix. 
 
2. Basic Requirement of the Existence of the 

Solutions to IEP and NIEP 
 
For any a given list of numbers  1 2, , , n    

bi

n n

, if it 
have odd number elements which are pure complex 
numbers (a complex number a is said to be a pure 
complex if ) or even number pure complex num-
bers with at least a complex number’s conjugation are 
not in the list, we can assert that any  real matrix 
can not satisfy the demand of Problem 1-4. Because any 
real matrix’s spectrum always depends on a real coeffi-
cient polynomial, but the complex roots of a real coeffi-
cient polynomial always comes in pairs.  

0b 

It means that for the existence of the matrices which 
present in problem 1-4, the list  1 2, , , n      must 

appear as follows: 

 1 2 1 2 1 2, , , , , , , , , , ,k lr r r z z z z z z        

where  0 ,0ir R i k k n     , , jz C jz  is con- 

jugation of jz   0 ,0j l l n    , . When 2k l n 

0k  , it means that all of 1 2, , , n    are pure com-

plex numbers. When 0l  , it means that all of 

1 2, , , n    are real numbers. That is, 

 1 2, , , n      must be closed under complex con- 

jugation, the closed conception has been presented by 
some articles (see [3], p. 476, [7], p. 93).  

Next, we will begin our work with a basic result re-
lated to Problem 4. 
 
3. An Answer to the IEP 
 
Compared with the NIEP, the IEP-inverse eigenvalue 
problem seems to be easier one, so we discuss it firstly. 

Theorem 3.1. For a given list of complex numbers 
 1 2, , , n     , if it has closed property under com-

plex conjugation, there must be at least one real matrix 
A  with spectrum  . 

Proof. Since  1 2, , , n      has closed property 
under complex conjugation, it has form (2.1). So, we can 
use it to construct the following polynomial: 

  
1

n

i
i

f x x 


              (3.1) 

We note that (3.1) is a symmetry real coefficient poly-
nomial. By expanding, merging similar items and sim-
plifying, we suppose (3.1) becomes 

  1
1 1

n n
nf x x a x a x a
 n            (3.2) 

Then 1 2, , , na a a  
, , , n

 are real numbers and (3.2) has roots 

1 2    . 

We use 1 2, , , na a a    to construct companion matrix 
of (3.2): 

1 2 2

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

n n na a a a a 

  

1

 
    
                  
 

   
        

A   (3.3) 

It is not difficult to test that the characteristic polyno-
mial of A  is (3.2) and (3.1) exactly. It means  
that A  has spectrum  1 2, , , n     . 

Thus, we can draw the conclusion. The proof is com-
plete.  

l      (2.1) 

We note that using  given numbers to determine n
n n  unknown variables (a  matrix) maybe a 
problem of indeterminate equations, which shows that 

n n
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there may be the relation of many to one between the two 
of  unknown variables and n given numbers. That 
is, the solution of IEP and its form may not be unique. In 
fact, we have the following theorem:  

n n

Theorem 3.2. For a given list of complex num-
bers  1 2, , , n  

P

1 2, ,

  , if it has closed property under 

complex conjugation and there exist  invertible 

real matrix  makes , then  also has 
spectrum

n n
B1 P AP

 , n

B
     , where A  is the matrix 

which is constructed in the proof of Theorem 3.1.   
 
4. Solvability Condition of Problem 1 and 

Problem 2 
 
In this section we will discuss the key problem that is the 
solvability condition of Problem 1 and Problem 2 of 
NIEP. We note that the difference between IEP and 
NIEP is that, NIEP needs people to find at least one 
nonnegative matrix with a given list of complex numbers 

 1 2, , , n     as its spectrum rather than others. 
Based on this requirement, we give the following Theo-
rem: 

Theorem 4.1. For a given list of complex num-
bers  1 2, , , n    , if it has closed property under 
complex conjugation, then the sufficient condition that 
has at least one nonnegative matrix A  with spectrum 

 is that 

1 2

1 3 1

3 1 2 4 2
, , 1

0

0

0

0 is a odd num

0 is a even nu er

n

n

n n j
i j
i j

n

n n i j k
i j k
i j k

n

n

n



    

        








 


 

    

      

     

    


 





1 2

1 2

1 2

 

 

 

 

 














, 1

1

ber

mb

i

n



  

(4.1) 

Proof. It is similar to prove the IEP in Theorem 3.1, 
we use  1 2, , , n     to construct the following 
symmetry real coefficient polynomial: 

 
1

n

i
i

f x x 


              (4.2) 

By expanding and merging similar items, we suppose 
(4.2) becomes 

  1
1 1

n n
n

then 1 2, , , na a a  

1 2, , , n

are real numbers and (4.3) has roots 

   . 

According to an algebra basic theorem of real coeffi-
cient polynomial, we can get the following equalities:  

 

1 2 1

1 2 1 3 1 2
, 1

1 2 3 1 2 4 2 1 3
, , 1

1 2

, ,

1

n

n

n n i j
i j
i j

n

n n n i j k
i j k
i j k

n

n n

a

a

a

a

  

       

           

  






 


 

     

      


        






   




  

(4.4) 

It is clear that if (4.1) holds, we can deduce that 

1 20, 0, , 0na a a      
, , ,a a a

. 
If we use 1 2 n    to construct real matrix A  as 

(3.3), A  is a nonnegative matrix and its characteristic 
polynomial is the same with (4.3) and (4.2). That is, A  
has spectrum 

 1 2, , , n     . 

Thus, the proof is complete.  
Obviously, Theorem 4.1 gives a solvability condition 

of Problem 1. 
In theorem 4.1, the verifying terms are simpler and 

easy to be actualized.  
For instance, if we let 

1 2 3 4

1 1
1 , 1 , 3,

2 2
i i    1          

we have  

1 2 3 4 0 0       

1 2 1 3 1 4 2 3        2 4 3 4

23
0

4
          

1 2 3 1 2 4 1 3 4         2 3 4

17
0

2
        

1 2 3 4

15
0

2
        

It is clear that

0 1 0 0

0 0 1 0

0 0 0 1

15 17 23
0

4 2 4

 
 
 

  
 
 
  

A is a nonnegative 

matrix and it has spectrum 

1 1
1 , 1 , 3, 1

2 2
i i

        
 

 

nf x x a x a x a
             (4.3) 
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Theorem 4.1 shows that for a given list of complex 

numbers  1 2, , , n     , people can construct a non-
negative matrix through the sufficient condition above 
and make this matrix have spectrum  1 2, , , n     .  

It is obvious that if 1 2, , , n  

, n

 is a given list of  
real numbers, it is the special case of list of complex 
numbers 

n

 1 2, ,     , so we have the following 
Theorem: 

Theorem 4.2. For any a given list of real numbers 
 1 2, , , n     , the sufficient condition that has at 

least one nonnegative matrix with spectrum is that A 

1 2

1 2 1 3 1
, 1

1 2 3 1 2 4 2 1
, , 1

1 2

0

0

0

0 is a odd number

0 is a even number

n

n

n n i j
i j
i j

n

n n n i j k
i j k
i j k

n

n

n

  

       

           

  






 


 

      

       


       



 
    



  

The proof of Theorem 4.2 can refer to Theorem 4.1, so 
it is omitted.  

Theorem 4.2 gives a solvability condition of Problem 
2. 

Theorem 4.3. For a given list of complex num-
bers  1 2, , , n    

P

, if it has closed property under 
complex conjugation and there exist  invertible 
real matrix  makes

n n
1 P AP B  and  is nonnega-

tive matrix,  also has spectrum , where 
B

B  A  is the 
matrix which is constructed in the proof of Theorem 4.1.  

Theorem 4.3 also shows that the solution to NIEP may 
not be unique. 

Next, we will discuss Problem 3. 
According to Theorem 4.2 and Theorem 4.3, we know 

that as long as  1 2, , , n    

, n

 satisfy (4.1), then 
there must be at least one nonnegative matrix has spec-
trum 1 2

A
 , ,    . Further, if there exist n n  

invertible real matrix makes  andP 1 P AP B B is 
nonnegative symmetric matrix, also has spectrum B  , 
where A  is the matrix which is constructed in the proof 
of Theorem 4.1. If that were true, a solvability condition 
of Problem 3 would be give. The question is that it needs 
people to prove the following three new topics of matrix 
theory further: 

1) For any a given nonnegative matrixn n A , whe- 
ther there must be an invertible real matrix  
makes and also makes to be a nonnegative 
matrix? 

nn P
1 P AP B B

2) For any a given nonnegative matrixn n A , whe- 
ther there must be an invertible real matrix  

makes 

nn P

1 P AP B and also makes  to be a symmet-
ric matrix? 

B

3) For any a given n n  nonnegative matrix A , whe- 
ther there must be an n n  invertible real matrix  
makes 

P
1 P AP B  and also makes  a both non-

negative matrix and symmetric matrix; 
B

From the evidence we have heard so far, there are no 
existing conclusions for the above problems. But we 
conjecture each of three new propositions above is holds. 
In fact, since A  is a known nonnegative matrix, in nu-
merous real matrices, there must be invertible real ma-
trix makes P 1 P AP B and  a both nonnegative 
matrix and symmetric matrix.  

B

To avoid adrift from the subject of this paper, we 
leaves the question to readers first. 
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