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Abstract 
In this paper, we have used an algorithm to fit the Burr XII distribution to a set of insurance data. 
As it is well known, the probability of ultimate ruin is obtained as a solution to an integro-differ- 
ential equation and in case, the claim severity is distributed as Burr XII distribution, this equation 
has to be solved numerically to obtain an approximation to the probability of ultimate ruin. Two 
numerical algorithms, namely the stable recursive algorithm and the method of product integra-
tion have been used to obtain numerically an approximation to this probability of ultimate ruin. 
The use of these two numerical algorithms provides a scope for comparing the consistency in val-
ues obtained by them. The first two moments of the time to ruin in case of Burr XII distributed 
claim severity have also been computed using the probability of ultimate ruin obtained through 
the stable recursive algorithm as an input. All these computations have been done under the as-
sumption of the classical risk model. 
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1. Introduction 
An actuarial risk model is concerned with the study of the mathematical aspects observed in the behavior of a 
collection of risks generated by an insurance portfolio. In general insurance risk modeling, the two quantities of 
paramount importance are the number of claims arriving in a fixed time period and size of each claim. Modeling 
of the former aspect is done in terms of a discrete distribution, more specifically a counting distribution whereas 
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the claim severity is modeled through what is known as a loss distribution. 
There are compelling reasons to use mathematical models to describe insurance loss amounts (claim severi-

ties). As specified, in [1] in the most general sense, all of actuarial science is about loss distributions. For any 
insurance company, the sound statistical analysis of the underlying claim scenario, reflected in terms of loss 
modeling is of uttermost importance because it is the basis on which lies the subsequent determination of vari-
ous actuarial quantities of interest like probability of ruin, premium loading, pure premium, expected profits, re-
served to be maintained and the impact of reinsurance and deductibles. 

A good introduction to the subject of fitting distribution to losses is given in [2]. Most data in general insur-
ance are skewed to the right and therefore distributions with high degree of positive skewness such as Lognor-
mal, Pareto, Gamma, Weibull and Burr had been used by actuaries to fit claim sizes [2]. However as stated in 
[3], in different classes of insurance business, it is not clear which distributions are suitable for modeling claims 
arising in different portfolios. 

The three-parameter Burr XII distribution was originally used in the analysis of lifetime data and is becoming 
increasingly useful in the context of actuarial science [4]. The data used in this paper are on motor insurance 
where one typical characteristics is the occurrence of large but infrequent claims and hence there is a need to fit 
and use a statistical distribution which is heavy tailed and highly skewed towards the right and this justifies why 
heavy tailed distributions such as Pareto, Weibull and Burr are suitable candidates for loss modeling in motor 
insurance (see [5] [6]). Although there can be other suitable models for loss modeling in general insurance, we 
are primarily concerned with the Burr distribution as a loss model for our claim data and have concentrated on 
the computation of various actuarial quantities like the probability of ruin and the moments of the time to ruin 
when the loss model or claim severity model is Burr XII. Literature ([1] [7] [8]) reveals that no closed form ex-
pression is available for the determination of these quantities in case of Burr XII distributed claim amounts and 
hence, we resort to numerical techniques to compute them. Briefly our objectives for this paper are: 

1) To fit the Burr XII distribution to a set of insurance data through an algorithm mentioned in [9] and to as-
sess the goodness of fit through some statistics based on the empirical distribution functions (EDF statistics). 

2) To compute the probability of ultimate ruin when the claim severity is distributed as our fitted Burr XII 
distribution as well as a Burr XII distribution with a set of illustrative values for its parameters, using two nu-
merical algorithms namely a stable recursive algorithm and the method of Product Integration. 

3) To compute the first two moments of the time to ruin in case of Burr XII distributed claim severity. 
The first part of the paper deals with the Watkins [9] algorithm for obtaining the MLE of the parameters of 

the Burr XII distribution, followed by testing the goodness of fit through some statistics based on the empirical 
distribution function (EDF). This is followed by the computation of the probability of ultimate ruin for various 
values of the initial surplus through the adaptation of the two above mentioned numerical methods. The con-
cluding section deals with the computation of the moments of the time to ruin in case of Burr XII distributed 
claim severity. 

The illustrative Burr XII distribution that is being used is the one that is being fitted to the Property Claim 
Services (PCS) dataset covering losses resulting from natural catastrophic events in USA that occurred between 
1990 and 1999 [10]. 

2. Methodology 
2.1. Fitting of the Burr Distribution 
The pdf of the three parameter Burr XII distribution is given by 

( ) ( )

1

1
0, 0, 0.
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y
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                      (2.1.1) 

The algorithm for finding the maximum likelihood estimators (MLE) for the parameters of the Burr XII dis-
tribution is taken from [9] and this algorithm exploits the link between the three parameter Burr XII distribution 
and the two parameter Weibull distribution with the latter emerging as the limiting case of the former.  
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The cumulative distribution function for the two parameter Weibull distribution is given by  

( ); , 1 exp ,  0w
xF x x

β

β θ
θ

  = − − ≥     
                            (2.1.2) 

in which the positive parameters ,β θ  are respectively the shape and the scale parameters. 
The basic two parameter Burr XII distribution with shape parameters α and τ has the cumulative distribution 

function 

( )1 1 , 0.x x
ατ −

− + ≥                                 (2.1.3) 

An scale parameter φ  is introduced into (2.1.3) by substituting , 0,y xφ φ= >  thereby giving the cdf of y as  

( ); , , 1 1 , 0.B
yF y y

ατ

α τ φ
φ

−
   = − + ≥  

   
                        (2.1.4) 

Letting φ → ∞  with τα φ remaining finite, it is seen that the Burr XII distribution emerges as the limiting  

distribution for the Weibull distribution with shape parameter τ  and scale parameter 1 .τ

φ
α

 

If we consider a sample of “m” items 1 2, , , md d d  from the Weibull distribution whose cdf is given by 
(2.1.2), the log likelihood function is given by  

( ) ( )0log log 1 .w el m m S Sββ β θ β θ β−= − + − −                      (2.1.5) 

And the log likelihood function of the Burr XII distribution is given by  

( ) ( ) ( ) ( )*log log 1 1 ,d
B el m m S tατ τ φ τ α τ φ= + + − − +                    (2.1.6) 

where 
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The main steps of the algorithm are:  
Step 1: First, we find the maximum likelihood of the parameters ,β θ  appearing in (2.1.2) using the Multi 

parameter Newton Raphson Iterative method yielding the two values β  and θ . 
Step 2: Then, we rescale the original data by θ  so that in implementing the Newton Raphson for determin-  

ing the MLEs of the parameters of the Burr XII distribution, the utilized values are the rescaled values id
θ

. 

The argument in [9] leads us to conclude that rescaling the data introduces a large amount of stability into the 
algorithm. After the parameter estimates have been obtained, the MLE for the original observations are obtained 
by undoing the effect of scaling on the estimated values. In Appendix, we have given a very brief introduction to 
the Multi Parameter Newton Raphson method and have obtained the gradient and hessian matrices for the Wei-
bull and the Burr XII distribution which are required for obtaining the maximum likelihood estimators for the 
parameters of the Weibull and the Burr XII distributions respectively. 

2.2. Classical Risk Model 

Let ( ){ } 0t
U t

≥
 denote the surplus process of an insurer as 

( ) ( )U t u ct S t= + −                                   (2.2.1) 

where 0u ≥  is the initial surplus, c is the rate of premium income per unit time and ( ){ } 0t
S t

≥
 is the aggre-

gate claim process and we have ( ) ( )
1

M t
iiS t X

=
= ∑  where ( ){ } 0t

M t
≥

 is a homogeneous Poisson process with 

parameter λ , iX  denotes the amount of the ith claim and { } 1i i
X ∞

=
 is a sequence of iid random variables with  

distribution function F such that ( )0 0F =  and probability density function f. We denote ( )1
kE X  by kp . 
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Also we have ( ) 11c pθ λ= + , where θ  is the security loading factor. 
Let uT  denote the time to ruin from initial surplus u so that ( ){ }inf : 0uT t U t= <  and define  
( ) { } ( )pr 1uu T uχΨ = < ∞ = −  and ( ) ( )Ψ , Pr uu t T t= ≤ . ( )uΨ  is known as the ultimate ruin probability  

whereas ( )Ψ ,u t  is the finite time ruin probability. For a detailed discussion on the Classical Risk model and 
the probability of ruin refer to [1] [8] [11]-[13]. 

However it needs to be noted that the Classical Risk Model involves many simplication criterions which 
might make it deviate from real life situations. For example, the classical risk model assumes that the intensity 
parameter λ is independent of time, independence between claim severity distribution and claim number distri-
bution, premium is received continuously in time, surplus earns no interest and is neither subjected to tax, no ef-
fect of inflation etc. Despite such assumptions, Classical Risk model still constitute the basis of many models in 
insurance mathematics. 

Probability of Ruin is a very important component of the operational risk theory. It reflects the volatility in the 
business and can serve as a useful tool in long range planning for the use of insurer’s funds. Ruin, in some sense, 
corresponds to the insolvency of the insurance company although; solvency/insolvency of an insurance company 
involves many other complicated considerations. 

2.3. A Stable Recursive Algorithm for the Evaluation of the Ultimate Ruin Probabilities 
Probability of ruin can be obtained as the solution of an integro differential equation [14]. Stable Recursive Al-
gorithm as the name suggests, is a recursive algorithm which is used to solve the convolution part of the integro 
differential equation for the probability of ultimate ruin and this in turn leads to the bounds of the ultimate ruin 
probability within a prescribed tolerance level. 

According to [14], for calculating the infinite time ruin probability numerically, one has to solve the following 
integral equation 

( ) ( ) ( ){ } ( ){ }
0

1 d 1 d
x

x

x x y F y y F y y
c c
λ λψ ψ

∞

= − − + −∫ ∫                    (2.3.1) 

with ( ) ( ) ( ){ }1
1 1

0

0 , 1 , 1 d .
p c p p F y y
c

λ
ψ λ θ

∞

= = + = −∫  

Let ( ) ( ){ }1 d
x

h x F y y
∞

= −∫  and ( ) 10 .h p=                         (2.3.2) 

The usual approach is to apply a discretization technique to approximate the integral in (2.3.1) (see [15]-[17]). 
A discretization technique is said to be effective if it does not lead to the propagation of errors thereby producing 
stable numerical results. 

In Reference [18], an efficient discretization technique for the convolution integral have been introduced and 
it is given in the form of a theorem stated therein (Section 2, Equation (5)). 

Reference [19] have used another version of this theorem to obtain analytically upper and lower bounds of the 
infinite time ruin probabilities in case of constraints in the claim size distributions whereas [18] have used it to 
obtain a stable recursive algorithm for deducing the numerical bounds on the infinite time ruin probabilities and 
as mentioned there, a practical procedure for implementing the stable recursive algorithm is indicated as given 
below. 

1) First carry out the sub division of the interval [ ]0, x  as given ( )120, , , , , ,
n xx x x x

n n n n
−    

         
  where  

“n” the number of intervals is chosen to be sufficiently large. 

2) For every ( )1
, ,

i xixy
n n

+ 
∈  

 
 let ( )u

xh y h i
n

 =  
 

 and ( ) ( )1 ,l
xh y h i
n

 = + 
 

 then ( ) ( )uh y h y≤  for 

every y ≥ 0  and ( ) ( )lh y h y≥  for every y ≥ 0  since ( )h y  is a decreasing function of y.  
3) Then the upper bound and the lower bound to the probability of ruin is given by. 
Upper bound is 
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( ) ( )
1

1
j

u u
i

x x x xj h i h i j i
n c n n n

λψ ψ
=

        = − − −        
        

∑                   (2.3.3) 

and the lower bound is 

( ) ( )
1 1

1
1

1 1
j

l l
i

x x x x x xj p h h j h i h i j i
n c c n n n n n

λ λψ ψ
− −

=

                 = − − + − +  −                 
                 

∑  (2.3.4) 

with of course, 

( ) ( ) 10 0u l
p
c

λψ ψ= =  and ( ) ( ) ( ) ( ) ( )n n
l ux x xψ ψ ψ≤ ≤  

( )xψ  can be approximated by 

( ) ( ) ( ) ( ) ( )1 1 .
2 2

n n
l ux x xψ ψ ψ≅ +  

An upper bound for the error in the estimation of ( )xψ  is given by 
( ) ( ) ( ) ( ).n n
l ux xψ ψ−  

The stability of this numerical procedure is justified from the fact that there is no cumulative effect of propa-  

gation of error as it can be shown that if ( ), 2 , , 1x x xj
n n n
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  are calculated with an error 
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1
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j

j
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 −   < −   
    

∑  

For the derivation of the bounds and the full justification on the stability of this method, see [18]. 

Computing the Function h(x) for the Burr XII Distribution 
We have from (2.3.2), 

( ) ( ){ }1 d .
x

h x F y y
∞

= −∫
 

For the Burr XII distribution given in (2.2.1), we have 
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  (2.3.5) 

Now, it can be shown that, 
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Using this in Equation (2.3.5), we have, 

( ) ( )
1

1 1

0

1 d .
v

m nh x v v vφ
τ

− −= −∫                                (2.3.6) 

And this can be computed using the pbeta function of R Software. 
Also, we have, 

( ) ( ){ } ( )1 1 d , .
x

p E x F y y m nφ β
τ

∞

= = − =∫                         (2.3.7) 

2.4. Product Integration 
Product integration which was traditionally used to numerically solve Volterra Integral equation of the second 
type (see [20]) can also be used to compute the ultimate ruin probabilities, especially while dealing with heavy 
tailed claim severity distributions [21]. 

As stated in Section (2.3), for calculating the infinite time ruin probability numerically, one has to solve the 
integral Equation (2.3.1) which can also be put in the form (of a Volterra integral equation of the second kind) as 
shown below 

( ) ( ) ( ) ( )
0

1 , d , 0
1

u

u A u K u t t t uψ ψ
θ

 
= + ≥ +  

∫ ,                     (2.4.1) 

where 

( ) ( ){ }
1

1 1 d , 0.
u

A u F t t u
p

∞

= − ≥∫                             (2.4.2) 

And ( ) ( )
1

1
, , 0 .

F u t
K u t t u

p
− −

= ≤ ≤                           (2.4.3) 

Since, the early 1980’s, the numerical methods for the evaluation of ( )uψ  were based on the discretization 
of the Risk process and then computing ( )uψ  recursively using some initial conditions. However, the recur-
sive schemes usually suffer from the drawback of being slow and less accurate because the quadrature rule em-
ployed in the recursive schemes are usually of low order. The method of Product integration used to evaluate 
numerically the Probability of Ultimate Ruin as given in [21] and as justified there are fast and accurate and are 
more suitable for dealing with heavy tailed distributions such as Burr XII distribution. As such, in this paper, as 
a second method, we have used product integration to compute the probability of ultimate ruin as prescribed in 
[21]. For a detailed description of this method refer to [21], although we have highlighted the execution proce-
dure of this method. 

The Volterra integral equation of the second kind is given by  

( ) ( ) ( ) ( ), d ,
s

a

X s Y s K s t X t t a s b= + ≤ ≤∫                         (2.4.4) 

where ( ).,.K  is the kernel (and is known) and ( ).X  is the unknown function to be determined. If ( ).,.K  or 
one of it’s low order derivative is badly behaved in one of its arguments, Newton Cotes integration formulae 
may produce inaccurate results or converge slowly. To deal with such situations, when ( ).,.K  is badly be-
haved, [20] and [22] recommend the use of Product Integration. 

We first factorize ( ),K s t  as, 

( ) ( ) ( ), , ,K s t P s t K s t=                                 (2.4.5) 

where ( ),K s t  is smooth and well behaved and can be accurately approximated by a suitable Langrange’s In-



J. Das, D. C. Nath 
 

 
219 

terpolation Polynomial and ( ),P s t  is badly behaved. 
The interval [ ],a b  is divided into n subintervals { }ih  where 

1 , 0,1, 2, , 1i i ih s s i n+= − = −  

0 1 .na s s s b= < < < =  

A quadrature rule of the form 

( ) ( ) ( ) ( ) ( )
0

, , d ,
is i

i ij i j
ja

P s t K s t X t t w K s t X t
=

= ∑∫                     (2.4.6) 

where i it s=  for 0,1, 2, ,i n=   is used to approximate the integral appearing in (2.4.1). The weights ijw  are 
determined by ensuring that the rule of Equation (2.4.6) is exact when ( ) ( ),K s t X t  is a polynomial in t of de-
gree d≤ . 

It is assumed that ( )1d +  moments ijµ  exist for this is necessary for the application of the method of 
Product Integration and for each i, the moments ijµ  can be calculated as 

( ), d , 0,1, , .
is

j
ij i

a

t P s t t j dµ = =∫   

Assuming, ( ) ( ),K s t X t  is linear in t i.e. 1d = , it can be shown that 

( ) ( ) ( ) ( ) ( )
0

, , d , .
is i

i i ij i j j
ja

P s t K s t X t t w K s t X t
=

= ∑∫                     (2.4.7) 

And finally, the estimate of ( )X s  is given by  ( )n nX s , where  ( )n iX s  are obtained recursively by  

 ( ) ( ) ( ) ( )
0

, , 1, 2, ,
i

n i i ij i j n j
j

X s Y s w K s t X t i n
=

= + =∑                    (2.4.8) 

with  ( ) ( )0nX s Y a=  and the weights ijw  are given by 

0
0

0

i
i

vw
h

=                                      (2.4.9) 

, 1
, 1

1

ij i j
ij i j

j j

v v
w c

h h
−

−
−

= + −  for 1, 2, , 1j i= −                      (2.4.10) 

, 1
, 1

1

i i
ii i i

i

v
w c

h
−

−
−

= −                                  (2.4.11) 

where ( ) ( )
1

1 , d
j

j

t

ij j i
t

v t t P s t t
+

+= −∫                             (2.4.12) 

( )
1

, d .
j

j

t

ij i
t

c P s t t
+

= ∫                                  (2.4.13) 

For accelerating the convergence, as mentioned in [21] we have used the Richardson’s Extrapolation tech-
nique (Also see [23] [24]). 

2.4.1. Product Integration for the Computation of the Ultimate Probability of Ruin for  
Burr Distributed Claims 

We have used product integration to compute the Ultimate Probability of Ruin for Burr XII distributed claims 
taking an illustrative value of θ  as 0.3.θ =  

We have considered the Burr distribution which has been fitted to our data as well as a Burr distribution with 
a set of illustrative values for its parameters. 
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Here 

( ) ( ), , , 1 1 , 0, , , 0tF t F t t
ατ

α τ φ α τ φ
φ

−
   = = − + > >  

   
 

which gives 

( ) 1 1 , .s tF s t s t
ατ

φ

−
  − − = − + >  

   
 

As derived in (2.3.7), 

( ) ( ){ } ( )1
1 11 d , , , .

x

p E x F y y m n m nφ β α
τ τ τ

∞
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From (2.4.3), we have 

( ) ( )
, 1 .

,
u tK u t

m n

ατ
τ

φβ φ

−
  − = +  

   
                        (2.4.14)

 

As for this distribution, all the moments ijµ  exist for any finite s, Product Integration can be used. 
Let 

( ) ( ), ,P s t K s t=  and 

( )
1, if 0 ,

,
0, otherwise.

t s
K s t

≤ ≤
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2.4.2. Computation of the Weights When the Claim Severity Distribution Is Burr XII 
We have from (2.4.12), 
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z z
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φ φ
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2 1 2 1

1 11 1
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1 1 1 11 1 11 1

1 10 0 0 0
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τ τ
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1 2 1 1
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α α
τ τ τ τ
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And ( ) 11

0

1 d
w

bav v v−− −∫  (w is any upper limit of the integral, w > 0, ,a b> 0 > 0 ) can be computed using the  

pbeta function of the R software. 
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Similarly, from (2.4.13), we have  

( ) ( )
1 2 1

1 11 1

1 1 0 0

1 1 d 1 d 1 d .
j

j

t v v
m mi j n n

ij
t

s t
c t v v v v v v

p p

ατ
φ

φ τ

+
−

− −− −
   −    = + = − − −    

      
∫ ∫ ∫         (2.4.16) 

2.5. The Moment of the Time to Ruin 
The distribution of the time to ruin is an interesting quantity related to the probability of ruin and plays a vital 
role in warning the management for possible adverse situations. There is no closed form expression developed 
for the distribution of the time to ruin except for the Exponential distribution and the Erlang group of distribu-
tions [25] and hence the computation of the moments except for the mentioned distributions has to be done nu-
merically. 

Initial ideas on this aspect can be found in [26] and working on those ideas, [25] presented methods from 
which explicit solutions for the moments of the time to ruin can be found recursively provided that an explicit 
solution exist for the ultimate ruin probability. Reference [27] simplified the results of [28] to make them ma-
thematically tractable for numerical computation and have used them to calculate the approximate values for the 
moments of the time to ruin when explicit solutions for the probability of ultimate ruin do not exist. In their nu-
merical computations, values of ( )uψ  have been calculated from the stable algorithms described in [29]. (Also 
see [30] [31].) 

Reference [28] showed that the thk  moment of the distribution of the time to ruin T is given by 

( ) ( )
( )

, 1, 2,3,kk u
E T k

u
ψ
ψ

= =                                (2.5.1) 

where ( ) ( ) ( ) ( ) ( ) ( )1 1
1 0 0 0

d d d
u u

k k k k
ku u x x x u x x x x
p

ψ ψ ψ δ ψ ψ
λ θ

∞

− −= − + −∫ ∫ ∫ , ( ) ( )1 .u uδ ψ= −  

Let L: the maximum of the aggregate loss process so that ( ) ( )u p L uψ = >  see, [7], formula (12.6.2). 
In [14], it had been shown that 

( ) ( ) 2

10

d
2

pE L x x
p

ψ
θ

∞

= =∫                                (2.5.2) 

and ( ) ( )
2

2 3 2

1 10

12 d .
2 2

p pE L x x x
p p

ψ
θ θ

∞  
= = +  

 
∫                        (2.5.3) 

Formula (6.2.1) of [28] has been simplified in [27] as  

( ) ( ) ( ) ( ) ( )1
1 0

1 d .
u

u E L u x u x x
p

ψ δ ψ δ
λ θ

= − −∫                        (2.5.4) 

Hence, ( )1 uψ  can be evaluated using numerical integration. 
Similarly, ( )2 uψ  appearing in [28] has been simplified in [27] as 

( )
( ) ( )

( ) ( )
2

2 1
1 1 0

2 d .
2

uE L u
u x u x x

p p

δ
ψ ψ δ

λ θ λ θ

  = − − 
  

∫                      (2.5.5) 

3. Results and Discussion  
Data: Our data is a set of 160,000 claim amounts spread over a period of 6 months i.e. from April, 2013 to Sep-
tember, 2013 obtained from Bajaj Allianz General Insurance company, India from its motor insurance portfolio 
covering all its branches in India. No adjustment was made for inflation for the time horizon is narrow. It needs 
to be mentioned that the data is utilized more for the illustration of the various methodologies rather than for the 
extraction of any concrete meaningful conclusion. Since the inter arrival time of claim was difficult to track, the 
intensity parameter was estimated on the basis of the number of claims arriving per day during the period. 

Summary statistics of the data as shown in Table 1 reveal the existence of high coefficient of skewness which 
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suggests that a highly skewed right tailed distribution such as the Burr XII can be a probable candidate for mod-
eling this data. The histogram of the data plotted in Figure 1 and the empirical probability density function 
plotted in Figure 2 show the same trend. These figures too indicate a high degree of skewness towards the right 
which in a way justifies the use of Burr XII distribution for modeling our data. 

For finding the maximum likelihood estimators for the parameters of the Burr XII distribution, the use of the 
algorithm mentioned in [9] has been made. The log likelihood got maximized at the 30th iteration thereby giving 
the estimated values of the parameters as shown in Table 2. Initial assessment of the fit was done through some  

 
Table 1. Summary statistics for the Insurance claim data.                                                                   

Sample 
Size Mean Standard 

deviation Min 25% 
Quantile Median 75% 

Quantile Max Skewness Kurtosis 

160,000 1.78834e+04 22,805.81 523 6043.00 10,583.00 19,374.25 188,209 3.576628 18.94972 

 
Table 2. Parameter estimates for the Burr XII distribution obtained through the Watkin algorithm and the value of the EDF 
statistics along with their p-values indicated in parentheses.                                                                  

Parameter Estimates 

α̂  1.670876e+05 

τ̂  8.6572840e−01 

φ̂  1.047651e+06 

Anderson Darling statistics 5969.454 (0.002) 

Cramer Von statistics 933.8827 (0.006) 

 

 
Figure 1. Histogram of the observed claim data on motor insurance.                                                                                         

 

 
Figure 2. Estimate of the probability density function for the claim data on motor insurance.                                                                                         
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graphical displays. Figure 3 show the histogram for a set of data simulated from the Burr XII distribution with 
the values of the parameters as estimated using the algorithm. This histogram has some resemblance with the 
histogram for the observed data as shown in Figure 1. The QQ plot displayed in Figure 4 indicate moderate 
deviation from the straight line passing through the origin which leads us to conclude that the fit is moderately 
good. The assessment of the fit was also done through the computation of two statistics namely the Anderson 
Darling statistics and the Cramer von statistics which are based on the empirical distribution function [32]. Ta-
ble 2 shows the values of the Anderson Darling and Cramer Von statistics for testing the goodness of fit along 
with their p-values which were obtained through the Monte-Carlo simulation based on 100 iterations [33]. 

Hence, we have little evidence to believe that the Burr XII distribution adequately describes the claim data. 
However, in the subsequent sections, we have used this fitted Burr distribution along with another Burr XII dis-
tribution with a set of illustrative values for its parameters mainly with the objective of depicting the computa-
tional methodologies associated with the Burr XII distribution in obtaining some of the important Actuarial 
Quantities. 

Table 3 and Table 4 display the upper and lower bounds to the probability of ultimate ruin in case of Burr 
XII distributed claim severity using the stable Recursive algorithm. In Table 3, the claim severity is the fitted 
Burr XII distribution whereas the Table 4 is constructed with an illustrative Burr XII distribution. The number 
of intervals for the stable recursive algorithms has been taken to be n = 160 and an illustrative value for the se-
curity loading factor has been taken as θ = 0.3. The upper bounds to the error of estimation have also been indi-
cated in both the tables. 

In both the tables, it has been observed that the probability of ultimate ruin is decreasing with an increase in 
the initial capital which is as expected. In case of our fitted Burr XII distribution, the difference between the upper  

 

 
Figure 3. Histogram for a data set simulated from for Burr XII distribution with 1.670876ˆ 05eα = + , 8.657284ˆ 01eτ = −  
and 1.047651ˆ 06eφ = + .                                                                                                             

 

 
Figure 4. QQ Plot between the empirical quantiles estimated from the motor insurance data and the theoretical quantiles for 
Burr XII distribution with 1.670876ˆ 05eα = + , 8.657284ˆ 01eτ = −  and 1.047651ˆ 06eφ = + .                                                       
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Table 3. Upper and lower bounds to the ultimate ruin probabilities for Burr distribution with 1.670876ˆ 05eα = + , 
8.657284ˆ 01eτ = −  and 1.047651ˆ 06eφ = +  computed through the stable recursive algorithm.                                                       

Value of initial surplus 
u (Rs in Lakhs) 

Lower bound to the 
probability of ruin 

Upper bound to the 
probability of ruin 

Probability of ultimate 
ruin 

Upper bound to the error 
of estimation 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
500 

1000 

1.142307e−01 
1.625645e−02 
2.154203e−03 
2.655454e−04 
3.038352e−05 
3.226737e−05 
3.176367e−07 
2.895590e−08 
2.442391e−09 
1.904733e−10 
1.916410e−23 
1.378756e−81 
1.854485e−175 

1.226913e−01 
2.152154e−02 
4.033019e−03 
8.060850e−04 
1.715703e−04 
3.882505e−05 
9.325516e−06 
2.373527e−06 
6.390523e−07 
1.816993e−07 
8.640573e−12 
2.823172e−17 
7.133608e−19 

1.184610e−01 
1.888890e−02 
3.093611e−03 
5.357697e−04 
1.009769e−04 
2.102589e−05 
4.821576e−06 
1.201242e−06 
3.207473e−07 
9.094491e−08 
4.320286e−12 
1.411586e−17 
3.566804e−19 

8.460656e−03 
5.265093e−03 
1.878815e−03 
5.406304e−04 
1.411867e−04 
3.559831e−05 
9.007879e−06 
2.344572e−06 
6.366099e−07 
1.815089e−07 
8.640573e−12 
2.823172e−17 
7.133608e−19 

 
Table 4. Upper and lower bounds to the ultimate ruin probabilities for Burr distribution with 4.21652α = , 1.2746τ =  and 

271225.2φ =  computed through the stable recursive algorithm.                                                       

Value of initial  
surplus u (Rs in Lakhs) 

Lower bound to the 
probability of ruin 

Upper bound to the 
probability of ruin 

Probability of ultimate 
ruin 

Upper bound to the error 
of estimation 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
500 

1000 

7.692126e−01 
7.691945e−01 
7.691764e−01 
7.691582e−01 
7.691401e−01 
7.691220e−01 
7.691038e−01 
7.690857e−01 
7.690675e−01 
7.690494e−01 
7.688679e−01 
7.683230e−01 
7.674131e−01 

7.692126e−01 
7.691945e−01 
7.691764e−01 
7.691582e−01 
7.691401e−01 
7.691220e−01 
7.691038e−01 
7.690857e−01 
7.690675e−01 
7.690494e−01 
7.688679e−01 
7.683230e−01 
7.674131e−01 

7.692126e−01 
7.691945e−01 
7.691764e−01 
7.691582e−01 
7.691401e−01 
7.691220e−01 
7.691038e−01 
7.690857e−01 
7.690675e−01 
7.690494e−01 
7.688679e−01 
7.683230e−01 
7.674131e−01 

8.904433e−12 
3.561995e−11 
8.015000e−11 
1.424981e−10 
2.226674e−10 
3.206607e−10 
4.364815e−10 
5.701327e−10 
7.216172e−10 
8.909379e−10 
3.565763e−09 
2.231996e−08 
8.947729e−08 

 
and the lower bounds to the probability of ultimate ruin seems to be decreasing in the absolute sense which has 
lead to the decline in the upper bound to the error of estimation. In case of the Burr XII distribution with a set of 
illustrative values for its parameters (Table 4), which we would choose to call the illustrative Burr XII in the 
subsequent sections, it is observed that there is no visible difference between the upper and lower bounds to the 
probability of ultimate ruin and hence the algorithm seems to be giving more accurate results in this case. The 
probable reasons for the equality of both the bounds can be that for this set of illustrative values of the parame-
ters for the Burr XII distribution, the function h(x) is getting stabilized (approaching p1) more rapidly. 

Table 5 shows the probability of ultimate ruin for the fitted Burr XII distribution obtained through the method 
of product integration whereas the Table 6 displays the corresponding values for the illustrative Burr XII distri-
bution. For accelerating the convergence, we have used the Richardson’s extrapolation technique as mentioned 
in [21] with 20γ =  and 0,1, 2,3, 4j =  thereby giving 4 320n = . Both the tables reveal that the values of the 
ultimate ruin probabilities obtained through the method of product integration are fairly consistent with those 
obtained through the stable recursive algorithm. One notable trend observed in the computation of the probability  
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Table 5. Ultimate ruin probabilities for Burr XII distribution with 1.670876ˆ 05eα = + , 8.657284ˆ 01eτ = −  and 
ˆ 1.047651 06eϕ = +  obtained through product integration.                                                                                                             

Value of the initial surplus u (Rs in Lakhs) ( )uψ  

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
500 

1000 

1.184138e−01 
1.873948e−02 
2.966592e−03 
4.693954e−04 
7.427929e−05 
1.175717e−05 
1.867170e−06 
3.020832e−07 
5.284120e−08 
1.176783e−08 
4.626994e−11 
1.456966e−14 
2.089981e−17 

 
Table 6. Ultimate ruin probabilities for Burr XII distribution with 4.21652α = , 1.2746τ =  and 271225.2φ =  obtained 
through product integration.                                                                                         

Value of the initial surplus u (Rs in Lakhs) ( )uψ  

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
500 

1000 

0.7692126 
0.7691945 
0. 7691764 
0.7691582 
0.7691401 
0.7691220 
0.7691038 
0.7690857 
0.7690675 
0.7690494 
0.7688679 
0.7683230 
0.7674130 

 
of ultimate ruin through both the algorithms is that in case of our fitted Burr XII distribution with an increase in 
the value of the initial capital, the values for the probability of ultimate ruin are decreasing at a significantly high 
rate whereas this declined at a moderate rate in case of the illustrative Burr XII distribution. 

In computing the moments of the time to ruin, in contrast to [27], where ( )uψ  has been obtained through 
the stable algorithms described in [29], ( )uψ  in our case, has been computed through the stable recursive al-
gorithm mentioned above. For the illustrative Burr distribution, we have also computed the second moment for a 
few values of the initial capital since the computing time for the evaluation of the second moment is significant-
ly high. The high execution time is attributed to the fact that the computation of the second moment has taken  

the first moment as an input. For numerical integration, we have used Simpson’s 
1
3

rd
 
 
 

 rule for numerical in-  

tegration. All of the computations have been done using the R software [34]. 
From Table 7 showing the first moment ( )E T  (mean) of the time to ruin for the fitted Burr XII distribution 

as well as for the illustrative Burr XII, we make the following observations; 
1) Mean (in years) of the time to ruin for the illustrative Burr XII i.e. Burr XII with 4.21652α = , 
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1.2746τ =  and 271225.2φ =  as indicated in column (3) for the various values of u is consistent with practic-
al rationalism as the value goes on increasing with an increase in the initial capital for it is expected that induc-
tion of more capital should prolong the occurrence of ruin (if any). 

2) Mean (in years) of the time to ruin for the fitted Burr XII distribution i.e. Burr XII with 1.670876ˆ 05eα = + , 
8.657284ˆ 01eτ = −  and 1.047651ˆ 06eφ = +  is not consistent in the above sense (column (2)). Probable rea-

sons for this inconsistency can be the occurrence of error in the evaluation of ( )uψ  and also in numerical in-
tegration. As seen in Equation (2.5.4), numerator ( )1 uψ  of the expression for the mean of the time to ruin is 
the difference of two quantities and it is the latter part which is evaluated numerically and although not shown 
explicitly, both the parts were of very low order (of the order 1e−04) and were highly affected by the occurrence 
of numerical error leading to inconsistent results. One important point to be noted is that compared to the illustr-
ative Burr XII distribution, the fitted Burr XII distribution has very low second order moment ( 2p ) and the 
second order moment of the underlying claim severity distribution is an important factor in determining the 
mean of the time to ruin, in fact the latter exists if and only if the second order moment of the claim severity dis-
tribution exists [28]. This low value of the second order moment for the fitted Burr XII distribution might have 
been the cause for this inconsistency in the pattern of the mean of the time to ruin.  

Table 8 displays the second order moments of the time to Ruin for our illustrative Burr XII distribution for a 
few values of the initial capital. 

In obtaining the mean of the time to ruin, an illustrative value of λ has been taken as λ = 32.78 and the same 
value is retained in obtaining the second moment of the time to ruin. 

4. Conclusions 
Considering the fact that heavy tailed right skewed distribution like Burr XII arises frequently in case of risk 
modeling in general insurance, our work may be useful for insurance practitioners and experts from the financial 
industry. Our main objective was to compute the probability of ultimate ruin in case the claim severity is distri-
buted as Burr XII distribution and this was implemented through the application of two numerical algorithms.  

 
Table 7. First moment (mean) of the time to ruin in case of Burr XII distributed claim severity distribution.                         

Value of the initial surplus u  
(in unit of Rs 1 lakh)  

(1) 

Mean (in years) of the time to ruin for Burr 
XII with 1.670876ˆ 05eα = + , 

8.657284ˆ 01eτ = −  and 
1.047651ˆ 06eφ = +  

(2) 

Mean (in years) of the time to ruin  
for Burr XII with 

4.21652α = , 1.2746τ =  and 
271225.2φ =  

(3) 

10 16.066847 0.09771947 

20 10.207575 0.09772715 

30 8.3243480 0.09773484 

40 7.8522660 0.09774253 

50 7.7381620 0.09775021 

60 7.7089970 0.09775790 

70 7.7007810 0.09776559 

80 7.6982140 0.09777328 

90 7.6973290 0.09778098 

100 7.6969920 0.09778866 

 
Table 8. Second moment of the time to ruin in case of Burr distributed claim severity distribution.                                  

Value of the initial surplus u (in unit of Rs 1 lakh) 
Second order moment of the time to ruin for Burr XII 
with 4.21652α = , 1.2746τ =  and 271225.2φ =  

10 0.09799326 

20 0.09800281 

30 0.09801237 
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However, no effort has been made to judge which method gives the better estimate to the probability of ultimate 
ruin as there is no exact expression for it in case of Burr XII claim severity distribution. Although, there are in-
stances in literature [12], where the probability of ultimate ruin obtained through the Pollachez Khinchin formu-
la has been used as a baseline method and the accuracies of other methods judged in terms of it, yet we have not 
gone to the extent of making this comparison between the two methods. The work reveals fairly good amount of 
consistencies in the approximate values of the probability of ultimate ruin obtained by the two numerical algo-
rithms under consideration. 

Also, in obtaining the moments of the time to ruin, it was found that in case of the illustrative Burr, the first 
moment (mean) of the time to ruin is increasing with an increase in the value of the initial surplus. This is to be 
expected in practice, because the induction of larger surpluses tends to prolong the time to ruin (if it ever hap-
pens). However in case of our fitted Burr XII distribution, there was deviation from this intuitive logic, implying 
that the mean of the time to ruin was found to be decreasing with an increase in initial surplus. The numerical 
error accumulated via the two numerical algorithms namely the numerical computation of the value of ultimate 
ruin probability through the stable recursive algorithm and then inserting it as an input into another numerical 
algorithm to compute the mean of the time to ruin might be the cause of this deviation. The executing time for 
computing the second moment was too high thereby limiting us just to the computation of this moment for a 
very few values of the initial surplus. 

Extension of this work can be directed towards the computation of other actuarial quantities like aggregate 
claim models, number of claims until ruin etc in case of Burr XII claim severity. Further analysis is required to 
give more explicit error bounds to the solutions generated via the two numerical algorithms and the control of 
error in the numerical computation of the moments of the time to ruin. 
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Appendix 1 
A.1. The Newton Raphson Method: The Multiparameter Situation 
One of the most used methods for optimization in the Multi Parameter situation in Statistics is the Newton- 
Raphson method which is described briefly as given below: 

Assume ( )T
1 2, , , pθ θ θ θ=   is a vector of p (say) unknown parameters and the log likelihood of the distri-  

bution involving θ  is given by ( ),l xθ  . Then the MLE for θ  are obtained by solving the equations  
( ), 0.l xθ =  
Let us now define what is known as the gradient matrix and the Hessian matrix given by. 
The gradient matrix is given by 

( )

1

2 .

p

l

l
S

l

δ
δθ
δ

δθθ

δ
δθ

 
 
 
 
 

=  
 
 
 
 
 



 

And the Hessian matrix is given by 

( ) ( ), , 1,2, ,i j i j p
J Jθ

=
=



 

where 

( )2

, .i j
i j

l
J

δ θ
δθ δθ

= −  

Then the iterative relationship for the multi parameter Newton Raphson method is given by 

( ) ( ) ( )( ) ( )( )1
1s s s sJ Sθ θ θ θ

−
+  = +    

where ( )sθ  is the estimated value of θ  at the ths  iteration. The iteration is carried out until there is no sig-
nificant difference between ( )sθ  and ( )1 .sθ +  

A.2. Multi Parameter Newton Raphson for Weibull Distribution 
The log likelihood of the Weibull distribution is given by (2.1.5). 

The Gradient matrix for Weibull is given by  

1

2

g
G

g
 

=  
 

 

where 

( ) ( )1 0 1log loge
mg m S S Sβ βθ θ θ β θ β
β

− −= − + + −  and 

( )1
2 0

mg Sββ βθ β
θ

− −= − +  

and the Hessian matrix is given by 

11 12

21 22

a a
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a a
 

=  
 

 

where 
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( ) ( ) ( ) ( )2
11 0 1 22 log 2 loge e

ma S S Sβ β βθ β θ θ β β θ β
β

− − −= + − +  

( ) ( ){ } ( )1 1
12 0 11 loge

ma S Sβ ββ β θ θ βθ β
θ

− − − −= − − −  

21 12a a=  

( ) ( )22 02 1
11ma Sβ

β β β β
θ θ += + +  

and 

( ) ( )
1

log .
m jt

j r r
r

S t d d
=

= ∑  

A.3. Multiparameter Newton Raphson for Burr XII Distribution 
The Log likelihood of Burr XII distribution is given by (2.1.6). 

Its Gradient matrix is given by 
1

2

3
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G k
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The hessian matrix is given by 
11 12 13

21 22 23

31 32 33

b b b
H b b b

b b b

 
 =  
  

 

where 
2

11 2 2

l mb βδ
δα α

= − =  

2

12 111
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= − =  
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Appendix 2 
Tests Based on Empirical Distribution Function 
A statistics measuring the difference between the Empirical ( )nF x  and the fitted ( )F x  distribution function 
is called an EDF (empirical distribution function) Statistics and is based on the vertical distances between the 
distributions. 

A class of measures of discrepancy given by the Cramer-Von Mises Family is 

( ) ( ){ } ( ) ( )2
dnQ n F x F x x F xπ

∞

−∞

= −∫  

where ( )xπ  is a suitable function which gives weights to the squared differences ( ) ( ){ }2
.nF x F x−  When  

( ) 1xπ = , we obtain the 2W  statistic of Cramer Von Mises.  

When ( ) ( ) ( ){ } 1
1x F x F xπ

−
= − , we have the 2A  statistic of Anderson and Darling. Here n is the sample  

size [32]. 
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