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Abstract

The reciprocal complementary Wiener number of a connected graph G is defined as

1
RCW (G) =
( ) {u'v%(e)d+l—d(U,V|G)

where V (G) is the vertex set. d(u,v|G) is the distance between vertices u and v, and d

is the diameter of G. A tree is known as a caterpillar if the removal of all pendant vertices
makes it as a path. Otherwise, it is called a non-caterpillar. Among all n-vertex non-cater-
pillars with given diameter d, we obtain the unique tree with minimum reciprocal com-
plementary Wiener number, where 4<d <n-3.We also determine the n-vertex non-cat-
erpillars with the smallest, the second smallest and the third smallest reciprocal com-
plementary Wiener numbers.
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1. Introduction

The Wiener number was one of the oldest topological indices, which was introduced by Harry Wiener in 1947.
About the recent reviews on matrices and topological indices related to Wiener number, refer to [1]-[4]. The
RCW number is one of the hotest additions in the family of such descriptors. The notion of RCW number was
first put forward by Ivanciuc and its applications were discussed in [5]-[8].
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Let G be a simple connected graph with vertex set V (G). For two vertices u,veV(G), let d(u,v|G)
denote the distance between u and v in G. Then, the RCW number of G is defined by

1
RCW (G)= _
( ) {U,V}Z\;(G)d%—l—d(u,VIG)

where d is the diameter and the summation goes over all unordered pairs of distinct vertices of G. Some
properties of the RCW number have been obtained in [9] [10].

A tree is called a caterpillar if the removal of all pendant vertices makes it as a path. Otherwise, it is called a
non-caterpillar.

For integers n and d satisfying 4<d <n-3,let N ,. be the tree obtained from the path P,,, labelled as

Vo, Voo,V by attaching the path P, and n-d -3 pendant vertices to vertex v, for ZsisL%J (see

dl-
o|3)
In this paper, we show that among all n-vertex non-caterpillars with given diameter d, N, is the unique

tree with minimum RCW number where 4 <d <n-3. Furthermore, we determine the non-caterpillars with the
smallest, the second smallest and the third smallest RCW numbers.

Figure1). Let N , =N
n,

2. RCW Numbers of Non-Caterpillars

All n-vertex trees with diameter 2, 3, n—2 and n-1 are caterpillars. Let n and d be integers with n>7 and
4<d<n-3.Let NC(n,d) be the class of non-caterpillars with n vertices and diameter d. Let NC(n,d) be

t
at their centers and s=n—-d -1->n,

i=1
pendant vertices to one center (fixed if it is bicentral) of the path P, ,, where t>1, s>0 and n, 22 for
i=12,t (see Figure 2). Recall that N , =N m Obviously, N,,eANC(n,d)cNC(n,d) and

: nald :
2

NC(nn=3)={N,, 4}

Let T be a tree. For ueV (T) and AcV(T), let & (u) be the degree of uin T and d, (u,A) be the
sum of all distances from u to the vertices in A, i.e., d; (u, A)= Y d; (u,v).Here and in the following d, (u,v)

the class of non-caterpillars obtained by attaching the stars s, ,---,s,

veA
denotes the distance between verticesu and vin T.
Lemma 1 Let T be a tree with minimum RCW number in NC(n,d), where 4<d<n-3. Then,
Te /\/C(n,d) )
Proof. Suppose that T e NC(n,d)\NC(n,d). Let P(T)=v,,---v, be a diametral path of T. If d is odd,

we require that o; [VHJ 2 0; {vm] Then at least one of v,,---,v, , has degree at least three. There are two

2

2
cases.

Case 1. One of v,,---,v,, different from v , has degree at least three. Let w,,w,,---,w, be all the
neighbors H

outside P(T) except those of VH, where w, is a neighbor of v, eV (P(T)). Let T, be the subtree of

2

2

T —v, containing w,. T" be the tree formed from T by deleting edges w,v, and adding edges w.yv, dJ for

5

Vo U1 U; Vg—1 Vd

Figure 1. The tree N g;.
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*——e—o . - .

Vo VU1 ULdJ Vd—1 Vd

Figure 2. The tree NC (n,d).

all i=12,---,k.Obviously, T"eNC(n,d). Let A:V(P(T)) and B=V (T)\A.Itiseasily seen that
RCW (T)-RCW (T")= 3 L _ 1
ueB,veA d+1_d-|- (U,V) d+1_dT*(u'V)

.y 1 B 1
wiree| d+1-d; (u,v) d+1—dT*(u,v)

1 1
> _
_UEvZ(]Ti)V;\{d +1-d; (uv) d+1i-d, (u,v)}

1<i<k

+

1 1
uEv(T,)ZVEv( ){d +1-d (u,v)_d+1—dT* (u,v)Zl

I<i< j<k

2

with equality if and only if &; [VHJ:Z. Since i’;{%J, dr (uv)=d, [U,VHJ for ueV(T;) and
2

v, e A with 1<i<k.We get

>y -y

1
ad+1-d; (uv) GRd+1-dp (u,v)—dr (v,V)

> +>
k=1 k=1
d+l-d. u,vm -k d+1-d [ ] k
2
1 1
"X ] e d_(uv)
d+1-d_.juv, [—d.|Vv,,V
"UE) UL

Then

1
UEVZT, VEZ/‘KL +1-d; (u,v) d +1-d._. (u,v)}

L|<k

1 1
= - >0
uevz(;i)lzvez;(d +1-d; (u,v) Vez;(d +1—dT*(u,v)}

I<i<k

with equality if and only if i’ = {%1 (which is only possible for odd number d). But o; {VH] > 0; [vm] , and
2

()

2
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thus if o; [vm]:Z then o; (VMJ:Z.SO i'?{%—‘ for i=1,2,---,k. Thus
2 2

RCW (T)—RCW (T"

1 1
S - >0,
ueV(Ti),z\/:eV(Tj)I:d +l_dT (U,V) d+1_dT* (U,V):|

I<i<j<k

since d; (u,v)>d_.(uv) for ueV(T),veV(T)) (1<i<j<k). It follows that RCW (T)>RCW (T").
This is a contradiction.

Case 2. Any verter v, with i=2,3---,d-2 and i= L%J has degree two. Obviously, J; [VH] >3. Let

2

2

xyz---v, ., be the (unique) path fromx to v, , inTsuchthat d,| X,v , |=max d; {u,v, |.Since
H H T H uev(T)V(P(T)) =T H
2

2 2

T ¢ NC(n,d), we have d{x,vmjz&Let X,y X, 2 be the neighbors of y in T, where x, =x and r>1.
2

Let T™ be the tree obtained from T by deleting edges yx, and adding edges zx. forall i=12,---,r. Then

T"eNC(n,d).Let N ={x,-, x|, C=V(T)\N,. Since d;(u,v)=d_.(uv)+1 for

ueN,veC\{y,z}, we get

RCW (T)-RCW (T™)

_y 1 B 1
ueNy,vsC d+1_d-|- (U,V) d+1_dT* (U,V)

_ r-1 + r-1 n Z .y

d+1-1 d+1-2 .o iyys d+1-d; (u,v)

_r-1r-1 z . r

d+1-1 d+1-2 o, &y d+1-d . (u,v)
>0.

This is a contradiction.

By combining Cases 1 and 2, we find that T € NC(n,d)\NVC(n,d) is impossible. The result follows.
Lemma2Llet TeNC(nd) with 4<d<n-3.Then

RCW (T)>RCW (N, ),

with equality ifand only if T=N, ;.
Proof. Let T be a tree with the minimum RCW number in AVC(n,d). Let P(T)=v,V,---Vv, be a diametral
path of T.

Suppose that there is a vertex ueV (T)\V (P(T )) with &; (u)>3. Let u,u,,---,u, be the neighbors of u
different from v, in T, where s>2. Clearly, u, are pendant vertices for i=12,---,s. Let T’ be the tree

d
obtained from Tw deleting edges UU; and adding edges v, dJui for i=2,---,5. Obviously, T'e NC(n,d).

;

Let N, ={u,---,u;}, D=V (T)\N,, and K:{u,ul,vm,vH } Since d (u,v)=d;. (u,v)+1 for
E ]
2 2

ueN,,ve D\K, we get

©
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RCW (T)—RCW (T')
5 1 B 1
wetowen| d +1—=d; (u,v) d +1-d.. (u,v)
s-1 s-1 s-1 s-1 1
= + + + + S
d+1-1 d+1-2 d+1-2 d+1-3 ,Siowd+1-d;(u,v)
o s-1  s-1 s-1  s-1 1
d+1-2 d+1-1 d+1-3 d+1-2 o Sowd+1-d.(u,v)
>0,

and then RCW (T)>RCW (T'), this is a contradiction. Thus any vertex of T outside P(T) has degree at
most two.
Suppose that there are at least two vertices of T outside P(T) with degree two. Let yeV (T)\V (P(T))

with &, (y):2 and let x be the neighbor of y which is different from vH inT. Let T" be the tree formed

2

from T by deleting edge yx and adding edge vmx. Obviously, T" e Nc(n,d). Let F :{x, y,vm}. Since

2 2

RCW (T)>RCW (T") and d;(x,v)=d.(x,v)+1 for veV(T)\F,we get

RCW (T)—RCW (T")

I S S 1
d+1-1 d+1-2 /Fed+1-d;(xV)
1 1 1
Cd+1-1 d+1-2 _VE%\F d+1-d. (%)

> 0.

This is a contradiction. Thus there is exactly one vertex outside P(T) with degree two and all other vertices
of Toutside P(T) are pendant vertices. Then, T =N, .
By a direct calculation, we get

n-d+1 (n-d-2)(n-d-3)-2

n,dm} a2 2(d-1)

RCW(N

d
+(n—-d-1) Zzld_ka% . where d is even;

—d- —d-2)(n-d-3)+4(n—-d)-2
W[ ] d-3, 2 (n-9-2)(n-d-3)+4(n-0)
na 4] d-2 d-3 2(d-1)
d-1
2, 2 1 .
+(n-d-1)| > ——+—=|. whered is odd.
iad-k d

Combining Lemmas 1 and 2, we get
Theorem1Let T eNC(n,d),and 4<d<n-3. Then

RCW (T)>RCW (N, )

with equality ifand only if T=N, ;.

©,
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Lemma3For 4<d<n-3,thereis RCW{N H}>RCW[N {MJ]'
nd, ~ n,d+1 —=
2

Proof. If d is even, then

RCW[N dJ—RCW(N d}
n,d,E n,d+1,E

L
_ _1+Zz 3 +5(n—d—1)_n—d—2_4(n—d—2)+1+n_f_1
ad-Kk d d+1 d d-2

_n—d—3+(n—d—2)(n—d—3)_(n—d—3)(n—d—4)
d-1 2(d -1) 2d

9

2 2
> —1+Zd . > 0.

k=1

If d is odd, then

d-1
_ _1+22: 2 +n—d—3_n—d—4+(n—d—2)(n—d—3)
Sd—k| d-2 d 2(d-1)
_(n—d—3)(n—d—4)+n—d—1_n—d—2+ 2
2d d-1 d+1 d-3
d-1
1 $_2 0
>| - +k§‘d—k > 0.

The result follows.
Theorem 2 For n=>9, there is

RCW (N”:”vmsd <RCW [Nn,nS,V;sJJ <RCW (N”:”“{?JJ.

And RCW(T)>RCW{N Vw] for any n-vertex non-caterpillar T different from N
n,n—4,T

n,n—3,{n—_3J ’
2

Proof. Let TeNC(n,d), where 4<d<n-3. If d=n-3, then T is a non-caterpillar N, _,; where

1<i< LnT_?)J It follows that

2 1 B2 o2 1 1
+ + + +— o

RCW (N, 5 )=n-3+ L
(Nosss) n-3 n-4 Zn-k &Zn-k n-i-4 i-1

n-3
2

and hence RCW (NnYHVi) is monotonically decreasing for 1<i< L

J. This implies
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RCW [NM_& s J< RCW [Nn,n_g, s J< -+ <RCW (N, 3,)-
& %]

Now suppose that d <n—4. By Theorem 1 and Lemma 3, there is
RCW (T)> RCW[N {MJ}
n,n-4,

where equality holds ifand only if T =N

w4~ We need only to show
n,n—4,\‘TJ
RCW| N RCW| N .
[ n,ns,tnzSJ]< C { n,n4,r]24J]
. . n-5 n-5 .
Case 1. nisodd. Let i= > :T and n=>9. Then there is
n;-S
2
RCW|N . [-RCW|N n5_1+22 2t oo
nn-4,%> nn-3—> iz=n-k| n-5 n-6
Case 2. nis even. Let i:Ln_SJ:n_—G_ Then there is
RCW(N s —RCW(N "‘J
n—4,—— n-3,—
m
2, 2 2 1 2 4 2 2

= -1+ + + + + - -
izn-k| n-5 n-6 n-2 n-4 n-3 n-8

n+4

2, 2 5 2
> -1+ + -
kzz;jn—k n-5 n-8

>0.
Thus, the proof is finished.
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