
Advances in Pure Mathematics, 2016, 6, 113-137
Published Online February 2016 in SciRes. http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.63010

How to cite this paper: Allili, M. and Corriveau, D. (2016) A Global Reduction Based Algorithm for Computing Homology of
Chain Complexes. Advances in Pure Mathematics, 6, 113-137. http://dx.doi.org/10.4236/apm.2016.63010

A Global Reduction Based Algorithm for
Computing Homology of Chain Complexes
Madjid Allili, David Corriveau
Department of Mathematics, Bishop’s University, Sherbrooke, Canada

Received 22 September 2015; accepted 21 February 2016; published 26 February 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we propose a new algorithm to compute the homology of a finitely generated chain
complex. Our method is based on grouping several reductions into structures that can be encoded
as directed acyclic graphs. The organized reduction pairs lead to sequences of projection maps
that reduce the number of generators while preserving the homology groups of the original chain
complex. This sequencing of reduction pairs allows updating the boundary information in a single
step for a whole set of reductions, which shows impressive gains in computational performance
compared to existing methods. In addition, our method gives the homology generators for a small
additional cost.

Keywords
Homology Algorithm, Chain Complex, Homology Generators

1. Introduction
Homology has been used recently in a wide variety of applications in domains such as dynamical systems, and
image processing and recognition. In dynamics, typical problems are translated into problems in topology where
invariants such as the Conley index are computed using homology algorithms. In digital image analysis, topo-
logical invariants are useful in shape description, indexation, and classification. Among shape descriptors based
on homology theory, there are the Morse shape descriptor [1] [2], the Morse Connection Graph [3], and the per-
sistence barcodes for shape [4]. The necessity of improved algorithms appears evident as new applications of the
homology computation arise in research for very large data sets. Although several algorithms and software
packages have been developed for this purpose, there is still a lot of room for improvement as processing very
large data sets is often very time- and memory-consuming. The classical approach to compute homology of a
chain complex with integer coefficients reduces to the calculation of the Smith Normal Form (SNF) of the

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2016.63010
http://dx.doi.org/10.4236/apm.2016.63010
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

M. Allili, D. Corriveau

114

boundary matrices which are in general sparse [5] [6].
Unfortunately, this approach has a very poor running-time and its direct implementation yields exponential

bounds. Polynomial time algorithms for computing the SNF were given by Kannan & Bachem [7] and later im-
proved by Chou & Collins [8] and Illiopoulos [9]. The best currently known Smith Normal Form algorithms
have super cubical complexity [10]. Another generic approach is the method of reduction proposed in [5] [11].
In this method the original complex is simplified through a sequence of reductions of cells that preserve the ho-
mology groups at each step. The idea is to replace the chain complex (or even the object under study) by a
smaller one with the same homology. A reduction consists of cancelling a cell B through an element of its
boundary a (reduction pair (),a B). The two cells are suppressed from the structure of the complex and the
boundary homomorphisms are updated. Direct implementations of the reduction method use unordered lists to
encode the boundary homomorphisms and have cubical complexity.

Several algorithms based on the idea of reduction and that improve the time complexity for particular types of
data sets have been designed. For cubical sets embedded in 3 , Mrozek et al. proposed a method [12] based on
the computation of acyclic subspaces by using lookup tables. Experimentally, this method performed in linear
time. Another method running in quasi linear time for finite simplicial complexes embedded in 3 was pro-
posed by Delfinado and Edelsbrunner in [13]. For problems dealing with higher dimensions, Mrozek and Batko
developed an algorithm [14] based on the concept of coreduction which showed interesting performance results
on cubical sets.

Despite the existence of efficient homology algorithms for cubical sets and lower dimension spaces, there re-
main many problems where the data is higher dimensional and not cubical. Generally, for these problems it is
often difficult to adapt the data because the cost is too high or too complex. In this case, one has to use one of
the classical methods: SNF or reduction. However, the classical methods spend most of their time in updating
the boundary homomorphisms after each reduction step. This requires repetitive manipulations of the data
structures that store the chain complex which incurs a high running time to accomplish the reduction.

An idea is to identify admissible reduction pairs and organize them in a structure that allows efficiently up-
dating the boundary information in a single step for a whole set of reductions. This reduces to the minimum ma-
nipulations of the data structures that store the boundary information. Our method works as follows. Starting at
an arbitrary cell A with a face a in its boundary, we identify successive adjacent admissible pairs of reduction
and build the longest possible sequence originating at A. Several sequences can originate at the same cell, and
each sequence can be seen as a path in a directed acyclic graph, called a reduction DAG, where nodes are reduc-
tion pairs and oriented edges denote an adjacency relation between the reduction pairs. Given a reduction DAG
across a chain complex, we achieve a global simplification of the complex by performing all the reductions in
the DAG at once. We will establish direct algebraic formulas that allow updating the boundary of remaining
cells. The net advantage of our approach is that the boundaries are not explicitly updated after each reduction
step. Instead, this information is always preserved implicitly within the data structures and processed globally
for each reduction DAG allowing reducing considerably the computational time. The communication [15] con-
tains a summary of the method developed systematically here and the preliminary experimentations that are now
developed in Section 5.

2. Chain Complexes and Homology
Chain complexes are an algebraic tool for defining and computing homology. Although they are usually defined
from geometrical structures such as simplicial or cellular complexes, they can also be considered in an abstract
manner as pure algebraic entities. A finitely generated free chain complex (),∂ with coefficients in a ring 
is a sequence of finitely generated free abelian groups { }q q

C
∈

 together with a sequence of homomorphisms,
called boundary maps or operators, { }1:q q q q

C C − ∈
∂ →


 satisfying 1 0q q−∂ ∂ = for all q∈ . Typically,

0qC = for 0q < . For each p, the elements of pC are called p-chains and the kernel of 1:p p pC C −∂ →
is called the group of p-cycles and denoted { }0p p pZ c C c= ∈ ∂ = . The image of 1p+∂ , called the group of

boundaries, is denoted by { }1 1such thatp p p pB c C b C b c+ += ∈ ∃ ∈ ∂ = . pB is a subgroup of pZ because of

the property 1 0p p−∂ ∂ = . The quotient groups :p p pH Z B= are the homology groups of the chain complex
 .

M. Allili, D. Corriveau

115

Computation of Homology by Reduction of Chain Complexes
The reduction of a chain complex is a procedure that consists of removing successively pairs of generators from
the bases of its chain groups while preserving the homology of the original complex. This method is originally
motivated by a simple geometric idea known as the collapsing. At the algebraic level, each removal of a pair of
generators that form a reduction pair is equivalent to a collection of projection maps { }:d d d d

C Cπ → that
send each generator of the removed pair into 0. Moreover, it projects the other cells into the remaining genera-
tors taking into account the modifications of their boundaries caused by the removal of the pair. Let ()d d dC Cπ′ =
for each d. It is shown in [5] that C′ is a chain complex and () ()* *H C H C′ ≅ , that is, the homologies of C′
and C coincide. To calculate the homology of the original chain complex C, the idea is to define a sequence of
projections associated to the removal of pairs in all dimensions and then compute the homology of the resulting
chain complex that is the image of the successive projections. A sequence of projections is complete if no other
projection can be added to the sequence. Such a sequence always exits when the chain complex is finitely gen-
erated. Let (),C ∂ be the original chain complex and (),f fC ∂ is the final chain complex obtained after a
complete sequence of projections. We already know that the two complexes have the same homology, moreover
it is easily observed that if 0f∂ = then () ()* *

f fH C H C C≅ ≅ , that is, the Betti number dβ is given by the
number of d-cells remaining in the complex fC .

Formally, a reduction pair and its associated collection of projection maps are defined as follows.
Definition 1. Let { },d dC= ∂ be an abstract chain complex. A pair of generators (),a B such that

1,m ma C B C−∈ ∈ and , 1B a∂ = ± is called a reduction pair. It induces a collection of group homomorphisms

,
if 1,

,

,
: if ,

,
otherwise,

d

c a
c B d m

B a

c a
c c B d m

B a
c

π


− ∂ = − ∂

 ∂= − = ∂




where dc C∈ and ,⋅ ⋅ is the canonical bilinear form on chains.
A way to understand the global reduction of a complex is to reformulate it as an algorithm and follow an ex-

ample of its execution. The following implementation is basic and simply aims at understanding the process. For
instance, if the chain complex has torsion or if the dimensions are reduced in arbitrary order, then we should re-
fer to the more general version of the reduction method described in [5] [11]. Also, we use the data structures as
defined in section 4.0.

Algorithm 2. Reduction (Complex K) reduces K into K ′ using the one-step reduction formula. Consecutive
calls of this function will simplify K until it remains unchanged. Finally, if all the boundaries are null, then the
homology generators are given by the remaining cells. If not, then we continue the computation of homology by
using a classical method such as Smith Normal Form.

1) (Find a reduction pair) (),a B is a reduction pair if a is a face of B with an incidence coefficient of 1± .
If no reduction pair is found, return K unmodified. Otherwise continue. It is assumed that reduction pairs are
chosen by decreasing order of dimension. First the highest dimension is reduced, then the lower dimensions.

2) (Projection of K) Assign B B∂ ← . boundary, cob a a← . coboundary and ,B aλ ← ∂ , the coeffi-
cient of a in B∂ .

(a) (Update cofaces of a) For all cofaces C of a, add Bγ
λ

− ∂ to C. boundary, where γ is ,C a∂ , the

coefficient of a in C. boundary.

(b) (Update faces of B) For all faces c of B, add cob aγ
λ

− to c. coboundary, where γ is ,B c∂ , the

coefficient of c in B. boundary.
(c) (Project a and B) Remove cells a and B from K.
3) (Return the result) Return the simplified K.
An example of using the reduction algorithm is illustrated in Figure 1. With the prescribed orientation of the

M. Allili, D. Corriveau

116

Figure 1. Result of the projection of a complex after one reduction.

given complex, the boundaries of the cells in K are

A a b c d∂ = + − −

B b e f g∂ = − + + −

.C b h i j∂ = + − −

The pair (),b C is a reduction pair since the incidence number , 1C b∂ = . It follows that

2
, 1
, 1

A b
A A A C A C A C

C b
π

∂
′ = = − = − = −

∂

2
, 1
, 1

B b
B B B C B C B C

C b
π

∂ −′ = = − = − = +
∂

2
, 1 0.
, 1

C b
C C C C C C

C b
π

∂
′ = = − = − =

∂

Clearly, 0π is the identity map since there is no 0-cell removed from the complex and 1π α α= for all α
except for 1 0bπ = . The altered boundaries in the resulting complex K ′ are

()A A C a c d h i j′∂ = ∂ − = − − − + +

() .B B C e f g h i j′∂ = ∂ + = + − + − −

To calculate the homology of the complex we continue the simplifications until 0∂ = for all dimensions.

3. Computation of Homology by Grouping Reductions
The reduction algorithm chooses reduction pairs in arbitrary order and spends most of its time updating the
boundaries at each reduction step. Instead of performing the reductions in arbitrary order, we organize them into
reduction sequences that make up reduction directed acyclic graphs (RDAGs). We will show that this is very
advantageous algorithmically.

3.1. Forming RDAGs
Starting from an arbitrary cell, we form the maximal possible directed acyclic graph (DAG) whose nodes are
reduction pairs and a directed edge between two pairs (),a B and (),c D means that (),a B is adjacent to
(),c D (see definition 4). A directed path in the DAG corresponds to a reduction sequence. That type of reduc-
tion sequence affects only adjacent cells to the path and leaves other cells unchanged. Information about each
reduction is carried out by the reduced cells. After performing the whole set of reductions, we obtain the reduced
complex by extracting the boundary information from the data structures associated to the cells visited by the
reduction DAGs.

We introduce the main concepts through an example. The example details how the projections of cells are
calculated given a reduction sequence. This will show what information is exactly needed to be kept about the
original complex in order to be able to rebuild the reduced complex.

Example 3. Consider the complex given in Figure 2. The boundaries of the 2-cell are
A a b h∂ = − + −

M. Allili, D. Corriveau

117

Figure 2. Example of collapsing by using RDAGs.

B b c f∂ = − + +

C c d i∂ = − +

D d e g∂ = − + +

.E i j k∂ = − +

The depicted sequence of reduction pairs originating at cell A is () (), , ,b B c C and (),d D . The projection
maps at the level of the 2-cell give the following

() 2
,

, :
,

b b
b B B

B b
α

π α α
∂

= −
∂

() 2
,

, :
,

c c
c C C

C c
α

π α α
∂

= −
∂

() 2
,

, :
,

d d
d D D

D d
α

π α α
∂

= −
∂

It follows that the projection map associated to the whole sequence is 2 2 2 2
d c bπ π π π=   . The 2-cell A is the

only cell adjacent to the sequence while the 2-cell E is not adjacent. Their respective projections with respect to
the sequence are

()

()
()

()

()

()
()

()

2 2 2 2 2

2

2

2

2

,
,

,
,

,
,

,
,

,
,

d c d c
b

bd
b

bd
b

bd
b

d
b b c

b b c
b b c

b
b b c

A b
A A A B A B

B b

A B c
A B C

C c

A B c
A B C

C c

B c
A B C

C c

A B C

A B C d D
A B C

D d

A B C

π π π π π λ

λ
π λ

λ
π λ

λ
π λ

π λ λ λ

λ λ λ
λ λ λ

λ
λ λ λ

 ∂
′= = − = −  ∂ 
 ∂ −

= − −  ∂ 
 ∂ − ∂

= − −  ∂ 
 − ∂

= − −  ∂ 
= − +

∂ − +
= − + −

= − + −

 

,
,
.

c

b b c b c d

C d
D

D d
A B C D

λ

λ λ λ λ λ λ

∂

= − + −

M. Allili, D. Corriveau

118

()

2 2 2

2 2

,
,

0 .

d c

d c

E b
E E E B

B b

E B E

π π π

π π

 ∂
′= = −  ∂ 

= − ⋅ = =



 

Each coefficient in the projection is called the coefficient of contribution of the corresponding cell to the pro-
jection of A. For instance, b c dλ λ λ− is the coefficient of contribution of D in the projection of A. We can
compute the coefficients ,b cλ λ and dλ and express concretely the projection of A:

, 1 1
, 1b

A b
B b

λ
∂

= = = −
∂ −

, 1 1
, 1c

B c
C c

λ
∂

= = =
∂

, 1 1
, 1d

C d
D d

λ
∂ −

= = =
∂ −

A A B C D′ = + − +

Once a reduction DAG is built, we are interested in building the reduced complex. The cells of the new com-
plex are the projected cells of the original complex. The projection can be used effectively to update or build the
boundary operator for each projected cell. In the previous example, the boundary of A′ can be reconstructed
from the formula of its projection

.A A B C D f g e a i h′∂ = ∂ + ∂ − ∂ + ∂ = + + − − −

The incidence number of a given cell, say g, with respect to the boundary of the projection of A is computed
by adding all the contribution coefficients of the cofaces of g present in the projection of A, each multiplied by
the incidence number of g with respect to that coface. A particular coface of g can be present several times in the
projection of A if it belongs to different sequences that originate at A.

For instance ,A g′∂ is given by

(), , ,b b c b c d b c dA g A B C D g D gλ λ λ λ λ λ λ λ λ′∂ = ∂ − + − = − ∂

since D is the only coface of g in the original complex and it is present in the projection of A. Note that the value
of ,D g∂ is known from the original complex.

Thus to calculate the reduced complex, it is enough to keep track of the coefficients of contribution of every
reduced cell in any of the projected cells for which it contributes. In general, after a sequence of reductions is
achieved, a projected cell adjacent to reduction DAGs will look as depicted in Figure 3.

Figure 3. A cell extended by reduction DAGs.

M. Allili, D. Corriveau

119

3.2. Projection Formulas for Grouped Reductions
We define how to organize the reductions and the complex using reduction DAGs.

Definition 4. A cell 1A is adjacent to the pair ()2 2,a A if the cells 1A and 2A are of the same dimension
m and 2a is a cell with dimension 1m − in the boundaries of both 1A and 2A . A pair ()1 1,a A is adjacent
to a pair ()2 2,a A if 1A is adjacent to ()2 2,a A .

Definition 5. A reduction DAG is a directed acyclic graph whose nodes are reduction pairs and a directed
edge between two pairs ()1 1,a A and ()2 2,a A means that ()1 1,a A is adjacent to ()2 2,a A .

Definition 6. A path P from ()1 1,a A to (),n na A in a reduction DAG G is a reduction sequence
() ()1 1, , , ,n na A a A whose elements are nodes in G and (),i ia A is adjacent to ()1 1,i ia A+ + , for 1, , 1i n= − .

A cell A is said to be adjacent to a reduction sequence if it is adjacent to some pair of the sequence.
Definition 7. A path from ()1 1,a A to (),n na A in a reduction DAG G is said to originate at 0A if 0A is

adjacent to ()1 1,a A .
Definition 8. A cell not appearing in any reduction DAG is called a projected cell. The cells that appear in a

reduction DAG are called reduced cells.
All individual paths originating at a given cell contribute to the projection of the cell. In the following theo-

rem, we give a formula to calculate the projection of a cell by considering the contribution of a single path and
ignoring the input from other paths and sub-paths. This formula is called “path projection”.

Theorem 9. Let () ()1 1: , , , ,n nP a A a A be a path originating at A0. The path projection of A0 by the path P
is given by

()0 0
1

,
n

P i i
i

A A Aπ
=

= + Γ∑

where ()
1

1
i

i
i j

j
λ

=

Γ = − ∏ , and 1,

,
j j

j
j j

A a

A a
λ −∂

=
∂

 for 1 ,i j n≤ ≤ . iΓ is called the coefficient of contribution of

iA in the path projection of A0.
Proof: We proceed by induction on the length of the path. For 0n = or 1n = , the path projection formula is

easily checked as shown in Example 3. Suppose that the path projection of 0A by the path of length n,
() ()1 1: , , , ,n n nP a A a A is

()0 0
1

.
n

n

P i i
i

A A Aπ
=

= + Γ∑

Adding a ()th1n + pair of reduction ()1 1,n na A+ + to the path nP so that 1na + is a face of nA leads to the

path of length ()1n + , () ()1 1 1 1 1: , , , ,n n nP a A a A+ + + . The projection of 0A by 1nP + is equivalent to the pro-
jection of ()0nP Aπ by the path ()1 1 1: ,n nP a A+ + consisting of a single reduction pair, that is:

() ()()

()
()

()

1 1

1

1

0 0

0
1

0 1
0 1

1 1

1
0 1

1

,

,

,
.

,

n n

n

n

n

P P P

n

P i i
i

P n
P n

n n

n n
P n n

n n

A A

A A

A a
A A

A a

A a
A A

A a

π π π

π

π
π

π

+

=

+
+

+ +

+
+

+

=

 = + Γ 
 

∂
= −

∂

∂
= − Γ

∂

∑

The last equality is due to the fact that none of the cells 1 2 1, , , nA A A − contains 1na + as a face. Thus,

() () () ()
1

1
1

0 0 1 1 0 1
1

1 .
n n n

n
n

P P n n n P j n
j

A A A A Aπ π λ π λ
+

+
+

+ + +
=

 
= − Γ = + −  

 
∏

M. Allili, D. Corriveau

120

Finally:

()
1

1

0 0
1

,
n

n

P i i
i

A A Aπ
+

+

=

= + Γ∑

where ()
1

1
i

i
i j

j
λ

=

Γ = − ∏ and 1,

,
j j

j
j j

A a

A a
λ −∂

=
∂

, which proves the induction hypothesis.

Now, we can write

()0 0
1

.
n

Pn

n

P i i
i

A A Aπ
=

Ψ

= + Γ∑


We denote by
nPΨ the projection chain of the cell 0A by the path nP . 

Note that when the path nP is extended by one reduction pair ()1 1,n na A+ + , then the formula for the projec-
tion of 0A by 1nP + is given by:

() () ()()1 0 0 1 11 .
n nP P n n nA A Aπ π λ
+ + += + Γ −

More generally, if () ()1 1: , , , ,n nP a A a A is extended by a path () ()1 1: , , , ,m mQ b B b B , then the formula
generalizes to

() ()0 0
1

m

PQ P n j j
j

A A Bπ π α
=

 
= + Γ  

 
∑ (1)

where ()
1

1
j

j
j k

k
α µ

=

= − ∏ and 1,
,

k k
k

k k

B b
B b

µ −∂
=

∂
. Here 0 nB A= .

Corollary 1. Let 1 2, , , kP P P be disjoint non overlapping paths originating at 0A . The total projection of
0A by 1, , kP P denoted by

()
1 2, , , 0 0

1
k i

k

P P P P
i

A Aπ
=

= + Ψ∑


where
iPΨ is the projection chain of the cell 0A by the path iP .

Proof: It is important to mention that k cannot exceed the number of boundary faces of 0A which are of di-
mension ()0 1dim A − . Since the k paths are disjoint and non overlapping, each path has to start from a different
face of 0A . Without loss of generality, it is sufficient to prove the corollary for the case where 2k = and with
paths consisting of single reduction pairs as shown in Figure 4. If we apply first the reduction by ()1 1,a A , then

()
1

0 1
0 0 1 1 1

1 1

,
, where

,P

A a
A A A

A a
π λ λ

 ∂
= − =   ∂ 

Applying the second reduction results in:

()() ()
()

2 1 1

0 1 1 2
0 0 2

2 2

,
,P P P

A A a
A A A

A a
λ

π π π
∂ −

= −
∂

Since 1P and 2P are disjoint non overlapping, it follows that 2a is not a face of 1A , thus

Figure 4. Reduction by two disjoint non overlapping paths.

M. Allili, D. Corriveau

121

()

() ()

1 2

1 2

0 2
0 0 1 1 2 2 2

2 2

0 0 0

,
,

,P P

P P

A a
A A A A

A a

A A A

π λ λ λ
 ∂

= − − =  ∂ 
= + Ψ + Ψ

Corollary 2. Let T be a reduction tree originating at 0A , then the projection of 0A by T is equal to the sum
of 0A and the projection chain of 0A by T.

Proof:
Typically, the trees originating at 0A can occur as pure paths, in which case the associated projections are

given previously. Otherwise, we can find paths that share a common ancestral branch that originates at 0A . This
is seen as a bifurcation as shown in Figure 5. In this case, the ancestral branch is a path () ()1 1: , , , ,

B Bn nB b B b B
which is extended by two paths () ()1 1: , , , ,

C Cn nC c C c C and () ()1 1: , , , ,
D Dn nD d D d D . The combination of

the results in Theorem 9 and Corollary 1 can be used to show that the total projection of A0 by () (),T BC BD=
is given by

()0 0
1 1 1

CB D

B

nn n

T i i n j j k k
i j k

A A B C Dπ α β
= = =

 
= + Γ + Γ + 

 
∑ ∑ ∑

The term () ()0 0 0
1 1 1

CB D

B

nn n

i i n j j k k T T
i j k

B C D A A Aα β π
= = =

 
Γ + Γ + = − = Ψ 

 
∑ ∑ ∑ is called the projection chain of the tree.

In general, the tree can have many bifurcations at a given node and the bifurcations can occur at different
nodes for which cases, the formula given above can be easily generalized. 

One may wonder what happens when two paths are merging into a single path as illustrated in Figure 6. For
this purpose, let’s consider the simple situation where two distinct reduction paths originating at A0 overlap at a
certain node, which is they are extended both by the same path.

In that situation, there are two independent pure paths CB and DB and the total projection of A0 is given as
follows

()

0
1 1 1 1

0
1 1 1

.

C B D B

C D

C D B

C D

n n n n

i i n j j k k n j j
i j k j

n n n

i i k k n n j j
i k j

A C B D B

A C D B

α λ β λ

α β λ

= = = =

= = =

+ + Γ + + Γ

= + + + Γ + Γ

∑ ∑ ∑ ∑

∑ ∑ ∑

Figure 5. A path B bifurcates into two paths C and D.

Figure 6. Two paths C and D merge into a single path B.

M. Allili, D. Corriveau

122

We see from the formula that it comes down to considering each path (which is also a tree) including the
shared sibling branch as pure paths contributing to the projection of A0. This comes down to considering each
tree independently (see Figure 7).

Theorem 10. Let A0 be a cell adjacent to a RDAG in a chain complex C. The projection of A0 by the RDAG is
equal to A0 to which we add the projection chains of A0 by all the trees in the RDAG that originate at A0, that is

() ()
0

0 0 0
A

RDAG T
T

A A Aπ
∈

= + Ψ∑


where
0A is the collection of all the reduction trees in the RDAG originating at A0.

Proof: Since we deal with finite complexes the number of all possible trees starting at a given cell (here A0)
has to be finite. Thus, the results proved for paths in corollaries 1 and 2 and the subsequent remark regarding
merging paths can be extended for the case of trees (splitting and merging) to find the formula for the projection
of A0. 

We review the projection formulas of paths and trees with the example of Figure 8. There are two trees BT
and CT originating at A0. The projection of A0 with respect to the tree BT can be written as

1 1 2 2 3 1 4 2 4 1,B B D Dλ λ λ λ λ π+ + + +

where 1 1 1 2 2 1 1 2 2E E F Fπ α α β β= + + + . The projection chain of A0 with respect to the tree CT is given by

1 1 2 2 3 1 4 2 4 2 ,C C D Dϕ ϕ ϕ ϕ ϕ π+ + + +

with 2 1 1 2 2 1 1 2 2E E F Fπ µ µ σ σ= + + + . It follows that the total projection of A0 is given as the sum of both plus
A0.

3.3. Why Acyclic Graphs
Adjacency alone does not guarantee that cycles are not created in a reduction DAG. To ensure that every reduc-
tion sequence is associated with a well defined projection, we enforce acyclicity in the formed directed graphs.
More generally, assuming that a reduction sequence () ()1 1, , , ,n na A a A is such that ()0 0,a A is adjacent to
()1 1,a A and (),n na A is adjacent to ()0 0,a A (see Figure 9), we consider extending the sequence to
() ()1 1 1 1, , , ,n na A a A+ + by setting () ()1 1 0 0, ,n na A a A+ + = . However, the pair ()0 0,a A is not necessarily ad-
missible since after performing the sequence of reductions () ()1 1, , , ,n na A a A , the cell A0 has been modified
into 0A′

()0 0
1 1

1
in i

j i
i j

A A Aλ
= =

 
′ = + −  

 
∑ ∏

and 0 1na a += occurs in the boundary of 0A′ as a face of both 0A and nA . Its incidence number is therefore
calculated as follows

()0 0 0 0 0
1

, , 1 ,
n

n
j n

j
A a A a A aλ

=

 
′∂ = ∂ + − ∂ 

 
∏

which is not necessarily invertible. In Figure 9, () () ()()3
0 0, 1 1 1 1 1 1 0A a′∂ = − + − × × × − × = is not invertible

which means that ()0 0,a A is not an admissible reduction pair. In our implementation, we avoid testing if

Figure 7. Decomposition of a reduction DAG into two independent
trees 1T and 2T .

M. Allili, D. Corriveau

123

Figure 8. Example of reduction paths and the associated reduction DAG.

Figure 9. Cycles need to be avoided as reduction pairs are added in the tree.

reduction pairs are admissible or not by avoiding cycles as we build the reduction DAGs. This results in a more
efficient algorithm.

3.4. Using Projection Formulas
We recapitulate the formulas with a second example, see Figure 10. The first reduction pair is (),a A . Because
the cell E is adjacent to the pair (),a A , it is marked as a projected cell. In a list associated with the reduced cell A,

we save the pair (),a Eλ− where
,

1
,a

E a
A a

λ
∂

= = −
∂

. The reduction is continued from the faces of A. The

second reduction pair is (),b B . We carry the information previously saved on the visited cofaces of b, so we

add (),b a Eλ λ
,

1
,b

A b
B b

λ
 ∂

= =  ∂ 
 to the list associated with the cell B. Continuing from the faces of B, the

M. Allili, D. Corriveau

124

Figure 10. A more complicated reduction sequence.

third reduction pair to be added is (),c C . The cell c is adjacent to both the reduced cell B and the projected cell
E. From this point, we continue a path () () ()(), , , , , ,a A b B c C  and begin a sub-path ()(), ,c C  . The in-
formation saved with C considers the input of both paths. So we save ()(),cE cB b a Eλ λ λ λ− + where

,
1

,cE
E c
C c

λ
∂

= = −
∂

 and
,

1
,cB

B c
C c

λ
∂

= = −
∂

. But because the coefficients of contribution sum up to 0, it means

that C does not contribute to the projection of E. Thus, nothing is saved with C. The last reduction pair (),d D
is added to the sequence. Because, d is adjacent to the unvisited cell F, F is marked as a projected cell. The
reduced cell C is also adjacent to d but no information was saved with C, so the only information to save with D

is (),d Fλ− where
,

1
,d

F d
D d

λ
∂

= = −
∂

.

3.5. Building the Simplified Complex
Using reduction DAGs to compute the homology of a chain complex is a recursive process. At each recursion
level, the algorithm simplifies the complex by constructing reduction DAGs on the complex and saving the as-
sociated projections into appropriate data structures. This is performed simultaneously for each dimension. This
process eventually stops when it is impossible to add another reduction pair to any reduction DAG. In that case,
the algorithm will build the associated simplified complex and continue the reduction process on the simplified
complex.

The simplified complex is rebuilt from the projected cells only (reduced cells are not considered). The boun-
daries of the cells are updated using global projection formulas that allow to calculate the incidence numbers
between cells of contiguous dimensions. Note that the reduced cells are not completely removed from the struc-
tures since they may be needed to recover homology generators expressed in terms of cells of the original com-
plex as we explain in subsection 3.8. Contrary to the classical case where the boundary updating is done at each
reduction step and may concern cells that can be reduced at a later step, a major benefit of this new approach is
that the boundary updating is done only among the projected cells which often constitute a small fraction of the
number of cells in the original complex.

Continuing with the example used in Figure 10, we proceed to build its simplified complex. At this point
from the projection formulas we have the projection of E, which is E E A B′ = + + and the projection of F
which is F F D′ = + . To build the simplified complex, we create two 2-dimensional cells, E′ and F ′ . We
also create the projected lower dimensional cells (which is not illustrated in the example). Then, knowing that

F F D′∂ = ∂ + ∂ , we add the projected 1-cells in the boundary of D to the boundary of F ′ using the correct
coefficients. For example, if we suppose that 1d is a projected cell of dimension one that was in the boundary
of D in the original complex. From the structures, we know that D appears in the projection of F with an inci-
dence coefficient of 1 (F F D′ = +). So, we add 1d in the boundary of F ′ with a coefficient of 1. This is
done for all projected cells in all dimensions.

3.6. Performance Benefits of Using Reduction DAGs
We use the complex illustrated in Figure 9 as a case study. Our objective is to point out how grouping reduc-
tions differs from classical methods and leads to substantial performance benefits. Performance is measured by
the number of lists updates and compared to the classical reduction algorithm (see 2). Usually, the boundary and

M. Allili, D. Corriveau

125

coboundary of cells are maintained by lists data structures. Assuming ordered lists, the cost for merging two lists
1L and 2L is bounded by ()1 2O L L+ , where L refers to the number of elements in L. Using unordered lists

is bounded by ()1 2O L L∗ .
1) Classical Reduction Method
(a) Reduction ()1 1,a A . According to step 2.a) of algorithm 2, we update cofaces of 1a . That is, for each

2-cell β in the coboundary of 1a , we add the set of cells in the boundary of 1A to the boundary of β using
the right coefficient. Therefore, this operation costs an order of 1 0 4 4 8A A∂ + ∂ = + = list updates.

In step 2.b), we update the coboundaries of faces of 1A . For each 1-cell α in the boundary of 1A , we add
the set of cells in the coboundary of 1a to the coboundary of α using the right coefficient. This time, the cost
is in the order of ()2 13 11cobd cobe coba coba+ + + ⋅ = . Taken all together, it costs an order of 8 11 19+ =
lists updates for the first reduction.

(b) Reduction ()2 2,a A . Now 0 2 0A b c d e a a∂ = − + + + − − , thus updating cofaces of 2a is in the order of
() ()0 2 6 4 10A A∂ + ∂ = + = .

For step 2.b), updating faces of 2A is in the order of ()3 23 10cobi cobh coba coba+ + + ⋅ = . Taken
together, the cost for the second reduction is in the order of 10 10 20+ = lists updates.

(c) Reduction ()3 3,a A . Now 0 3 0A b c d e i h a a∂ = − + + + + − − − , and updating cofaces of 3a costs an
order of 0 3 8 4 12A A∂ + ∂ = + = lists updates.

For step 2.b), updating faces of A3 amounts to a cost in the order of ()0 33 10cob f cobg coba coba+ + + ⋅ = .
The total cost for the third reduction is in the order of 12 10 22+ = .

Taken all together, the three reductions cost an order of 19 20 22 97+ + = lists updates. Generally, as the re-
ductions go on, the costs increase because the boundary and coboundary lists tend to grow in size.

2) Reduction DAGs Method

(a) Reduction ()1 1,a A . The pair ()1 0,a Aλ , where
1

0 1

1 1

,
,a

A a
A a

λ
∂

= −
∂

 is saved in a list maintained by 1A . The

cost is one list update.

(b) Reduction ()2 2,a A . The pair ()2 1 0,a a Aλ λ , where
2

1 2

2 2

,
,a

A a
A a

λ
∂

= −
∂

 is saved in a list maintained by 2A .

The cost is one list update.

(c) Reduction ()3 3,a A . The pair ()3 2 1 0,a a a Aλ λ λ where
3

2 3

3 3

,
,a

A a
A a

λ
∂

= −
∂

, is saved in a list maintained by

3a . The cost is one list update.
(d) Reconstruction of the simplified complex. For each non reduced 1-cell a, we scan through its cofaces of the

original complex and link a with the list of projected cells previously saved by using the right coefficients. The
total cost is in the order of the number of remaining 1-cells plus the size of the lists of adjacent projected cells.
Note that usually, the simplification process continues on the lower dimensions. So at the end there will remain
only a fraction of the lower dimensional cells (here 1-cells). The Reduction DAGs method is more efficient as
long as the cost for reconstructing the simplified complex is low which our experimental results corroborate.

3.7. Minimizing Lists Updates
Different reductions lead to different computational costs (measured by the number of lists updates). We attempt
to achieve a good overall performance by choosing reduction pairs that should minimize the number of updates.
To select among many candidate reduction pairs, we use a heuristic that estimates their respective costs. Given a
reduction pair (),a B , this cost is approximated by the number of non reduced cofaces of a (other than B) plus
the size of the projection lists of each reduced coface of a.

We illustrate this on an example in Figure 11. Suppose that the 2-cell A is already reduced and has ()1 1, Aλ
and ()2 2, Aλ in its list of projected cells. We consider the cost of performing the reduction (),c C . The heuris-
tic approximates this cost to three lists updates, because there is one non reduced coface of c (that is B), and the
projection list of the reduced coface A has two elements ()1 1, Aλ and ()2 2, Aλ . Indeed, performing the reduc-
tion (),c C amounts to inserting the pairs () ()3 1 1 3 2 2, , ,A Aλ λ λ λ and ()4 , Bλ into the projection list of C. We
give more details about the heuristic in section 4.

M. Allili, D. Corriveau

126

3.8. Calculating Generators
An interesting aspect of using the reduction DAGs method to compute homology is that the data structures allow
to extract the homology generators at a low additional cost. We explain how to proceed. Let us consider the
complex of a plane quotiented by its boundary as illustrated in Figure 12. This complex is homeomorphic to a
2-sphere and the 2-cell A represents the 2-generator 1 2 3A A B C Dλ λ λ′ = + + + . The generator associated to a
projected cell corresponds to the projection of the cell. As we illustrated in Figure 12, after each reduction, the
projection coefficients iλ are saved into the projection lists maintained in each reduced cell. Generally, once
the complex has been simplified to the level where all boundaries are trivial, one has to examine all projected
(non-reduced) cells and find their corresponding coefficients in the projection lists of the reduced cells. Thus, to
get the 2-generator associated to the 2-cell A, one has to scan through each reduced 2-cell and extract the projec-
tion coefficients associated to A.

However, computing homology by reduction DAGs is a recursive process (see Figure 13) and this needs to
be considered when calculating the generators. Projections correspond to generators but they can be expressed
with cells of the simplified complex at any level of the recursion. However, in order for the generators to carry
geometric meaning, it makes sense only to express the generators with cells from the original complex. Due to
the recursive simplifications, a projected cell at a previous level of the recursion may become a reduced cell at a
later level of the recursion. We illustrate this in Figure 14. In this example, there are two levels of recursion.

Figure 11. Cost of performing a reduction in terms of list updates.

Figure 12. A Complex homeomorphic to a 2-sphere.

M. Allili, D. Corriveau

127

Figure 13. Computing homology by reduction DAGs is a recursive process.

(a) (b)

(c) (d)

Figure 14. (a) Reduction 1 of the initial complex. (b) Reduction 2 of the simplified complex. (c)
Initial complex after returning from the second reduction. (d) Initial complex after returning
from the first reduction.

M. Allili, D. Corriveau

128

The final simplified complex is obtained after reducing the vertical edge and the 2-cell B shown in Figure 14(b).
At this step, the cell A represents a 2-generator that is expressed as 5A A Bλ′′ ′ ′= + (considering that after the
first reduction we rename the original cells A and B as A′ and B′). Note that in fact, the algorithm always
works on the original cells and never copy nor create any new cell during the whole computation. Returning
from the last recursion, we know that 1 2A A C Eλ λ′ = + + and 3 4B B D Fλ λ′ = + + . The cell A represents a
projected cell at both recursion levels (14(b) and 14(c)) and requires no special consideration. On the other hand,
the cell B is a projected cell at the first level of recursion but becomes a reduced cell at the second recursion level.
Consequently, returning from the second recursion level, we scan through each 2-cell and whenever B is
encountered in one of the projection lists, it is replaced by 5 Aλ . This is shown in Figure 14(d). Finally, the
generator is expressed by 5 1 5 3 2 5 4A A B C D E Fλ λ λ λ λ λ λ′′ = + + + + + . In Figure 15 we show different 1-
generators that we extracted from 3D models.

3.9. What If Boundaries Are Not Trivial?
In previous subsections, we stressed that all boundaries have to be trivial in order to obtain homology and its
generators at the end of the reduction process. But in practice, when all reductions are done we can be in a situation

(a) (b) (c)

(d) (e) (f)

Figure 15. (a)-(c) The 3D models of a chain, two kissing children and a Buddha. (d)-(f) The calculated holes (one dimen-
sional generators).

M. Allili, D. Corriveau

129

where some of the boundaries remain non trivial. For example, this may be due to the presence of torsion.
In Definition 1, the pair (),a B is defined as a reduction pair if , 1B a∂ = ± . But this condition is in fact too

restrictive. In order for dπ to be a group homomorphism,
,
,

c a
B a

λ
∂

=
∂

 has to be an integer. This is satisfied

when ,B a∂ divides ,c a∂ for every dc C∈ . The easiest and most efficient way to guarantee this is to
choose B and a such that , 1B a∂ = ± . Thus, for performance considerations, we designed the reduction DAGs
algorithm to consider only reduction pairs with 1± coefficients. But the drawback is that once all reductions
are done, it is not guaranteed that all boundaries will be trivial. There may remain reduction pairs such that

, 1B a∂ ≠ ± but ,B a∂ divides ,c a∂ . In that case, one can modify the present algorithm to test for divisi-
bility and continue the computations with the modified version. Another possibility is to have recourse to a clas-
sical algorithm such as the Smith Normal Form. Note that at this level most of the cells generating the complex
have already been reduced to a small number.

4. Data Structures and Algorithms
The first data structure represents a chain complex.

ChainComplex:
E: two dimensional array of cells organized by their respective dimension, that is E[d][i] denotes the i-th

d-cell.
In our implementation, the pointer to a cell is used to identify the cell. These identifiers are saved in E. The

main benefit to using pointers is that when we build the simplified complex, no new cell is created. Only the
pointers of the projected cells are copied into the simplified complex.

Cell:
boundary/coboundary: list of faces/cofaces.
state: a flag taking one of the values in {NORMAL, REDUCED, PROJECTED, VISITED}.
projCells: list to save the PROJECTED cells and their associated coefficients that project onto the given cell

when it is REDUCED.
nbUpdates: approximates the number of updates to a projCells list when the given cell is reduced by one of

its cofaces.
Initially, all cells are set to the NORMAL state. REDUCED is assigned to the cells in a reduction sequence

and PROJECTED is assigned to the cells adjacent to a reduction sequence. The VISITED flag is assigned to the
d-cells that don’t have any ()1d + coface that can form an admissible reduction pair. A reduction pair (),a B
is admissible if , 1B a∂ = ± and adding the pair to the reduction DAG does not create a cycle. The flag helps
to avoid testing more than once if the given d-cells have an admissible reduction pair.

The projCells list is used by the REDUCED cells to keep track of the coefficients of contribution of every PRO-
JECTED cell for which it contributes. For example, if we use the sequence of reduction pairs illustrated in Figure

2, then B.projCells and C.projCells will respectively contain (),b Aλ and (),b c Aλ λ where
,
,b

A b
B b

λ
∂

= −
∂

and
,
,c

B c
C c

λ
∂

= −
∂

.

To build a sequence of reduction pairs, nbUpdates is used to select reduction pairs that should minimize the
amount of updates to the projCells list. The number of updates is approximated by the number of non reduced
cofaces plus the number of entries in the projCells lists of REDUCED cofaces.

We now give the principal steps of the algorithm.
 HOM_RDAG(ChainComplex K) returns the Betti numbers of a chain complex K by using reduction DAGs.

1) (Initialization) For all cells in K, set its state to NORMAL, empty projCells, set nbUpdates to the number
of cofaces.

2) (Reduce cells) Proceed by decreasing order of dimension. Order the d-cells by increasing value of nb-
Updates. Following this order, start a reduction DAG (call BuildRDAG()) from each cell whose state is NOR-
MAL.

For dimension 0, change remaining NORMAL 0-cells to PROJECTED.

M. Allili, D. Corriveau

130

3) (Build the simplified complex) Call BuildSimplifiedComplex(K). This method extracts the boundary infor-
mation from the data structures to build a simplified complex K ′ .

Continue to recursively simplify K ′ by calling HOM_RDAG(K ′) until there are no reduction pair left.
Test if all boundaries are trivial. If not, then continue the reduction process with another method such as SNF.
4) (Return the Betti numbers) Assign the number of PROJECTED d-cells to dβ .
 BuildRDAG(Cell c) builds a reduction DAG from cell c.

1) (Initialization) Save c.nbUpdates into nbUpdatesLimit for later use.
2) (Find a reduction pair) Find a coface B of c such that B is NORMAL or VISITED. If a coface B is found,

then call PairCells(c, B), otherwise set c to VISITED and exit BuildRDAG().
3) (Expand the reduction DAG) Expand the reduction DAG (repeat step 2) from all NORMAL faces of B that

have nbUpdates ≤ nbUpdatesLimit. Proceed in a breadth first search approach.
 PairCells(Cell c, Cell B) adds the reduction pair (),c B to the sequence and updates the data structures ac-

cordingly.
1) (Update projCells) For all cofaces C of c different than B, if C is REDUCED, then add λc∗C.projCells to

B.projCells. Otherwise, set C to PROJECTED and add λc∗C to B.projCells, where
,
,c

C c
B c

λ
∂

= −
∂

.

2) (Update the nbUpdates variable) For all faces a of B different than c, add
|B.projCells|-1 to c.nbUpdates. For all faces of c, remove one to nbUpdates.
 BuildSimplifiedComplex(Complex K) extracts the boundary and coboundary information from the data

structures to build a simplified complex K ′ .
Note: In the preceding methods, the coboundary list of a cell is never modified. Thus, when referring to co-

faces, it is about the cofaces in the complex K at a given recursion level before any reduction is performed.
1) (Update boundary) Proceed by increasing order of dimension. Let c be a PROJECTED d-cell of K. For all

cofaces C of c, iterate through C. projCells. Let B be a ()1d + -cell in C. projCells and Bλ its associated coef-
ficient. Add ,B C c cλ ∂ to B.boundary and update c.coboundary accordingly.

Finally, remove all REDUCED cells remaining in the boundary and coboundary of PROJECTED cells. Copy
the pointers of all PROJECTED cells into K’.E.

5. Experimental Results
Because of its heuristic and recursive design, we had major difficulties to analyze the time complexity of our
algorithm. Instead, we approached the problem by evaluating its performance on a wide range of experimenta-
tions. We compared its performance with the reduction algorithm 2 on different data series: d-balls, d-spheres,
tori, Bing’s houses, 3D medical scans and randomly generated d-complexes.

The series of d-balls and d-spheres were created by juxtaposing d dimensional cubes along each dimension. A
3-ball of size 10 is the cube obtained by placing side by side 10 × 10 × 10 3-cubes and making the correspond-
ing identifications of lower dimensional cells. A d-sphere is a d -ball quotiented by its boundary. We also con-
structed the tori and Bing’s houses from 3-cubes, although they are both 2 dimensional complexes. This con-
struction does not affect the homology. We created two data series from 3D medical scans: brain and heart. Each
of them is created from 3D images by selecting the pixels whose values are higher than a threshold. Lastly, we
randomly generated d-complexes by choosing ()1d + random numbers referring to the number of generators.
We created a d-cell for each d-generator and randomly linked the d-cells to the ()1d − -cells. By subdivision,
we obtained complexes of various data sizes.

In the experimentation, we use the following terminology. A data series refers to one of d-balls, d-spheres,
tori, Bing’s houses, 3D medical scans or randomly generated d-complexes. Each data series is constituted of
many datasets. For example, d-balls contain the 2-ball, 3-ball, ..., 6-ball. Each dataset contains many files of
complexes of various data sizes. For example, there are 15 files in the 2-ball data set for which the data size vary
from 2000 up to 10,000,000. The size of a complex is measured as the number of cells plus the number of links
(entries in boundary lists). A test is an execution of the algorithm on a file of a specified data set.

Initially, we observed that a test could be misleading, especially when dealing with cubical data sets. The
reason is because we create the complexes in an orderly fashion. Thus, during its execution, the algorithm is
most probably benefiting from a favorable choice of reduction pairs due to the order inherent in the data. Con-
sequently, to avoid misreporting on the algorithm’s performance, we took care to randomize the boundary and

M. Allili, D. Corriveau

131

coboundary lists of all cells in the complex before each test.
We performed 30 tests for each file and computed the average, maximum and standard deviation of the time

used for calculating the homology, the generators and sorting. We measured the sorting time because it has a
time complexity of ()logn nΘ ⋅ and we wanted to verify that sorting would not monopolize the computation
time. Also, we saved statistics on the number of recursions to see its influence on the global performance. Here
we grouped and summarized the results per dataset.

We begin with our most interesting results (see Table 1) which compare the performance of the reduction
DAGs algorithm with the classical reduction method on different datasets. We can observe a significant im-
provement between the two methods. Knowing that the time complexity of the reduction method is quadratic
(using ordered lists), those results suggest a subquadratic time complexity for the reduction DAGs algorithm
which is what we measured in Table 2.

Table 1. Comparison of the reduction DAGs algorithm versus the classical reduction method.

Dataset Data Size Times Faster

3-Ball 115,905 195.4
4-Ball 27,841 147.3

2-Sphere 517,145 65.0
3-Sphere 134,777 182.5

Torus 418,608 36.0

Heart 545,492 50.5

3-Complex 265,322 410.0
5-Complex 431,186 458.8
8-Complex 330,285 185.9

Table 2. Approximated performance with respect to dataset, data size and dimension.

 Equation Time (msec) Vs Data Size

Dataset N β α 104 105 106 107

2-Ball 15 9.05E−8 1.11 2.49 32.11 413.66 5329.04
3-Ball 11 4.63E−8 1.15 1.84 26.04 367.77 5194.95
4-Ball 11 4.26E−8 1.14 1.55 21.35 294.72 4068.27
5-Ball 9 5.66E−8 1.12 1.71 22.53 297.04 3915.76
6-Ball 5 3.56E−8 1.15 1.42 20.02 282.78 3994.39

2-Sphere 17 5.77E−8 1.18 3.03 45.83 693.71 10,499.67
3-Sphere 16 2.79E−8 1.22 2.12 35.12 582.91 9673.96
4-Sphere 10 3.38E−8 1.17 1.62 23.93 353.93 5235.00
5-Sphere 9 5.52E−8 1.14 2.00 27.67 381.89 5271.56
6-Sphere 5 3.30E−8 1.17 1.58 23.36 345.55 5111.09
7-Sphere 3 1.31E−8 1.24 1.19 20.76 360.80 6270.05

Torus 5 1.48E−7 1.07 2.82 33.13 389.28 4573.64
Bing’s House 5 2.18E−7 1.04 3.15 34.55 378.84 4153.90

Heart 6 6.84E−8 1.13 2.26 30.55 412.15 5559.76

Brain 6 3.13E−8 1.20 1.97 31.30 496.07 7862.20

2-Complex 9 6.78E−8 1.24 6.18 107.46 1867.37 32,451.12
3-Complex 9 7.89E−9 1.36 2.17 49.78 1140.45 26,126.25
4-Complex 9 2.82E−9 1.45 1.78 50.15 1413.35 39,833.56
5-Complex 9 4.95E−9 1.38 1.64 39.32 943.20 22,625.87
6-Complex 9 3.04E−9 1.41 1.33 34.11 876.75 22,535.83
7-Complex 9 2.42E−8 1.23 2.01 34.18 580.52 9858.60
8-Complex 9 2.26E−9 1.43 1.19 31.92 859.23 23126.42

M. Allili, D. Corriveau

132

In Table 2 we report the approximative time that our algorithm uses to calculate homology on various data-
sets. The second column (N) gives the number of files within the dataset. The third and fourth columns show the
parameters α and β that best-fit the equation “ time data_sizeαβ≈ ⋅ “, where time is expressed in seconds.
We obtained the best-fits from the times measured on the individual files of each dataset. In the last four col-
umns, we present the times in milliseconds that we get from the best-fit equation for different data sizes. Those
times approximate the real times that we measured in real experiments. For example, on 30 tests, we measured
an average time of 4992.24 ms on a torus of size 10944304. The best-fit equation approximates a time of
4573.64 ms for a torus of size 10000000.

From Table 2, we observe that 1.16α ≈ and 5 8Eβ ≈ − for d-balls and d-spheres without regard of the
dimension. Except for few values, α is relatively constant while β gradually decreases as the dimension in-
creases. We explain this by the fact that the ratio of exterior face reductions versus interior face reductions in-
creases with the dimension. An exterior face reduction denotes a reduction pair (),a B for which a has only the
coface B in its coboundary list. On the other hand, we use the term interior face reduction when a is shared by
more than one coface. Algorithmically speaking, an exterior face reduction is more advantageous because it
does not cost any update to the projection lists, while an interior face reduction costs at least an update.

We observe that the approximation times and the parameters α and β for the heart and brain datasets,
remain in the same order as those of d-balls and d-spheres despite the high numbers of generators as shown in
Table 3. For example, the file heart96 had 30 connected components, 107 holes and 19 voids. For these two da-
tasets, the number of generators was not a relevant factor for the performance of the algorithm. We think it is
because those two datasets contain a high ratio of exterior face reductions, which cost near to nothing. If we
compare with the random d-complexes then the topology is an important factor. Indeed, as the data size in-
creased we observed bigger differences in the time performance.

In Figure 16, we also reproduced the algorithm’s performance on the files of each dataset. We used a loga-
rithmic scale on both axes to better distinguish the trends. In Figure 16(d), each file in a d-complex has a dis-
tinct topology. It explains why we see only a weak trend in opposition to the other datasets where the trends are
strong.

Another interesting aspect of the algorithm to consider is the number of recursions which is expressed as the
number of reduction calls in Table 4. Interestingly, one reduction call was enough to calculate the homology of
all d-balls, d-spheres and Bing’s houses. It means that the algorithm did not reconstruct an intermediate simpli-
fied complex to obtain the homology. For other datasets, the algorithm had to reconstruct simplified complexes
to carry out the computation. As an example, a value of n means that, on average, the algorithm constructed
()1n − simplified complexes. The Max column shows the average of the maximum number of calls and the last
column refers to the average standard deviation.

Table 3. Number of generators of the files in the heart and brain datasets.

File Name Number of Generators

heart192 (11, 9, 0)

heart160 (4, 15, 2)

heart128 (39, 12, 6)

heart96 (30, 107, 19)

heart64 (38, 228, 104)

heart32 (111, 220, 208)

brain192 (11, 0, 0)

brain160 (109, 1, 0)

brain128 (230, 25, 0)

brain96 (255, 153, 4)

brain64 (134, 407, 21)

brain32 (41, 524, 252)

M. Allili, D. Corriveau

133

(a)

(b)

M. Allili, D. Corriveau

134

(c)

(d)

Figure 16. Performance of the algorithm on various data series: (a) d-balls, (b) d-spheres, (c) heart, brain, Bing’s house and
torus, (d) random d-complexes.

M. Allili, D. Corriveau

135

Finally, in Table 5 we show how much time the algorithm spent on sorting and calculating the generators.
Regarding sorting, the issue is that the heuristic uses sorting in attempt to choose reduction pairs that should mi-
nimize the number of lists updates. Consequently, we wanted to verify that sorting did not monopolize the
computation time. Otherwise, the heuristic would hinder more rather than help the computation. So we meas-
ured the average time spent on sorting relative to the total time of a computation and expressed the results in
percentage terms. Also, we give the average maximum and average standard deviation. We observe that, on av-
erage, the algorithm spent around 5% - 10% of the time on sorting and the extrema are almost always less than
15%. In addition, the algorithm performed much slower when we disabled the heuristic.

Table 4. Number of reduction calls per dataset.

 Reduction Calls

Dataset N Avg Max SD

Torus 5 1.71 2.20 0.46
Heart 6 3.62 4.33 0.33
Brain 6 3.18 3.33 0.20

2-Complex 9 2.76 3.33 0.34
3-Complex 9 2.68 3 0.27
4-Complex 9 2.94 3.56 0.35
5-Complex 9 2.51 2.78 0.19
6-Complex 9 2.55 2.89 0.21
7-Complex 9 2.89 3.22 0.24
8-Complex 9 2.61 3 0.28
All others N/A 1 1 0

Table 5. Cost for computing generators and sorting.

 Generators (%) Sorting (%)

Dataset N Avg Max SD Avg Max SD

2-Ball 15 105.60 119.85 4.91 10.80 14.17 1.69
3-Ball 11 105.71 118.87 4.86 10.23 13.23 1.55
4-Ball 11 103.99 120.58 5.24 10.81 14.00 1.52
5-Ball 9 104.14 118.88 5.52 10.63 13.21 1.24
6-Ball 5 104.73 113.95 4.84 9.56 12.11 1.14

2-Sphere 17 118.18 140.30 10.89 5.89 7.97 0.82
3-Sphere 16 111.95 129.49 8.85 6.56 8.25 0.62
4-Sphere 10 104.76 126.44 8.68 6.26 8.80 0.90
5-Sphere 9 105.19 122.00 7.76 7.50 10.19 1.00
6-Sphere 5 105.06 120.92 6.81 7.61 11.00 1.31
7-Sphere 3 104.33 118.07 5.09 8.69 10.40 0.87

Torus 5 111.65 130.93 8.39 9.56 13.78 1.65
Bing’s House 5 105.51 119.63 5.55 11.68 14.30 1.18

Heart 6 106.11 124.46 7.38 10.36 15.42 2.01
Brain 6 108.76 129.84 10.56 9.55 13.18 1.50

2-Complex 9 115.04 137.84 10.12 3.68 4.67 0.44
3-Complex 9 110.52 131.13 10.33 5.57 7.57 0.77
4-Complex 9 103.44 128.07 10.76 3.56 4.56 0.38
5-Complex 9 101.95 124.02 9.61 5.47 7.89 0.95
6-Complex 9 105.17 127.27 10.63 4.26 5.55 0.43
7-Complex 9 106.66 129.96 11.14 7.11 9.83 0.96
8-Complex 9 104.16 131.26 13.27 4.74 8.50 0.85

M. Allili, D. Corriveau

136

Regarding the computation of generators, our algorithm allows to obtain them for an additional cost of about
10% or less on average. From Table 5 we see that most average times fluctuate around 5% and the maximums
fall into the 15% - 30% range. Moreover, the algorithm performed as strongly on datasets with a large amount of
generators than on those with a small amount.

6. Conclusions
We developed in this paper a novel and efficient algorithm for the computation of homology groups and ho-
mology generators that works at the level of chain complexes, and hence allows handling a variety of geometric
complexes. The main idea is based on organizing sequences of cell reductions into a structure of directed acyclic
graphs, which makes it possible to derive global projection formulas and perform large collections of reductions
at once. In this method, the boundary operators of the complex are not explicitly updated after each reduction
step. Instead, this information is always preserved implicitly within the data structures and processed globally
for each reduction graph allowing reducing considerably the computational time.

Our experimentations show that this algorithm performs significantly faster than the classical reduction me-
thod. In addition, for all the datasets that we tested, which cover a wide range of types of data, their global per-
formance indicated a subquadratic time complexity. Moreover, it allows calculating the homology generators at
a small additional time cost. Interestingly enough, in all the datasets we dealt with, the algorithm needed only to
construct few intermediate complexes to obtain the homology of the original complex. Our feeling is that if one
encounters a specially designed complex in which the number of recursions is substantially high then the algo-
rithm may underperform. However, it is not yet clear how to construct such a complex.

References
[1] Allili, M. and Corriveau, D. (2007) Topological Analysis of Shapes using Morse Theory. Computer Vision and Image

Understanding, 105, 188-199. http://dx.doi.org/10.1016/j.cviu.2006.10.004
[2] Allili, M., Corriveau, D. and Ziou, D. (2004) Morse Homology Descriptor for Shape Characterization. Proceedings of

the 17th International Conference on Pattern Recognition, Vol. 4, 27-30. http://dx.doi.org/10.1109/icpr.2004.1333697
[3] Allili, M., Corriveau, D., Derivière, S., Kaczynski, T. and Trahan, A. (2007) Discrete Dynamical System Framework

for Construction of Connections between Critical Regions in Lattice Height Data. Journal of Mathematical Imaging
and Vision, 28, 99-111. http://dx.doi.org/10.1007/s10851-007-0010-0

[4] Collins, A., Zomorodian, A., Carlsson, G. and Guibas, L. (2004) A Barcode Shape Descriptor for Curve Point Cloud
Data. Computers and Graphics, 28, 881-894. http://dx.doi.org/10.1016/j.cag.2004.08.015

[5] Kaczynski, T., Mischaikow, K. and Mrozek, M. (2004) Computational Homology. Applied Mathematical Sciences Se-
ries 157, Springer-Verlag, New York.

[6] Munkres, J.R. (1984) Elements of Algebraic Topology. Addison-Wesley.
[7] Kannan, R. and Bachem, A. (1979) Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an

Integer Matrix. SIAM Journal on Computing, 8, 499-507. http://dx.doi.org/10.1137/0208040
[8] Chou, T.W. and Collins, G.E. (1982) Algorithms for the Solutions of Systems of Linear Diophantine Equations. SIAM

Journal on Computing, 11, 687-708. http://dx.doi.org/10.1137/0211057
[9] Iliopoulos, C.S. (1989) Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Fi-

nite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix. SIAM Journal on Computing, 18,
658-669. http://dx.doi.org/10.1137/0218045

[10] Storjohann, A. (1996) Near Optimal Algorithms for Computing Smith Normal Forms of Integer Matrices. Proceedings
of 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC’96, Zurich, 24-26 July 1996, 267-
274. http://dx.doi.org/10.1145/236869.237084

[11] Kaczynski, T., Mrozek, M. and Slusarek, M. (1998) Homology Computation by Reduction of Chain Complexes.
Computers and Mathematics with Applications, 35, 59-70.

[12] Mrozek, M., Pilarczyk, P. and Zelazna, N. (2008) Homology Algorithm Based on Acyclic Subspace. Computers and
Mathematics with Applications, 55, 2395-2412. http://dx.doi.org/10.1016/j.camwa.2007.08.044

[13] Delfinado, C.J.A. and Edelsbrunner, H. (1995) An Incremental Algorithm for Betti Numbers of Simplicial Complexes
on the 3-Sphere. Computer Aided Geometric Design, 12, 771-784. http://dx.doi.org/10.1016/0167-8396(95)00016-Y

[14] Mrozek, M. and Batko, B. (2009) Coreduction Homology Algorithm. Discrete and Computational Geometry, 41, 96-

http://dx.doi.org/10.1016/j.cviu.2006.10.004
http://dx.doi.org/10.1109/icpr.2004.1333697
http://dx.doi.org/10.1007/s10851-007-0010-0
http://dx.doi.org/10.1016/j.cag.2004.08.015
http://dx.doi.org/10.1137/0208040
http://dx.doi.org/10.1137/0211057
http://dx.doi.org/10.1137/0218045
http://dx.doi.org/10.1145/236869.237084
http://dx.doi.org/10.1016/j.camwa.2007.08.044
http://dx.doi.org/10.1016/0167-8396(95)00016-Y

M. Allili, D. Corriveau

137

118. http://dx.doi.org/10.1007/s00454-008-9073-y
[15] Corriveau, D. and Allili, M. (2009) Computing Homology: A Global Reduction Approach. In: Brlek, S., Reutenauer, C.

and Provençal, X., Eds., Discrete Geometry for Computer Imagery: Proceedings of 15th IAPR International Confe-
rence, DGCI 2009, Springer, Berlin Heidelberg, 313-324. http://dx.doi.org/10.1007/978-3-642-04397-0_27

http://dx.doi.org/10.1007/s00454-008-9073-y
http://dx.doi.org/10.1007/978-3-642-04397-0_27

	A Global Reduction Based Algorithm for Computing Homology of Chain Complexes
	Abstract
	Keywords
	1. Introduction
	2. Chain Complexes and Homology
	Computation of Homology by Reduction of Chain Complexes

	3. Computation of Homology by Grouping Reductions
	3.1. Forming RDAGs
	3.2. Projection Formulas for Grouped Reductions
	3.3. Why Acyclic Graphs
	3.4. Using Projection Formulas
	3.5. Building the Simplified Complex
	3.6. Performance Benefits of Using Reduction DAGs
	3.7. Minimizing Lists Updates
	3.8. Calculating Generators
	3.9. What If Boundaries Are Not Trivial?

	4. Data Structures and Algorithms
	5. Experimental Results
	6. Conclusions
	References

