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Abstract 
We revisit a comparison of two discriminant analysis procedures, namely the linear combination 
classifier of Chung and Han (2000) and the maximum likelihood estimation substitution classifier 
for the problem of classifying unlabeled multivariate normal observations with equal covariance 
matrices into one of two classes. Both classes have matching block monotone missing training data. 
Here, we demonstrate that for intra-class covariance structures with at least small correlation 
among the variables with missing data and the variables without block missing data, the maxi-
mum likelihood estimation substitution classifier outperforms the Chung and Han (2000) classifi-
er regardless of the percent of missing observations. Specifically, we examine the differences in 
the estimated expected error rates for these classifiers using a Monte Carlo simulation, and we 
compare the two classifiers using two real data sets with monotone missing data via parametric 
bootstrap simulations. Our results contradict the conclusions of Chung and Han (2000) that their 
linear combination classifier is superior to the MLE classifier for block monotone missing multiva-
riate normal data. 
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1. Introduction 
We consider the problem of classifying an unlabeled observation vector ( )~ ,p ix N Σµ  into one of two distinct 
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multivariate normally distributed populations ( ): ,i p iNΠ Σµ , 1, 2i = , when monotone missing training data 
are present, where iµ  and Σ  are the thi  population mean vector and common covariance matrix, respec- 
tively. Here, we re-compare two linear classification procedures for block monotone missing (BMM) training 
data: one classifier is from [1], and the other classifier employs the maximum likelihood estimator (MLE). 

Monotone missing data occur for an observation vector jx  when, if jix  is missing, then jkx  is missing 
for all k i> . The authors [1] claim that their “linear combination classification procedure is better than the 
substitution methods (MLE) as the proportion of missing observations gets larger” when block monotone 
missing data are present in the training data. Specifically, [1] has performed a Monte Carlo simulation and has 
concluded that their classifier performs better in terms of the expected error rate (EER) than the MLE sub- 
stitution (MLES) classifier formulated by [2] as the proportion of missing observations increases. However, we 
demonstrate that for intra-class covariance training data with at least small correlations among the variables, the 
MLES classifier can significantly outperform the classifier from [1], which we refer to as the C-H classifier, in 
terms of their respective EERs. This phenomenon occurs regardless of the proportion of the variables missing in 
each observation with missing data (POMD) in the training data set.  

Throughout the remainder of the paper, we use the notation m n×  to represent the matrix space of all m n×  
matrices over the real field  . Also, we let the symbol >

n  represent the cone of all n n×  positive definite 
matrices in n n× . Moreover, n m×′∈A   represents the transpose of m n×∈A  . 

The author [3] has considered the problem of missing values in discriminant analysis where the dimension 
and the training-sample sizes are very large. Additionally, [4] has examined the probability of correct classi- 
fication for several methods of handling data values that are missing at random and use the EER as the criterion 
to weigh the relative quality of supervised classification methods. Moreover, [5] has examined missing obser- 
vations in statistical discrimination for a variety of population covariance matrices. Also, [6] has applied re- 
cursive methods for handling incomplete data and has verified asymptotic properties for the recursive methods. 

We have organized the remainder of the paper as follows. In Section 2, we describe the C-H classifier, and we 
describe the MLES linear discriminant procedure when the training data from both classes contain identical 
BMM data patterns. In Section 3, we describe and report the result of Monte Carlo simulations that examine the 
differences in the estimated EERs of the C-H and MLES classifiers for various parameter configurations, 
training-sample sizes, and missing data sizes and summarize our simulation results graphically. In Section 4, we 
compare the C-H and MLES linear classifiers using a parametric bootstrap estimator of the EER difference 
(EERD) on two actual data sets. We summarize our results and conclude with some brief comments in Section 5. 

2. Two Competing Classifiers for BMM Training Data 
2.1. The C-H Classifier for Monotone Missing Data 
Suppose we have two ip N×  training observation matrices in the form  

1 2 ,i i

i

 
 ⋅ 

Y Y
Z

                                        (1) 

where 

[ ]1 :
ii i i k n

′
×′ ′= ∈U Y Z                                    (2) 

denotes the in  complete-observation submatrix, and ( )2 i ii k N n× −∈Y   is the partial observation submatrix 
whose first k measurements are non-missing, where i iN n> , for 1, 2i = . We denote a complete data ob- 
servation vector by 1 :ij i j ij

′′ ′ =  u y z , where 1 1i j k×∈y   and ( ) 1ij p k− ×∈z   such that  

( ) 1 11 12

21 22

~ , , ,i

i

Y
ij p i p

Z

N N
    
 ≡         

u
Σ Σ

Σ
Σ Σ

µ
µ

µ
                          (3) 

where 
1 1iY k×∈µ , ( ) 1iZ p k− ×∈µ , >

11 k k×∈Σ , ( )12 k p k× −∈Σ , and ( ) ( )
>

22 p k p k− × −∈Σ  with  
1, 2; 1, 2, , ii j n= =  . Also, random samples of sizes i iN n−  are taken from distributions of the form 
( )2

,
ik Y yyN Σµ , where 

2 1iY k×∈µ  and >
yy k k×∈Σ . 

The authors [1] have derived a linear combination of a discriminant function composed from complete data 
and a second discriminant function determined from BMM data. The C-H classifier uses Anderson’s linear dis- 
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criminant function (LDF) for the subset of complete data iU , 1, 2i = , given in (2), which is  

( ) ( )1
1 2 1 2

1 ,
2

W −  ′≡ − − +  
u uu u S u u u  

where 
1

1 in

i ij
jin =

= ∑u u  and 

( ) ( )
2

1 11 2

1 ,
2

in

ij i ij i
i jn n = =

 ′= − − + −  
∑∑uS u u u u  

are the complete-data sample mean and complete-data sample covariance matrix, respectively. They also use 
Anderson’s LDF for the data 

[ ]1 2: ,i iY Y                                          (4) 

1, 2i = , with k features and 1 2N N+  training observations, which is  

( ) ( )1
1 2 1 2

1
2

W −  ′≡ − − +  
y yy y S y y y  

with 

( )1 2
1 ,i i i i i i

i

n N n
N

 = + − y y y                                  (5) 

where 

1 1
1

1 ni

i i j
jin =

= ∑y y                                        (6) 

denotes the sample mean for the first in  observations and the first k features from 1iY  in (1),  

2 2
1

1 i

i

N

i i j
j ni iN n = +

=
− ∑y y  

denotes the sample mean for the first k features of the latter i iN n−  observations from 2iY  in (1), and  

( ) ( )
2 2

1 1 11 2

1
2

iN

itj i itj i
i t jN N = = =

 ′= − − + −  
∑∑∑yS y y y y  

is the pooled sample covariance matrix for the incomplete training data (4), where 1, 2t = , represent the subsets 
of (1) with non-missing data and BMM data, respectively, for 1, 2i = . 

The authors [1] have proposed the linear combination statistic 

( )1 ,cW cW c W≡ + −u y                                   (7) 

where [ ]0,1c∈ . One classifies an unlabeled observation vector 1px ×∈  into 1Π  if  
0cW ≥                                           (8) 

and into 2Π , otherwise. The conditional error rate (CER) for classifying an unlabeled vector x from iΠ  into 
jΠ  using (8) is 

( ) ( )( )
( ) ( )

2
1 2 1 2

2 2

1 0 | , , , , , ; ,

1 1
,

j
ij c c u y i

i i
i

CER W P W

f

−

− −

= − < ∈Π

 ′− + −
 = Φ
 ′ 

u u S y y S u y

h
h hΣ
µ                   (9) 

, 1, 2i j = , i j≠ , where 

( )1f cb c e≡ + −                                     (10) 
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with 

( ) ( ) ( ) ( )1 1
1 2 1 2 1 2 1 2

1 1and .
2 2

b e− −′ ′≡ − − + ≡ − − +u yu u S u u y y S y y  

Also, 

[ ]: ,′′ ′=h r b                                       (11) 

where 1k×∈r   and ( ) 1p k− ×∈b  , ( )1 1c c≡ + −r a d , 2c≡b a , ( )1
1 2

−= −yd S y y , ( )1
1 2

−= − =ua S u u  [ ]1 2:′ ′a a , with 1 1k×∈a  , ( )2 1p k− ×∈a  , and iy  defined in (5). Thus, using (9) and assuming equal a priori 
probabilities, the CER for (8) is  

( ) ( ) ( )12 21
1 .
2c c cCER W CER W CER W = +                           (12) 

If 

1 2 1 2: : : : : , ≡  y uθ y y S S u u  

then, for (8), the EER of misclassifying an unlabeled observation vector x  from iΠ  into jΠ  is  

( ) ( ) ( )2 21 1
,

i i
i

c ij

f
EER W E

− −  ′− + −
  = Φ

 ′   
θ

h
h h Σ
µ

 

, 1, 2i j = , i j≠ . Thus, once again assuming equal a priori probabilities, the EER for (8) is  

( ) ( ) ( )12 21
1 .
2c c cEER W EER W EER W = +   

In choosing c in (7), [1] have utilized the fact that the CER and EER will depend on the Mahalanobis distance 
for the complete and partial training observations and the corresponding training-sample sizes, iN  and in , 

1, 2i = . Usually, when one has small CERs, at least one of the sample Mahalanobis distances  

( ) ( )2 1
1 2 1 2 , , ,D −′≡ − − =w ww w S w w w u y  

will be large. While in  and 2Du  determine the performance of Wu , the quantities iN  and 2Dy  dictate the 
performance of Wy . Hence, [1] have chosen c in relation to the training-sample sizes and the Mahalanobis dis- 
tances for the complete and incomplete training-data sets. Note that the implication for circumstances where 

2 2D D>u y  is that the information in the data-matrix component iZ , 1, 2i = , in (1) contributes largely to the 
discriminatory information. Hence, [1] uses  

1
2

1 2*
1 1

2 2

1 2 1 2

1 1

1 1 1 1

D
n n

c

D D
n n N N

−

− −

 
+ 

 =
   

+ + +   
   

u

u y

 

to determine the linear combination classification statistic (7). 

2.2. A Maximum Likelihood Substitution Classifier for Monotone Missing Training Data 
The authors [7] have derived an MLE method for estimating parameters in a multivariate normal distribution 
with BMM data. The estimator of Σ  in the [7] MLES classifier is a pooled estimator of the two individual 
MLEs of Σ .  

Below, we state the MLEs for two multivariate normal distributions having unequal means and a common 
covariance matrix with identical BMM-data patterns in both training samples. 

Theorem. Let iΠ  be modeled by the multivariate normal densities ( ),p iN Σµ  for 1, 2i = , with 

1

2

i
i

i

 
≡  
 

µ
µ

µ
                                      (13) 
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and 

11 12

21 22

.
 

≡  
 

Σ Σ
Σ

Σ Σ
                                  (14) 

Also, let 

( ) ( )11, ,
1

,
i

i

N

N i ij i ij i
j=

′≡ − −∑A y y y y  

( ) ( )11, ,
1

,
i

i

n

n i ij i ij i
j=

′≡ − −∑A y y y y  

( ) ( )12, ,
1

,
i

i

n

n i ij i ij i
j=

′≡ − −∑A y y z z  

and 

( ) ( )22, ,
1

,
i

i

n

n i ij i ij i
j=

′≡ − −∑A z z z z  

where [ ]1 2:ij i i∈y Y Y , and ij i∈z Z  with 1iY , 2iY , and iZ  given in (1). Then, on the basis of two-step mono- 
tone training samples from populations ( ): , , 1, 2i p iN iΠ =Σµ , the MLEs of (13) and (14) are 

1 11 12

2 21 22

ˆ ˆˆ ˆˆ and ,
ˆ ˆˆ

i
i

i

  
≡ ≡   
    

Σ Σ
Σ

Σ Σ

µ
µ

µ
                            (15) 

respectively, where 
2

11, ,
1

11 2

1

ˆ ,
iN i

i

i
i

N

=

=

≡
∑

∑

A
Σ  

12 2 2

12 11, , 11, , 12, ,2
1 1 1

1

1ˆ ,
i i iN i n i n i

i i i
i

i
N

−

= = =

=

     ≡             
 
 

∑ ∑ ∑
∑

A A AΣ                    (16) 

and 
12 2 2

22 221, , 21, , 11, ,2 2
1 1 1

1 1

12 2 2

11, , 11, , 12, ,
1 1 1

1 1ˆ

,

i i i

i i i

n i n i n i
i i i

i i
i i

N i n i n i
i i i

n N

−

⋅
= = =

= =

−

= = =

   ≡ +           
   
   

     ×           

∑ ∑ ∑
∑ ∑

∑ ∑ ∑

A A A

A A A

Σ

                (17) 

with 1ˆi i= yµ , where iy  is defined in (5), 

( )1
2 12 22 1 2

ˆ ˆˆ ,i i i i
− ≡ − − z y yΣ Σµ  

1

1 ,
in

i ij
jin =

≡ ∑z z  

and 
12 2 2 2 2

221, , 22, , 21, , 11, , 12, ,
1 1 1 1 1

,
i i i i in i n i n i n i n i

i i i i i

−

⋅
= = = = =

     ≡ −           
∑ ∑ ∑ ∑ ∑A A A A A  
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where 1iy , 2iy , 12Σ̂ , and 22Σ̂ , are defined in (5), (6), (16), and (17), respectively, for 1, 2i = .  
Proof: A proof is alluded to in [8]. 
The MLES classification statistic is 

( ) ( )1
2 1 2 1

1ˆˆ ˆ ˆ ˆ ,
2MLEW −  ′≡ − − +  

xΣµ µ µ µ                          (18) 

where 1µ̂ , 2µ̂ , and Σ̂  are the MLEs defined in (15), and 1p×∈x   is an unlabeled observation vector 
belonging to either 1Π  or 2Π . We classify the unlabeled observation vector 1p×∈x   into 1Π  if 

0MLEW ≤                                         (19) 

and into 2Π , otherwise. Given that 1∈Πx , conditioning on ˆijµ , , 1, 2i j = , and Σ̂ , and using the fact that 

( ) ( )1 1 1
1

ˆ ˆ ˆˆ ˆ ˆ~ 0, ,Nδ δ δ− − −′ ′−xΣ Σ ΣΣµ  

where 1 2
ˆ ˆ ˆδ ≡ −µ µ , along with (15), (18), and (19), we have that  

( ) ( )12 1 2 1 2 1 1
ˆ ˆˆ ˆ ˆ ˆ, , 0 | , , ; 1 ,MLECER P W w ≡ > ∈Π = −Φ xΣ Σµ µ µ µ  

where 

( )
1 21 1 1

2 1
1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ,
2i iw δ δ δ µ

−− − −   ′ ′≡ + −      
Σ ΣΣ Σ µ µ                      (20) 

1, 2i = . Similarly, given 2∈Πx , 

( ) ( )21 1 2 1 2 2 2
ˆ ˆˆ ˆ ˆ ˆ, , 0 | , , ; ,MLECER P W w ≡ ≤ ∈Π = Φ xΣ Σµ µ µ µ  

where 2w  is given in (20). Thus, assuming equal a priori probabilities of belonging to iΠ , 1, 2i = , for an 
unlabeled observation, we have  

( ) ( ) ( )1 2 1 2
1ˆˆ ˆ, , 1 .
2

CER w w≡ −Φ +Φ  Σµ µ                         (21) 

Hence, the overall expected error rate is 

( ) ( )( ) ( )( )1 2 1 2
1ˆˆ ˆ, , 1 .
2

EER E w E w ≡ − Φ + Φ θ θ 

Σµ µ  

3. Monte Carlo Simulations 
The authors [1] claim that “it can be shown that the linear combination classification statistic is invariant under 
nonsingular linear transformations when the data contain missing observations” and assume this invariance is 
also true for the MLES classifier. While their assertion might be true for the C-H classifier, it is not necessarily 
true for the MLE classifier. Because [1] do not consider covariance structures with moderate to high correlation, 
their results are biased toward the C-H classifier. Here, we show that the MLES classifier can considerably 
outperform the C-H classifier, depending on the degree of correlation among the variables with missing data and 
the variables without missing data. 

Next, we present a description and results of a Monte Carlo simulation we have performed to evaluate the 
EERD between the MLE and C-H classifiers for two multivariate normal configurations, ( ): ,i p iNΠ Σµ , 

1, 2i = , using various training-sample sizes, dimensions, features with block missing data, differences in means, 
values of correlation among variables, and missing-data proportions. For the simulations, we define p to be the 
total number of feature dimensions and r to be the number of missing features so that r p< . Also, iN  denotes 
the total training-sample size from population iΠ , 1, 2i = , and 

( )1ρ ρ≡ + −J IΣ  

is the intraclass covariance matrix where ρ  denotes the common population correlation among the features in 
the intraclass covariance matrix and p pJ ×∈  denotes a matrix of ones. 

The simulation was performed in SAS 9.2 (SAS Institute In., Cary, NC, USA) using the RANDNORMAL 
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command in PROC IML to generate 10,000 training-sample sets of size iN , 1, 2i = , for each parameter 
configuration. Next, the MLE and C-H classifiers were computed, and their CERs were calculated for each 
training-sample set. Then, the differences between the CERs for the classifiers were averaged over the 10,000 
CER differences for the two classifiers for each parameter configuration involving iN , p, r, Σ , iµ , and 
POMD for the r features with monotone missing data, where 1, 2i = . Thus, the EERD  for the C-H and MLES 
classifiers is 

 ( ) ( )1 2
1

1 ˆˆ ˆ, , ,
K

j c j
j

EERD CER W CER
K =

 = − ∑ Σµ µ  

where ( )cCER W  is defined in (12), ( )1 2
ˆˆ ˆ, ,CER Σµ µ  is given in (21), K is the total number of simulated 

training-data sets, and j denotes the thj  simulated training-data set, where { }1, 2, ,j K∈  . We display the 
results of our two Monte Carlo simulations by graphing EERD  against 0.1,0.3,0.5,0.7,0.9ρ =  for various 
configurations of p, r, iN , 1µ , 2µ , and POMD. 

The relationship between p and r was fixed at 0.2r p=  and 0.8r p= . We chose these specific values of p 
and r to evaluate EERD  when the proportion of variables with missing data were both small and large relative 
to p. The choice of r and iN  depended on the value of p, and we provide the values of p, r, and iN  used in 
the Monte Carlo simulation in Table 1. 

Lastly, we chose 1 1p×∈µ  such that 

[ ]1 0,0, , 0 ′= µ                                      (22) 

and 2 1p×∈µ  such that 

2 , 0,0, , 0, , 0, , 0 ,j jd d ′ =   µ                               (23) 

with 1 0.5d =  and 2 3d =  to assess EERD  for both small and large between-class separation. These values 
for iµ , 1, 2i = , given in (22) and (23), were chosen because they are similar to the population means used in 
the simulation used in [1]. Furthermore, we contrasted (8) and (19) using POMD = 0.5, 0.8 for the r covariates 
with BMM data, and as in [1], we chose iN p>  to avoid singularity of the estimated covariance matrices. The 
comparison criterion EERD  is plotted against ρ  for various combinations of p, r, jd , iN , and POMD in 
Figure 1 and Figure 2, , 1, 2i j = . Although we simulated values for EERD  for 10, 20, 40p = , we omitted 
the graphs for 20p =  because the graphs are similar to the plots for 10p =  and 40p = . The graphs for 

20p =  can be obtained from the authors. 
Figure 1, Figure 2 illustrate that the EERD  is consistently positive for the values of p, r, iN , ρ , jd , and 

POMD examined here. Moreover, the figures indicate that the primary parameters that influence the dominance 
of the MLES classifier are ρ  and jd , 1, 2j = . For all feature dimensions considered here, the C-H and 
MLES classifiers were competitive for 0.1ρ = . More importantly, for 0.1ρ > , EERD  increased as ρ  
increased for all p, r, iN , 1µ , 2µ , and POMD considered here. The most noteworthy increase in the EERD  
was for 0.7 0.9ρ≤ ≤  when 1 0.5d = , where EERD  increased by approximately 0.10. This increase 
occurred for all specified values of p, r, iN , and POMD, and, thus, supported the superiority of the MLES 
classifier in terms of EERD for these configurations. Additionally, we noted that  0.20EERD ≈  when 0.9ρ = , 

1 0.5d = , and other parameters are allowed to vary.  
The MLES classifier especially outperformed the C-H classifier when 1 0.5d =  for 0ρ > , as compared to 

when 2 3d = . The smaller values of EERD  for 2 3d =  can be attributed to the fact that for a relatively large  
 

Table 1. Dimensions and sample sizes for the Monte Carlo simulation.           

p r iN  

10 2,8 20, 50, 100 

20 4,16 25, 50, 100 

40 8,32 50, 100, 200 
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Figure 1. Graphs of the EERD  versus ρ for fixed values of iN , r, jd , POMD, and p = 10. 

 
Mahalanobis distance when 2 3d =  and 0.1ρ = , the EERs for both classifiers are small, thus yielding a 

smaller EERD . 

As we used a large number of simulation iterations, we obtained  ( ){ }max . . 0.003s e EERD <
ξ

, where ξ  is  

the grid of parameter vectors considered in the simulation. Thus, the relatively small estimated standard errors 
also support our claim that 0EERD >  for 0.1ρ >  for the parameter configurations considered here. As 
Figure 1, Figure 2 indicate, the contrasting values of p, r, iN , and POMD contribute marginally, if at all, to 
EERD . Regardless of the combination of parameter values considered here, the MLES classifier dominates the 

C-H classifier in terms of EERD . 
In summary, the simulation results indicated that the MLES classifier became increasingly superior to the C-H 

classifier as the correlation magnitude among the features with no missing data and the features with BMM data 
increased.  

We remark that the standard errors for the EERD  in the [1] simulations are not sufficiently small enough to 
conclude a difference in the ERRs of the two competing classifiers. Hence, their claim that the C-H classifier 
outperforms the MLES classifier as the percent of missing observations increases is questionable. 

We also performed a second Monte Carlo simulation whose results are not presented here. In this simulation, 
all fixed parameter values were equivalent to those of the first simulation except for 2µ  in (23), where we 
chose 0.80 of the elements of 2µ  to be non-zero. Consequently, we obtained slightly different results from 
those of our first simulation. However, the MLES classifier still outperformed the C-H classifier for all para- 
meter configurations when 0.1ρ ≥ . These results suggest that for classification problems with equal intra-class 
covariance matrices the MLES classifier is superior to the C-H classifier when at least small correlation exists 
among the features with missing data and the features without missing data. 
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Figure 2. Graphs of the EERD  versus ρ for fixed values of iN , r, jd , POMD, and p = 40.          

4. Two Real-Data Examples 
4.1. Bootstrap Expected Error Rate Estimators for the C-H and MLE Classifiers 
In this section, we compare the parametric bootstrap estimated ERRs of the C-H and MLES classifiers for two 
real-data sets each having two approximate multivariate normal populations with different population means and 
equal covariance matrices. First, we define the bootstrap ERR estimator for the C-H classifier,  ( )Boot -C HEER . Let 

1µ̂ , 2µ̂ , and Σ̂  be the MLEs of 1µ , 2µ , and Σ , respectively, defined in Theorem 1. Also, let *
1µ̂ , *

2µ̂ , and 
*Σ̂  be the bootstrap estimates of 1µ̂ , 2µ̂ , and Σ̂ , respectively, calculated using the parametric bootstrap 

training-sample data  
* *
1 2
*

i i

i

 
 

⋅ 

Y Y
Z

                                     (24) 

that is generated from ( )ˆˆ ,p iN Σµ , 1, 2i = . Then, conditioning on *ˆiµ , 1, 2i = , and *Σ̂ , the bootstrap CERs 
for the C-H classifier are 

( ) ( ) ( )2 2* *
* *

* *

ˆ1 1

ˆ

i i
i

ij c
f

CER W
− − ′− + −

 ≡ Φ
 ′ 

h

h hΣ

µ
 

for , 1, 2i j = , i j≠ , where *
cW , *h , and *f  are similar in definition to cW , h , and f in (7), (11), and (10), 

respectively, except that we use the bootstrap multivariate normal data in (24). Thus, assuming equal prior 
probabilities, the bootstrap CER for the C-H classifier is 
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( ) ( ) ( )* * * * * *
12 21

1 .
2c c cCER W CER W CER W ≡ +                             (25) 

Also, conditioning on *ˆiµ , 1, 2i = , and *Σ̂ , the bootstrap CERs for the MLES classifier are 

( ) ( )2* * * * * * * *
1 2 1 2

ˆ ˆˆ ˆ ˆ ˆ, , 1 0 | , , ; ,j
ij MLE iCER P W− ≡ − > ∈Π xΣ Σµ µ µ µ  

where x  is a complete unlabeled observation from 1 2Π Π , *
MLEW  is similar in definition to MLEW  in (18), 

and , 1, 2i j = , i j≠ . Given 1∈Πx  and * * *
1 2

ˆ ˆ ˆδ ≡ −µ µ , we have  

( ) ( )* * * * *
12 1 2 1

ˆˆ ˆ, , 1 ,CER w= −ΦΣµ µ  

and given 2∈Πx , 

( ) ( )* * * * *
21 1 2 2

ˆˆ ˆ, , ,CER w= ΦΣµ µ  

where 

( )
1 2

* * * 1 * 1 * * * 1 * *
2 1

1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ , 1, 2.
2i iw iδ δ δ

−
− − −   ′ ′≡ + − =      

Σ ΣΣ Σ µ µ µ  

Thus, assuming equal a priori probabilities of belonging to iΠ , 1, 2i = , for an unlabeled observation, we 
have 

( ) ( ) ( )* * * * * *
1 2 1 2

1ˆˆ ˆ, , 1 .
2

CER w w = −Φ +Φ Σµ µ                        (26) 

Hence, the estimated parametric bootstrap EERD for the C-H and MLES classifiers is  

  ( )  ( )( )Boot Boot - Boot
1

1 ,
K

j C H j MLE
j

EERD CER CER
K =

≡ −∑                     (27) 

where j denotes the thj  simulated training-data set for { }1, 2, ,j K∈  . We use (27) to compare the C-H and 
MLES classifiers for two real-data sets given in the following subsections. 

4.2. A Comparison of the C-H and MLE Classifiers for UTA Admissions Data 
The first data set was supplied by the Admissions Office at the University of Texas at Arlington and imple- 
mented as an example in [1]. The two populations for the UTA data are the Success Group for the students who 
receive their master’s degrees ( 1Π ) and the Failure Group for students who do not complete their master’s 
degrees ( 2Π ). Each training sample is composed of ten foreign students and ten United States students. Each 
foreign student had 5 variables associated with him or her. The variables are X1 = undergraduate GPA, X2 = 
GRE verbal, X3 = GRE quantitative, X4 = GRE analytic, and X5 = TOEFL score. For each observation in both 
data sets, variables 1X , 2X , 3X , and 4X  are complete; however, 5X  contains monotone missing data. The 
UTA data set as seen in [1] can be seen in Table 2. 

Also, the common estimated correlation matrix for the UTA data is 

1.000 0.145 0.066 0.199 0.373
0.145 1.000 0.404 0.494 0.767

ˆ .0.066 0.404 1.000 0.129 0.493
0.199 0.494 0.129 1.000 0.392
0.373 0.767 0.493 0.392 1.000

UTA

− 
 − 
 = − − −
 
 
 − 

C                     (28) 

We remark that only one sample correlation coefficient in the last column of (28) has a magnitude exceeding 
0.50, which reflects relatively low correlation among the four features without BMM data with the one feature 
having BMM data. 

To estimate EERD for the C-H classifier (8) and the MLES classifier (19) for the UTA Admissions data, we 
determine BootEERD , given in (27), using 10,000 bootstrap simulation iterations with 5p = , 1r = , 20iN = ,  
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Table 2. UTA Admissions office.                                                                                 

1Π : Success  2Π : Failure 

1x  2x  3x  4x  5x   1x  2x  3x  4x  5x  

2.97 420 800 600 497  3.75 250 730 460 513 

3.80 330 710 380 563  3.11 320 760 610 560 

2.50 270 700 340 510  3.00 360 720 525 540 

2.50 400 710 600 563  2.60 370 780 500 500 

3.30 280 800 450 543  3.50 300 630 380 507 

2.60 310 660 425 507  3.50 390 580 370 587 

2.70 360 620 590 537  3.10 380 770 500 520 

3.10 220 530 340 543  2.30 370 640 200 520 

2.60 350 770 560 580  2.85 340 800 540 517 

3.20 360 750 440 577  3.50 460 750 560 597 

3.65 440 700 630   3.15 630 540 600  

3.56 640 520 610   2.93 350 690 620  

3.00 480 550 560   3.20 480 610 480  

3.18 550 630 630   2.76 630 410 530  

3.84 450 660 630   3.00 550 450 500  

3.18 410 410 340   3.28 510 690 730  

3.43 460 610 560   3.11 640 720 520  

3.52 580 580 610   3.42 440 580 620  

3.09 450 540 570   3.00 350 430 480  

3.70 420 630 660   2.67 480 700 670  

 
and 10in =  for 1, 2i = . Additionally, the parametric bootstrap multivariate normal distribution parameters, 
which are the MLEs for the multivariate normal population parameters given in Theorem 1, are 

[ ]1ˆ 3.171, 409,644,526.25,577.01 ′=µ  
and 

[ ]2ˆ 3.087, 430,649,519.75,562.66 ′=μ  

for the means of 1Π  and 2Π , respectively, with common covariance matrix  

0.150 6.020 2.760 8.540 6.510
6.020 11504.500 4683 5859.375 3711.097

ˆ .2.760 4683 11701.500 1518.625 2406.740
8.540 5859.375 1518.625 12229.187 1953.163
6.510 3711.097 2406.740 1953.163 2034.414

− 
 − 
 = − − −
 
 
 − 

Σ  

Subsequently, we obtained Boot 0.027EERD = −  with ( )

Boot. . 0.001s e EERD = , which indicated that the C-H 
classifier yielded slightly better discriminatory performance compared to the MLES classifier for the UTA data. 
The fact that the C-H procedure slightly outperformed the MLES classifier for the UTA data set in terms of 
EERD is not surprising. In the UTA data set, relatively little correlation exists among many of the features, and 
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the C-H classifier does not require or use information in the correlation between the features with no missing 
data and the features with missing data. However, the MLES classifier does require at least a moderate degree of 
correlation between some features with no missing data and the feature with missing data to yield a more 
effective supervised classifier than the C-H classifier. 

4.3. A Comparison of the C-H and MLE Classifiers on the Partial Iris Data 
The second real-data set on which we compare the C-H and MLES classifiers is a subset of the well-known Iris 
data, which is one of the most popular data sets applied in pattern recognition literature and was first analyzed 
by R. A. Fisher (1936). The data used here is given in Table 3. 

The University of Irvine Machine Learning Repository website provides the original data set, which contains 
150 observations (50 in each class) with four variables: X1 = sepal length (cm), X2 = sepal width (cm), X3 = petal 
length (cm), and X4 = petal width (cm). This data set has three classes: Iris-setosa ( 1Π ), Iris-versicolor ( 2Π ), 
and Iris-virginica ( 3Π ). We have used a subset of the original Iris data set by taking only the first 20 obser- 
vations from 1Π  and 2Π  and omitting the Iris-virginica group ( 3Π ). We emphasize that the variables in the 
partial Iris data are much more highly correlated than the variables in the UTA data. The estimated correlation 
matrix is 

1 0.716 0.708 0.549
0.716 1 0.473 0.651ˆ .
0.708 0.473 1 0.677
0.549 0.651 0.677 1

Iris

 
 
 =
 
 
 

C                             (29) 

 
Table 3. Partial iris data.                                                                                       

1Π : Setosa  2Π : Versicolor 

1x  2x  3x  4x   1x  2x  3x  4x  

5.1 3.5 1.4 0.2  7.0 3.2 4.7 1.4 

4.9 3.0 1.4 0.2  6.4 3.2 4.5 1.5 

4.7 3.2 1.3 0.2  6.9 3.1 4.9 1.5 

4.6 3.1 1.5 0.2  5.5 2.3 4.0 1.3 

5.0 3.6 1.4 0.2  6.5 2.8 4.6 1.5 

5.4 3.9 1.7 0.4  5.7 2.8 4.5 1.3 

4.6 3.4 1.4 0.3  6.3 3.3 4.7 1.6 

5.0 3.4 1.5 0.2  4.9 2.4 3.3 1.0 

4.4 2.9 1.4 0.2  6.6 2.9 4.6 1.3 

4.9 3.1 1.5 0.1  5.2 2.7 3.9 1.6 

5.4 3.7 1.5   5.0 2.0 3.5  

4.8 3.4 1.6   5.9 3.0 4.2  

4.8 3.0 1.4   6.0 2.2 4.0  

4.3 3.0 1.1   6.1 2.9 4.7  

5.8 4.0 1.2   5.6 2.9 3.6  

5.7 4.4 1.5   6.7 3.1 4.4  

5.4 3.9 1.3   5.6 3.0 4.5  

5.1 3.5 1.4   5.8 2.7 4.1  

5.7 3.8 1.7   6.2 2.2 4.5  

5.1 3.8 1.5   5.6 2.5 3.9  
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In (29), all estimated correlation coefficients in the last column had a magnitude greater than 0.50, which 
reflects a moderate degree of correlation among the features 1X , 2X , and 3X , and the feature 4X , which has 
BMM data. 

For the Iris subset data, which can be found in Table 3, we used 10,000 bootstrap iterations, 20iN = , 
10in = , 0.50POMD = , 4p = , and 1r = , where 1, 2i = , for calculating BootEERD . Hence, the overall 

proportion of missing observations for the Iris subset data is greater than that of the UTA data set. The bootstrap 
parameters corresponding to 1Π  and 2Π  are  

[ ]1ˆ 5.035,3.48,1.435,0.235 ′=µ  

and 

[ ]2ˆ 5.975, 2.76, 4.255,1.325 ,′=µ  

respectively, with common covariance matrix  

0.273 0.147 0.124 0.045
0.147 0.154 0.062 0.040ˆ .
0.124 0.062 0.111 0.035
0.045 0.040 0.035 0.024

 
 
 =
 
 
 

Σ  

For the parametric bootstrap estimate for EERD  corresponding to the C-H and MLES classifiers applied to  

the subset of the Iris data set, we obtained Boot 0.11EERD =  with  ( )Boot. . 0.001s e EERD = , which indicated  

that ( ) ( )-MLE C HEER EER . Consequently, because of the relatively large correlations among the variables with 
no missing data, namely, 1X , 2X , 3X , and the variable with missing data, 4X , the MLES classifier 
convincingly outperforms the C-H classifier in terms of EERD. This evidence essentially contradicts the 
conclusion in [1] that the C-H classifier is superior to the MLES classifier when the proportion of observations 
with missing data is substantial, regardless of the covariance structure. 

5. Conclusions 
In this paper, we have considered the problem of supervised classification using training data with identical 
BMM data patterns for two multivariate normal classes with unequal means and equal covariance matrices. In 
doing so, we have used a Monte Carlo simulation to demonstrate that for the various parameter configurations 
considered here, ρ , not POMD, has the greatest impact on EERD. We have also concluded that the MLES 
classifier outperforms the C-H classifier for all considered parameter configurations involving intra-class 
covariance structures when 0.1ρ ≥  and becomes an increasingly superior statistical classification procedure as 
ρ  approaches 1. This conclusion essentially contradicts the simulation results of [1]. 

We also have compared the MLE and C-H classifiers on two real training-data sets using BootEERD  in (27). 
From the real data set in [1], we have demonstrated that the C-H classifier can perform slightly better than the 
MLES classifier. Moreover, we have used a subset of the prominent Iris data set from [9] to illustrate that when 
the magnitude of the correlation among features without missing data and features with missing data is moderate 
to large, the MLES classifier is superior to the C-H classifier. 
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