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Abstract 
This paper has two parts, in this occasion we will present the first one. Until today, there are two 
formulations of classical mechanics. The first one is based on Newton’s laws and the second one is 
based on the principle of least action. In this paper, we will find a third formulation that is totally 
different and has some advantages in comparison with the other two formulations. 
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1. Introduction 
Until today, there are two formulations of classical mechanics. The first one is based on Newton’s laws and the 
second one is based on the principle of least action [1]. These formalisms have advantages and disadvan- tages. 
The main advantage of the second one compared to the first one is that it eliminates the constraint forces. The 
main disadvantage is that it has problems if the force does not come from a potential. 

The objective of this paper is to introduce a new formulation that has some advantages (and disadvantages) 
compared to the above formalisms.  

Suppose that there are n bodies interacting in a medium where the i-body is subjected to a force ( )1 2 3, ,i i i iF F F F=  
that depends on the position of all bodies and to a drag force proportional to the square of the velocity given by  

( ) ( ), |i i i i i i if x x x x x= −Γ                                      (1) 

where ( )1 2 3, ,i i i ix x x x=  is the position of the center of mass of the i-body, ⋅  is the euclidean norm and Γ  
is given by [2]  
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( ) ( )1
2i i ix C A xρΓ =                                     (2) 

where iA  is the transverse motion area of the i-body, iC  is the drag coefficient which depends on the shape of 
the transverse motion surface and ρ  is the medium density that depends on the position. 

If we assume that the transverse motion surface of all bodies is constant along the time (this happens if the 
bodies are spheres or if they move only in one direction without rotation), then the equation of motion of the 
system, according to classical Newton’s second law, is given by  

( ) ( )( ) ( )( ) ( ) ( ) 1i i i i i i im x t F x t x t x t x t i n= −Γ ∀ ≤ ≤                           (3) 

where x  is the matrix whose coefficients are ijx . 

On the one hand, in the vacuum case ( 0ρ = ), if ij lm

lm ij

F F
x x
∂ ∂

=
∂ ∂

 it is well known that the following quantity is 

constant  

( )2

1

1
2

n

i i
i

E m x V x
=

= +∑                                   (4) 

where ij
ij

VF
x
∂

= −
∂

. 

On the other hand, if there are just one body ( 1n = ) moving in one direction 1x x=  and 

( ) ( )00 , fx t t t t≠ ∀ ∈ , it is also known that in the time interval 0 , ft t   , the following quantity is constant [3]  

[ ] ( ) [ ]( )21e
2

q xE mx V xα σρ ρ= +                              (5) 

where CA
m

α = , ( )sgnq x=   (which is constant because ( ) 0x t ≠ ) and  

( ) ( )dx x xσ ρ= ∫                                     (6) 

[ ]( ) ( ) ( )e dq xV x F x xα σρ = −∫                               (7) 

In order to introduce our formalism, first we will find an equation equivalent to Equation (3) (we will call it 
the master equation of Equation (3)). We will say that our formalism is based on that equation. Then, from the 
master equation, we will try to generalize the constants of motion given in Equations (4) and (5) for the general 
case, i.e., for any medium and for the three dimensional case. Finally, we will see another advantage of the 
master equation. We will define the trajectory and the temporal equations and we will develop a more 
convenient algorithm for solving the equation of motion.  

Notation: along this paper, we shall consider the variables t and t . The derivatives respect to the variable t 
will be denoted by the symbol “ • ” while the derivatives respect the variable t  will be denoted by the symbol 
apostrophe “ ' ”. In addition, if 1 , 1 3ijA lR i n j∈ ∀ ≤ ≤ ≤ ≤ , we will denote:  

• 1 2 3i i i iA A A A≡ + +   
• ( )1 2 3, ,i i i iA A A A≡   

• 1
n

i iji ijA A A
=

≡ ≡∑ ∑   

• ( )1, , nA A A≡    

• 
11 12 13

1 2 3n n n

A A A
A

A A A

 
 ≡  
 
 

     

2. Master Equation of Equation (3) 

We propose as a solution of Equation (3) ( ) ( )( )=x t x t t

  where  
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( ) ( )( )
( )0 0

t t u t t

t t t

 =


=



 

 

                                      (8) 

and will consider a time interval 0 , ft t    such that  

( ) ( )00 , fx t t t t≠ ∀ ∈                                    (9) 

Then we have  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21
2

x t x t

x t u t x t

x t u t x t u t u t x t u t x t u t x t


=

 ′=


′ ′′ ′ ′ ′′ ′= + = +






 

 

    

        

              (10) 

Let 1 , 1 3i n j≤ ≤ ≤ ≤ . There are two cases, ( ) 0ijx t′ =  or ( ) 0ijx t′ ≠ . 
In the first case, using Equation (10) we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21
2i ij i ij ij i ijm x t m u t x t u t x t u t m x t ′′′ ′ ′′= + = 

 
     

     

( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )ij i i i ij ij i i i ij ijF x t x t x t x t F x t x t u t x t u t x t F x t′ ′− Γ = − Γ = 

  
      

   

Hence, the component j of Equation (3) becomes  

( )( ) ( ) ( )2
ij i ijF x t u t m x t′′=

  

                               (11) 

In the second case, scaling by ( )ijx t′   to both members of component j of Equation (3) it turns out to be 
equivalent to  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )i ij ij ij ij i i ij ijm x t x t F x t x t x t x t x t x t′ ′ ′= − Γ 
  

                      (12) 

We will call  

( ) ( )21
2ij i ijT t m x t′=

 

                                  (13) 

( ) ( ) ( )2
ij ijU t u t T t= 

                                   (14) 

and we will develop the two members of Equation (12).  
///  
Left member: using Equation (10) we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

2 2

2 2 2

2 2 2 2 2 2

1
2

1
2

1 1
2 2

i ij ij i ij ij ij

i ij ij ij

i ij ij i ij

m x t x t m u t x t u t x t x t

m u t x t x t u t x t

m u t x t u t x t m u t x t

 ′′ ′′ ′′ ′= + 
 
 ′′′ ′ ′= + 
 

′′ ′′ ′ ′= + =

     

    

    

  

     

  

 

Hence, according to Equations (13) and (14) we arrive to  

( ) ( ) ( )i ij ij ijm x t x t U t′ ′= 

                                  (15) 

Right member: using Equation (10) we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )2
i ij ij i ijx t x t x t u t x t u t x t′ ′ ′= 

    

                             (16) 
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In addition, since ( ) 0x t ≠ , then ( ) ( ) ( ) 0u t x t x t′ = ≠ 

   and hence ( ) 0u t ≠ . This implies that u does not 

change its sign and hence, if ( )( )sgn u tδ =   we arrive to  

( ) ( ) ( ) ( ) ( ) ( )i i iu t x t u t x t u t x tδ′ ′ ′= =  
                                 (17) 

By Equations (13), (14), (16) and (17) and using that ( )( ) ( )( )i i i ix t x tΓ = Γ 
  we obtain  

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )2
i i i ij ij i i i ij

i

x t x t x t x t x t x t U t
m
δ′ ′Γ = Γ  

   

                     (18) 

Let  

i i
i

i

C A
m

α =                                           (19) 

( ) ( )( ) ( )
0

d
t

i i it
t x s x s sσ ρ ′= ∫





 


                                   (20) 

Using Equations (2), (19) and (20), Equation (18) turns  

( )( ) ( ) ( ) ( ) ( ) ( )i i i ij ij i i ijx t x t x t x t t U tδα σ′ ′Γ =
  

                             (21) 

Finally, using Equation (21), the fact that ( )( ) ( )( )ij ijF x t F x t= 

  and calling  

( ) ( )( ) ( )
0

d
t

ij ij ijt
W t F x s x s s′= ∫











                                    (22) 

we arrive to  

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )ij ij i i i ij ij ij i i ijF x t x t x t x t x t x t W t t U tδα σ′ ′ ′ ′− Γ = −


    

                (23) 

///  
Using Equations (15) and (23) we infer that Equation (12) becomes  

( ) ( ) ( ) ( )ij ij i i ijU t W t t U tδα σ′ ′ ′= −

   

                              (24) 

On the other hand, using Equations (10), (13) and (14) we have  

( ) ( ) ( ) ( ) ( ) ( )2 2 21
2ij ij i ij ijU t u t T t u t m x t T t′= = =

    

  

where  

( ) ( )21
2ij i ijT t m x t=                                      (25) 

Then, if we use the fact that ( )0 0t t t=   it follows that  

( ) ( )0 0ij ijU t T t=                                       (26) 

Finally by Equations (24) and (26) we obtain the following set  

( ) ( ) ( ) ( )
( ) ( )0 0

ij ij i i ij

ij ij

U t W t t U t
U t T t

δα σ ′ ′ ′= −
 =



   





                            (27) 

This equation can be viewed as a differential equation of first order where ijU  is the unknown function. The 
solution is  

( ) ( ) ( ) ( ) ( )( )
0

0e e di i i i
tt s

ij ij ijt
U t T t W s sδα σ δα σ− ′= + ∫





 





                        (28) 

Using Equations (11), (14) and (28) we finally obtain that Equation (3) is equivalent to  
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( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0

2

2
0

if 0

e d e if 0i ii i

ij i ij ij

t ts
ij ij ij ijt

F x t u t m x t x t

T t W s s u t T t x tδα σδα σ

 ′′ ′= =


′ ′+ = ≠ ∫








  

 

 

  



               (29) 

where ijT , ijW , iα , iσ  and ijT  are given in Equations (13), (19), (20), (22) and (25) respectively. 
We will say that this is the master equation of Equation (3). It is worthwhile to point out that this equation is 

as important as Newton’s second law and that our formalism is based on this equation.  
Note 1: using that the component j of Equation (3) implies Equation (12) we have that Equation (3) (and the 

master equation) implies  

( ) ( ) ( ) ( ) ( ) ( )
0

2
0 e d e i ii i

t ts
ij ij ijt

T t W s s u t T tδα σδα σ ′+ =∫








 

                         (30) 

By taking ( ) 1u t =  and 0 0t t=  (which implies x x=  ) in this equation, we also have that Equation (3) 
implies  

( ) ( ) ( ) ( ) ( )
0

0 e d ei i i i
t s t

ij ij ijt
T t W s s T tα σ α σ+ =∫                             (31) 

where  

( ) ( )( ) ( )
0

d
t

ij ij ijt
W t F x s x s s= ∫                                (32) 

( ) ( )( ) ( )
0

d
t

i i it
t x s x s sσ ρ= ∫                              (33) 

Note 2: suppose that there is just one body and it moves only in one direction 1x x= . 
On the one hand, by condition (9), ( ) 0x t ≠  and hence ( )( )sgnq x t=   is constant. 

On the other hand, by Equation (20),  

( ) ( )( ) ( ) ( )( ) ( ) ( )
0 0

1 1 1 d d
t t

t t
t x s x s s x s x s s tδσ δ ρ δ ρ δσ′ ′= = =∫ ∫

 

 

 

 

     

In addition, since ( )( )sgn u tδ =   and ( ) ( ) ( )u t x t x t′ = 

  , then we have  

( ) ( )( ) ( ) ( )sgnx t x t x t qx tδ δ′ ′ ′ ′= =   

     

Making a change of variable we finally obtain  

( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )0 0t q x t x t q x t x t tδσ σ σ σ σ σ= − = − =  

                   (34) 

where ( )xσ  is given by Equation (6).  
Note 3: in the vacuum case, i.e., when 0ρ =  it is not necessary to ask condition (9). 

3. Constant of Motion 
In this section we will try to generalize the constants of motion given in Equations (4) and (5). 

3.1. A Generic Constant of Motion 
In Note 1 of the previous section, we saw that Equation (3) implies Equation (31). It follows that  

( ) ( ) ( ) ( ) ( )
0

0
, , ,

e d ei i i i
t s t

ij ij ijt
i j i j i j

T t W s s T tα σ α σ+ =∑ ∑ ∑∫   

Using the notation given at the beginning and that according to Equation (33) ( )0 0i tσ =  we arrive to  

( ) ( ) ( ) ( ) ( )0
0

1 1
e [ ] ei i

n n
t t

i i
i i

T t W t T tα σ ασρ
= =

+ =∑ ∑  

where  

[ ]( ) ( ) ( )
01
e di

n t s
it

i
W t W s sασρ

=

= ∑∫                                (35) 
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Since [ ]( )0 0W tρ = , it follows that  

( ) ( ) [ ]( ) ( ) ( ) [ ]( )0
0 0

1 1
e ei i

n n
t t

i i
i i

T t W t T t W tασ ασρ ρ
= =

− = −∑ ∑  

Hence, we obtain that the following quantity is a constant of motion  

[ ] ( ) ( ) [ ]( )
1
e i

n
t

i
i

E T t W tασρ ρ
=

= −∑                               (36) 

If we want to generalize the constants of motion of Equations (4) and (5) we need to express [ ]E ρ  in 

function of x  and x . 
On the one hand, suppose that we have the following approximation  

( ) ( )( ) ( ) ( )( )
0

d
t

i i i i it
t x s x s s x tσ ρ σ= ∫ 

                          (37) 

Hence, using Equations (25), (37) and the notation of the beginning we arrive to  

( ) ( ) ( )( ) ( ) 21e e
2

i ii x tt
i i iT t m x tασασ =                              (38) 

On the other hand, using Equation (32) and the notation of the begining it is easily proved that  

( ) ( )( ) ( )i iW t F x t x t= ⋅
  

and then according to Equation (35) we have  

[ ]( ) ( )( ) ( )( ) ( )
01
e di i

n t x s
i it

i
W t F x s x s sασρ

=

= ⋅∑∫   

If we call  

[ ]( ) ( ) ( )e i ix
i iF x F xασρ =                                 (39) 

we arrive to  

[ ]( ) [ ] ( )( ) ( )
0 ,

d
t

ij ijt
i j

W t F x s x s sρ ρ= ∑∫   

If we want to write [ ]W ρ  in function of x , then there should be [ ]V ρ  that satisfies  

[ ]( ) [ ] ( )ij
ij

V
F x x

x
ρ

ρ
∂

= −
∂

                                 (40) 

In that case we have  

[ ]( ) [ ] ( )( ) [ ] ( )( )0W t V x t V x tρ ρ ρ= −                            (41) 

Hence, taking into account that [ ] ( )( )0V x tρ  is constant, it follows from Equations (36), (38) and (41) that 
the following quantity is a constant of motion  

[ ] ( ) [ ]( )2

1

1e
2

i i
n

x
i i

i
E m x V xασρ ρ

=

= +∑                             (42) 

However, in order to satisfy Equation (40) we need that  

[ ] ( ) [ ] ( )ij lm

lm ij

F F
x x

x x
ρ ρ∂ ∂

=
∂ ∂

                                (43) 

Next we will prove that this equation is equivalent to  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )e e fori i i l l l

iji i im
i ij i im i

im ij ij im

x xij lm

lm ij

FFF x x F x x x x
x x x x

F Fx x i l
x x

α σ α σ

σ σα
   ∂∂ ∂ ∂

− = −   ∂ ∂ ∂ ∂  
∂ ∂ = ≠ ∂ ∂

                 (44) 

In addition, we will prove that if F  comes from a potential this equation becomes  

( ) ( ) ( ) ( )

( ) ( )

0i i
ij i im i

im ij

i i i l l l

F x x F x x
x x

x x

σ σ

α σ α σ

∂ ∂ − = ∂ ∂
 =

                          (45) 

/// 

Proof: we denote by ij
ijx
∂

∂ ≡
∂

. 

According to Equation (39) we have  

[ ] e e e ei i i i i i i i
lm ij ij lm lm ij ij i lm i lm ijF F F F Fα σ α σ α σ α σρ α σ∂ = ∂ + ∂ = ∂ + ∂  

Since according to Equation (37) iσ  only depends on ix  we arrive to  

[ ] e ei i i i
lm ij ij i il im i lm ijF F Fα σ α σρ α δ σ∂ = ∂ + ∂  

where ilδ  is Kronecker’s delta. 
Analogously we have  

[ ] e el l l l
ij lm lm l li lj l ij lmF F Fα σ α σρ α δ σ∂ = ∂ + ∂  

Hence, Equation (43) is equivalent to  

e e e ei i i i l l l l
ij i il im i lm ij lm l li lj l ij lmF F F Fα σ α σ α σ α σα δ σ α δ σ∂ + ∂ = ∂ + ∂  

Using the definition of Kronecker's delta it is easily proved that this equation is equivalent to Equation (44). 
In addition, if F  comes from a potential we have  

( ) ( )= ijlm

ij lm

FF
x x

x x
∂∂

∂ ∂
 

and hence Equation (44) turns out to be equivalent to Equation (45).  
/// 
Finally, if Equations (37) and (44) (or (45)) are satisfied, then the quantity given in Equation (42) is a constant 

of motion and it depends on x  and x . 
However, if F  comes from a potential, we can see that Equation (45) (the second one) has a problem since 

ix  and lx  are independent variables. Hence, this equation can be only satisfied in two particular cases, when 
0ρ =  (which implies 0i jσ σ= = ) and when there is just one body (which implies 1n =  and then i l= ). 

Next, we will consider these two cases and we will obtain Equations (4) and (5) from Equation (42). In 
addition, we will obtain another constant of motion in the three dimensional case (with 0ρ ≠ ) under certain 
approximations. 

3.2. Equations (4) and (5) and Another Constant of Motion 
In the case 0ρ = , Equation (37) and (45) are necessarily satisfied and we can see in Equations (39) and (40) 

that [ ]V ρ  is the potential of F . Hence, taking into account that in this case, according to Equation (37), 

( ) ( ) 0i i it xσ σ= = , we can obtain Equation (4) from Equation (42). 
In the case where there is just one body Equation (45) becomes  
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( ) ( ) ( ) ( ) 0j m
m j

F x x F x x
x x
σ σ∂ ∂

− =
∂ ∂

                          (46) 

where we omit the sub-index i, since 1n = . 
In the one dimensional case, j m=  and then this equation is necessarily satisfied. In addition, we can use 

Equation (34) in order to satisfy Equation (37). Hence Equation (42) becomes:  

[ ] ( )( ) ( )( )( ) ( ) ( )( ) [ ] ( )( )0 021e e
2

q x t x t x tE mx t V x tα σ σ σρ ρ− −= +  

where ( )xσ  is given by Equation (6) and according to Equations (39) and (40) [ ]( )V xρ  is given by 
Equation (7). 

Scaling by ( )( )0e q x tα σ  to both members we obtain Equation (5). 
In the three dimensional case, we will propose as a solution of Equation (46) the following  

( ) ( )( )x V xσ σ=  

where V is the potential of F . 
We have  

( ) ( )( ) ( ) ( )( ) ( )j
j j

Vx V x x V x F x
x x
σ σ σ∂ ∂′ ′= = −
∂ ∂

 

( ) ( )( ) ( ) ( )( ) ( )= = m
m m

Vx V x x V x F x
x x
σ σ σ∂ ∂′ ′−

∂ ∂
 

Then we can see that Equation (46) is satisfied. 
In order to satisfy Equation (37), we shall approximate the function ( )Vσ  at the point ( )( )0 0V V x t=  by 

its Taylor polynomial of degree one. 
Hence  

( ) ( )( ) ( )( )( ) ( ) ( ) ( )( )( )0 0 0t x t V x t V V V x t Vσ σ σ σ σ ′+ −                    (47) 

According to Equation (32) and to the notation of the beginning we have  

( )( ) ( )( ) ( ) ( )( ) ( ) ( )V x t V x t x t F x t x t W t= ∇ ⋅ = − ⋅ = − 
   

Then, if we differentiate Equation (37) we arrive to  

( )( )( ) ( )

( )( )( ) ( ) ( )

( )( )( ) ( ) ( )( )( ) ( ) ( )2

V x t t

V x t W t t

V x t W t V x t W t t

σ σ

σ σ

σ σ σ

 =

 ′− =


′′ ′− =





 



 

Assuming that ( )0 0W t ≠  and taking into account that according to Equation (33) ( )0 0tσ =  we obtain  

( )

( ) ( )
( )

( )( )( ) ( ) ( ) ( ) ( )
( )

0

0
0

0

3

0V
t

V
W t

W t t t W t
V x t

W t

σ
σ

σ

σ σ
σ




=

 ′ = −

 − ′′ =






 

 



                         (48) 

Hence, Equation (47) becomes  

( ) ( )( ) ( )( )( ) ( )
( ) ( )( )( )0

0
0

t
t x t V x t V V x t

W t
σ

σ σ σ −


  



                   (49) 
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According to Equation (48) its error is given by  

( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( )
( )

( )( )( )

2

0

2

03

1 (
2

1
2

t V x s V x s V

W s s s W s
V x s V

W s

σ σ

σ σ

′′∆ = −

−
= −

 

 



 

where [ ]0 , .s t t∈  
Then, Equation (49) holds only if  

( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )( )( )
( )( )

[ ]
2

0 0
03

0 0

1 1 ,
2

W t W s s s W s V x s V
s t t

t W s V x t V

σ σ

σ

− −
∀ ∈

−

  

 







              (50) 

We can see in this equation that there is a problem when ( ) 0W t = . Then, in order to satisfy Equation (49) 

we necessarily have to ask ( ) 0W t  . This problem cannot be solved even when we approach σ at a higher 
order, i.e., we cannot find a constant of motion depending on the position and velocity in a time interval where 

( ) 0W t =  in this way. 

We use Equations (39) and (40) and the fact that j
j

VF
x
∂

= −
∂

 in order to find [ ]V ρ . We have  

[ ] ( ) ( )( ) ( )e V x

j j

V Vx x
x x

ασρ∂ ∂
=

∂ ∂
 

Hence, according to Equation (49) we arrive to  

[ ] [ ] ( ) [ ]
( )0

0
0 0

1 ee d
V V

V V

V
V V V V

β
ασρ ρ ρ

β

−−
= + = +∫                      (51) 

where [ ] [ ] ( )( )0 0V V x tρ ρ=  and β is given by  

( )
( )

0

0

t
W t
σ

β α=




                                      (52) 

Using Equations (49), (51) and (52) we finally obtain that Equation (42) becomes  

[ ] ( )( )
( )( )

[ ]
0

0 2
0

1 1 ee
2

V V x
V V xE m x V

β
βρ ρ

β

−
− −

= + +  

Taking into account that [ ]0V ρ  and 1
β

 are constants and scaling this equation by 0e Vβ−  we obtain that the 

following quantity is a constant of motion  

[ ] ( )
( )

21 ee
2

V x
V xE m x

β
βρ

β

−
−= −                              (53) 

where we are considering a time interval where Equation (50) holds. 

4. Other Advantages of the Formalism 
In this section, we will see other advantages of the formalism. First, we will see an interesting application of the 
master equation. By means of this equation, we will introduce two equations which are called the trajectory and 
the temporal equation respectively. Finally, we will develop a more convenient algorithm for solving the 
equation of motion. 
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Until now, we have considered ( ) 1u t =  in the master equation. We will see the consequences derived from 
taking ( ) 1u t ≠ . We will consider the vacuum case, taking into account that the general case is analogous. In 
this case by Equation (20) we have ( ) 0i tσ = . Then, according to Equation (29), the master equation becomes  

( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2
0

if 0

if 0

ij i ij ij

ij ij ij ij

F x t u t m x t x t

T t W t u t T t x t

 ′′ ′= =


′+ = ≠



   

 

 

   



                       (54) 

Equations (30) and (31) turns out to be  

( ) ( ) ( ) ( )2
0ij ij ijT t W t u t T t+ = 

                                (55) 

( ) ( ) ( )0ij ij ijT t W t T t+ =                               (56) 

In addition, according to Equation (3), the equation of motion of the system is given by  

( ) ( )( )
( )
( )

0 0

0 0

i i im x t F x t

x t x t I

x t x

 =
 = ∀ ∈


=





                              (57) 

Remember also that in this case it is not necessary to ask condition (9). 
Next, we will see an application of the master equation. 

4.1. An Application of the Master Equation 

Let 3: nx I lR lR ×⊆ →  be the solution of Equation (57). This function x  is the parametrization of a certain 
curve 3 nC lR ×∈  given by  

1 nC C C= × ×  

where iC  is the curve described by ix . 
Since iC  represents the trajectory of the i-body, this curve represents the trajectory of the system. We are 

interested in the following problems:  
1. Let 3: nx J lR lR ×⊆ →  be another parametrization of C. 
The problem is to find which condition is satisfied by x .  
2. Suppose we have an arbitrary parametrization 3: nx J lR lR ×⊆ →  of the curve C. 
The problem is to find a way to find the original parametrization 3: nx I lR lR ×⊆ →  from x .  
We solve these problems by using the master equation:  
1. Let 3: nx J lR lR ×⊆ →  be a parametrization of C. Then, the original parametrization 3: nx I lR lR ×⊆ →  

can be expressed like ( ) ( )( )x t x t t=   . In addition, we can suppose that there exists a function :u J lR lR⊆ →  
that satisfies Equation (8). Then, Equation (54) holds. 

On the one hand, we know that this equation implies (55) and hence  

( ) ( ) ( ) ( )2
0W t T t u t T t+ =

 

    

Then we have  

( ) ( )0( ) / /W t T t T t t J++ ∀ ∈
 

    

where / /+  means the relationship of parallelism (see Appendix). 
Using Equation (10) and the identity ( )0 0t t t=   we also have  

( ) ( ) ( )0 0x t x t x x t= ⇒ = 

   

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0/ /x t u t x t x u t x t x x t′ ′ ′= ⇒ = ⇒     

      

Then we obtain that x  must satisfy the following condition  
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( ) ( ) ( )
( )
( )

0

0 0

0 0

/ /

/ /

W t T t T t

x x t t J

x x t

+ +
 = ∀ ∈
 ′

 

 



 

 



                              (58) 

On the other hand, using Equation (54) we also have that ( ) 0ijx t′ =  implies Equation (11). Hence, x  must 
also satisfy the following conditions 

( ) ( ) ( )( )0 0ij ij ijx t x t F x t t J′ ′′= = ⇒ = ∀ ∈

   

                            (59) 

( ) ( )( )
( )

( )

1 1

0 / /

n n

m x t
x t F x t t J

m x t

+

′′ 
 ′ = ⇒ ∀ ∈ 
 ′′ 





 

  







                        (60) 

Finally, if x  is a parametrization of C, it must satisfy conditions (58), (59) and (60). 
2. Suppose we find 3: nx J lR lR ×⊆ →  a parametrization of C. Then, by the previous item, conditions (58), 

(59) and (60) must be satisfied. 
By condition (58) we have  

( ) ( )
( )

( ) ( )
( ) ( )0 00 if 0ij ij lm lm

ij lm

W t T t W t T t
x t

T t T t
+ +

′≤ = ≠
 

 





 

 

 

where i, j, l and m are indexes satisfying ( ) 0ijx t′ ≠ , ( ) 0lmx t′ ≠ . 
In addition, there exists λ such that  

( )0 0x x tλ ′= 

                                        (61) 

By condition 60 we have  

( )( )
( )

( )( )
( ) ( ) ( )0 if 0 and 0

ij lm

i ij l lm

F x t F x t
x t x t

m x t m x t
′ ′′≤ = = ≠

′′ ′′

 

 

 

 

 

 

 

where i, j, l and m are indexes satisfying ( ) 0ijx t′′ ≠ , ( ) 0lmx t′′ ≠ . 
Hence, we can define a function :u J lR lR⊆ →  by the following prescription  

( )

( ) ( ) ( )
( ) ( )

( )
( )( )
( ) ( ) ( )

( ) ( ) ( )

0sgn if 0

sgn if 0 and 0

if 0

ij ij

ij

lm

l lm

W t T t
x t

T t

F x t
u t x t x t

m x t

h t x t x t

λ

λ

 +
 ′ ≠



 ′ ′′= = ≠ ′′


′ ′′= =




















 

  





 

  

              (62) 

where h can be any function, λ is given by Equation (61) and i, j, l and m are indexes satisfying ( ) 0ijx t′′ ≠  and 

( ) 0lmx t′′ ≠ . 
We will prove that this function u satisfies Equation (54) and  
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( ) ( )0 0 0x u t x t′= 

                                     (63) 

/// 
Proof: we will assume that x  is of class 1C  which implies that according to Equations (13) and (22) T



  

and W


 are continuous functions and they are well defined in J. 
Let 1 i n≤ ≤ , 1 3j≤ ≤  and t J∈ . We shall proceed according to the following three cases, ( ) ( ) 0ij ijx t x t′ ′′= = 

  , 

( ) 0ijx t′ =  and ( ) 0ijx t′′ ≠ , or ( ) 0ijx t′ ≠ . We will prove that in all cases we obtain Equation (54).  

Case ( ) ( ) 0ij ijx t x t′ ′′= = 

  : in this case, by condition (59), we have ( )( ) 0ijF x t =

  and hence we obtain 

Equation (54) for ( ) 0ijx t′ = .  

Case ( ) 0ijx t′ =  and ( ) 0ijx t′′ ≠ : there are two sub-cases, ( ) 0x t′ =

  or ( ) 0x t′ ≠

 . 

In the first case, by Equation (62) for ( ) 0x t′ =

  and ( ) 0x t′ ≠

 , we obtain Equation (54) for ( ) 0ijx t′ = . 
In the second case, there exist l and m such that ( ) 0lmx t′ ≠ . Then, by Equation (62) for ( ) 0x t′ ≠

  we have  

( ) ( ) ( ) ( )
( )

0sgn lm lm

lm

W t T t
u t

T t
λ

+
=











 

Since T


 and W


 are continuous functions and are well defined in J, then u is also continuous and it is well 
defined in t . Hence we have  

( ) ( )lim
s t

u t u s
→

=


  

In addition, since ( ) 0ijx t′′ ≠ , there exists tδ   such that  

( ) ( ) ( )0 , ,ijx s s t t t U t t tδ δ′ ≠ ∀ ∈ − +     

  

Then we arrive to  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
0 0lim lim sgn sgn limij ij ij ij

s t s t s t
ij ij

W s T t W s T t
u s

T s T s
λ λ

→ → →

+ +
= =

  

 

 

 

Since this limit should exist and ( ) 0ijT s → , then the following condition holds  

( ) ( )0lim 0ij ijs t
W s T t

→
+ =



  

Then, by l'Hopital's rule we have  

( ) ( )
( )

( ) ( )( )
( )( )

( )( ) ( )
( ) ( )

( )( )
( )

00lim lim lim lim
ij ij ijij ijij ij

s t s t s t s t
i ij ij i ijij

ij

F x s x s F x sW s T tW s T t
m x s x s m x sT s T s

→ → → →

′ ′++
= = =

′ ′′ ′′′   

 







  



 

Since ( ) 0ijx t′′ ≠  we arrive to  

( ) ( )
( )

( )( )
( )

0lim
ijij ij

s t
i ijij

F x tW s T t
m x tT s→

+
=

′′













 

Hence we have  

( ) ( ) ( )
( )( )
( )

lim sgn
ij

s t
i ij

F x t
u t u s

m x t
λ

→
= =

′′











 

Then we also obtain Equation (54) for ( ) 0ijx t′ = .  

Case ( ) 0ijx t′′ ≠ : in this case we have that ( ) 0x t′ ≠

  and hence, by Equation (62), we obtain Equation (54) 

for ( ) 0ijx t′′ ≠ .  
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In all cases we obtain Equation (54). Then, we proved that the function u given in Equation (62) satisfies the 
master equation. 

In order to prove Equation (63), let 1 i n≤ ≤ , 1 3j≤ ≤ . There are two cases, ( )0 0ijx t′ =

  or ( )0 0ijx t′ ≠

 . 
In the first case, by Equation (61), 0 0ijx =  and hence we obtain  

( ) ( )0 0 0ij ijx u t x t′=  

   

In the second case, ( ) 0x t′ ≠

  and hence by Equations (61) and (62) we obtain  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

0 0 0
0

0 0

2
0 2

2
0

sgn sgn

sgn sgn sgn

ij ij ij

ij ij

ij

ij

W t T t T t
u t

T t T t

x
x t

λ λ

λ λ λ λ λ λ

+
= =

= = = =
′







 

 







 

Hence, by Equation (61) we also obtain  

( ) ( )0 0 0ij ijx u t x t′=  

   

Since i and j were arbitrary, we finally proved that u satisfies Equation (63).  
/// 
Let 3: nx I lR lR ×⊆ →  be such that ( ) ( )( )x t x t t=    with :t I J→  given in Equation (8). 

On the one hand, we saw that u satisfies the master equation and hence x  satisfies Equation (3). 
On the other hand, by condition (58), Equation (10) and the fact that ( )0 0t t t=   we have  

( ) ( )( ) ( )0 0 0 0x t x t t x t x= = = 

  

( ) ( )( ) ( )( ) ( ) ( )0 0 0 0 0 0x t u t t x t t u t x t x′ ′= = =   

   

Then, 3: nx I lR lR ×⊆ →  is the solution of Equation (57) and it is the original parametrization of C.  
According to the two solutions of the problems considered above, we can also conclude that the master 

equation is equivalent to conditions (58), (59) and (60) and to Equation (62). 
Next, we will discuss the results obtained, we will give a name to Equations (8) and (58) and we will write 

them in a better way.  
Note: suppose that 0 0x = . Then, ( )( ) 0x t t x=

  satisfies condition (58). However, it satisfies conditions (59) 

and (60) if and only if ( )0 0F x = . This result was expected since ( ) 0x t x=  is a solution of Equation (57) if 
and only if it is an equilibrium point. Then, we can say that conditions (59) and (60) incorporates the constant 
solutions to the formalism. 

4.2. Trajectory and Temporal Equations 
According to the previous section, we have that x  is a parametrization of C if and only if it satisfies conditions 
(58), (59) and (60). Since C describes the trajectory of the system, then Equation (58) will be called the 
trajectory equation, taking into account that conditions (59) and (60) are just extra conditions for particular cases. 
However, there are two things to check in order to be sure that we are in the correct way. 

The first one is that x  must be a solution of the trajectory equation, since it is a parametrization of C. This 
can be easily proved by using that x  satisfies Equations (56) and (57). 

The second one is that if * * 3: nx J lR ×→  is a solution of the trajectory equation, then 3: nx J lR→ , given 
by ( ) ( )( )*x t x tτ= 

  , must be also a solution where *: J Jτ → . In order to prove this we require that 

( )0 0t tτ =   and ( ) 0tτ ′ > . In addition, we will prove that if *x  satisfies conditions (59) and (60), then x  also 
satisfies them and that  
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( ) ( )( )
( )

*u t
u t

t
τ

τ
=

′







                                      (64) 

///  
Proof: on the one hand  

( ) ( ) ( ) ( )( ) ( ) ( )( )2 2 * 2 2 *1 1
2 2ij i ij i ij ijT t m x t m t x t t T tτ τ τ τ′′ ′ ′= = = 

     

   

On the other hand  

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

0 0

0

* *

( ) * * * * *

d d

d

t t

ij ij ij ij ijt t

t

ij ij ijt

W t F x s x s s F x s x s s s

F x s x s s W t
τ

τ τ τ

τ

′ ′ ′= =

′= =

∫ ∫

∫

 

 





 





 









 

where we made the change of variable ( )*s sτ=  and we used that ( )0 0t tτ =   and ( ) 0tτ ′ >  (which implies 
that τ  is an increasing function). 

Since  

( ) ( ) ( )* *
0 / /W t T t T t++

 

   

then there exists ( )* tλ   such that  

( ) ( ) ( ) ( )* *2 *
0W t T t t T tλ+ =

 

    

This implies that  

( )( ) ( ) ( )( ) ( )( )* *2 *
0W t T t t T tτ λ τ τ+ =

 

    

Hence, we arrive to  

( )( ) ( ) ( )( ) ( )( )* *2 *
0ij ij ijW t T t t T tτ λ τ τ+ = 

    

Using the results obtained before, this equation becomes  

( ) ( )
( )( )
( ) ( )

*2

0 2ij ij ij

t
W t T t T t

t
λ τ

τ
+ =

′



 

 



 

By calling  

( ) ( )( )
( )

*

)
t

t
t

λ τ
λ

τ
=

′







 

we finally have  

( ) ( ) ( ) ( )2
0ij ij ijW t T t t T tλ+ = 

    

Then, we proved that  

( ) ( ) ( )0 / /W t T t T t++
 

   

In addition, since ( )0 0t tτ =   we have  

( ) ( )( ) ( )* *
0 0 0x t x t x tτ= =  

    

( ) ( ) ( )( ) ( ) ( )* *
0 0 0 0 0x t t x t t x tτ τ τ′ ′′ ′ ′= =  

      

Hence we arrive to  

( ) ( )*
0 0 0 0x x t x x t= ⇒ = 
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( ) ( )*
0 0 0 0/ / / /x x t x x t′ ′⇒   

   

We finally proved that x  is a solution of the trajectory equation. 
In order to prove conditions (59) and (60) we have  

( ) ( ) ( )( )*
ij ijx t t x tτ τ′′ ′=  

   

( ) ( )( ) ( ) ( )( )* 2 *( )ij ij ijx t t x t t x tτ τ τ τ′ ′′′′ ′′ ′= +    

    

From these equations we can see that  

( ) ( ) ( )( ) ( )( )* *0 0ij ij ij ijx t x t x t x tτ τ′ ′′′ ′′= = ⇒ = =   

     

( ) ( )( ) ( ) ( ) ( )( )* 2 *0 0 andx t x t x t t x tτ τ τ′ ′′′ ′′ ′= ⇒ = =   

      

Hence, using that *x  satisfies conditions (59) and (60) we arrive to  

( ) ( ) ( )( )( ) ( )( )*0 0 0ij ij ijx t x t F x t F x tτ′ ′′= = ⇒ = ⇒ = 

   

   

( ) ( )( )( )
( )( )

( )( )
( )( )

( )

( )

* *
1 1 1 1

*

* *

0 / / / /

n n n n

m x t m x t
x t F x t F x t

m x t m x t

τ

τ

τ

+ +

 ′′  ′′
   
 ′  = ⇒ ⇒
   

 ′′ ′′    









 

  

 

 

 

 

Then, x  also satisfies conditions (59) and (60). 
Finally, Equation (64) is easily proved by using that ( ) 0x t′ =

  if and only if ( )( )* 0x tτ′ =

 , ( ) ( ) 0x t x t′ ′′= = 

   

if and only if ( )( ) ( )( )* * 0x t x tτ τ′ ′′= = 

   and that  

( ) ( ) ( )( )2 *
ij ijT t t T tτ τ′= 

    

( ) ( )( )*
ij ijW t W tτ= 

   

( ) ( ) ( ) ( )( )2 *0 ij ijx t x t t x tτ τ′′′ ′′ ′= ⇒ =

   

   

/// 
Next, we will write the trajectory equation in a better way. We will prove that it is equivalent to the following 

two equations  

( ) ( ) ( )
( )
( )

0

0 0

0 0

/ /

/ /

i i i

i i

i i

W t T t T t
x x t t J
x x t

+

±

 +
 = ∀ ∈
 ′

 

  


 

 


                            (65) 

( ) ( ) ( )0 / /W t T t T t t J++ ∀ ∈ 

                                (66) 

where we used the notation given at the beginning and in Equation (65), the sign ± has to be the same for all i.  
/// 
Proof: on the one hand, since ( ) 0ijT t ≥

 , then (see appendix) we have that  

( ) ( ) ( )0 / /W t T t T t++
 

   

is equivalent to  

( ) ( ) ( )
( ) ( ) ( )

0

0

/ /

/ /

ii iW t T t T t

W t T t T t

+

+

 +


+
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In addition, ( )0 0x x t=    is equivalent to ( )0 0i ix x t=   . Hence, we only have to prove that Equation (58) 

implies ( )0 0/ /i ix x t± ′ 
  and that Equations (65) and (66) imply ( )0 0/ /x x t′ 

 . It is trivial to prove the first 
implication. Then, we will prove the second one. 

Suppose that Equations (65) and (66) hold. From these equations we have  

( ) ( ) ( )0 / /W t T t T t++
 

   

Evaluating this equation in 0t  we arrive to  

( ) ( )0 0/ /T t T t+ 
  

Then, there exists λ such that  

( )2 2 2
0 0 0

1 1
2 2i ij i ijm x m x tλ ′= 

   

This implies that  

( )0 0 0ij ijx x tλ ′= 

   

On the other hand, since ( )0 0/ /i ix x t± ′  , then there exists iβ  such that:  

( )0 0 0ij i ijx x tβ ′= 

   

where the sign of iβ  is the same for all i. 
Hence we arrive to  

( )0 0 0ij i ijx x tβ ′= 

   

There are two cases to consider, ( )0 0 0ijx t′ =

  or ( )0 0 0ijx t′ ≠

 . 
In the first case, using this equation we have 0 0ijx =  and then  

( )0 0 0ij ijx x tλ ′= ± 

   

In the second case we arrive to  

( )
0

0 0

ij
i

ij

x

x t
β λ= =

′







 

Since the sign of iβ  is the same for all i, this implies that iβ λ= ±  and hence we also have that  

( )0 0 0ij ijx x tλ ′= ± 

   

In both cases we obtain that  

( )0 0x x tλ ′= ± 

  

which implies ( )0 0/ /x x t′ 

 .  
/// 
On the one hand, note that in the one dimensional case, Equation (65) is already solved (except the condition 

( )0 0i ix x t=   ). On the other hand, note that if there is just one body, i.e., when 1n = , Equation (66) is already 
solved. Due to this fact, we will call internal trajectory equation of the i-body to Equation (65) and external 
trajectory equation to Equation (66). 

We will also baptize to Equation (8). Taking into account that it determines the relationship between the “real 
time” t and t , we will call it the temporal equation. Sometimes, we will also call temporal equation to Equation 
(62). 

We will prove that if the force comes from a potential V, then we can write this Equation (for ( ) 0x t′ ≠

 ) 
using the mechanical energy of the system as follows  
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( ) ( )
( )( )

( )
sgn

E V x t
u t

T t
λ

−
=











                               (67) 

where E is the energy.  
///  
Proof: on the one hand, we saw in the second answer of the previous section that the function u given in 

Equation (62) satisfies the master equation. On the other hand, we saw in Section 2 that the master equation 
implies Equation (55). Using the notation given at the beginning it follows that  

( ) ( ) ( ) ( )2
0T t W t u t T t+ = 

    

In addition, if the force comes from a potential V we have  

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ), 0 0
,

ij i j
i j

W t F x s x s ds V x t V x t V x t V x t′= = − = −∑∫




   



   



t

t0
 

Then we obtain  

( )( ) ( ) ( )2E V x t u t T t− =



    

where we used that ( ) ( )( )E T t V x t= +  is constant. 

From this equation, we can easily obtain Equation (67).  
/// 
Next, we will construct a more convenient algorithm for solving the equation of motion. 

4.3. A More Convenient Algorithm for Solving the Equation of Motion 
Using the results obtained before, we can construct the following algorithm in order to solve Equation (57): 

1. Find a solution * * 3: nx J lR ×→  of the trajectory equation and check that it satisfies conditions (59) and 
(60).  

2. Choose conveniently a function *: J Jτ →  with ( )0 0t tτ =   and ( ) 0tτ ′ >  in order to build another 

solution 3: nx J lR ×→  given by ( ) ( )( )*x t x tτ= 

  .  

3. Find the function u given in Equation (62) (or (67)).  
4. Solve the temporal equation.  
Finally, ( ) ( )( )x t x t t=    is the solution of Equation (57). 

Note that the difficult step of this algorithm is the first one. 
However, to find a solution of the trajectory equation is easier than to find the solution of Equation (57) for 

the following two reasons:  
1. There are infinite solutions of the trajectory equation while there are just one solution of Equation (57). In 

addition, the solution of Equation (57) is also a solution of the trajectory equation.  
2. According to the appendix, the trajectory equation is a system of 3 1n −  equations while Equation (57) is a 

system of 3n equations.  
Due to these facts, if we want to find the motion of the system, it is more convenient to follow this algori- 

thm. 
In the second part of this paper, we will find a more convenient way of solving the temporal equation and then 

we will change the fourth step of this algorithm. We will also solve some examples using this formalism.  
Note 1: in the second step, the phrase “choose conveniently a function *: J Jτ → ” refers to choose τ  so 

that the temporal equation can be solved easily.  
Note 2: according to the appendix, the number of equations of the internal trajectory equation of the i-body is 

2. In addition, the number of equations of the external trajectory equation is 1n − . Hence, the total number of 
equations remains 2 1 3 1n n n+ − = − .  

Note 3: the set  
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( )
( )

0 0

0 0/ /

x x t

x x t

 =


′





 



 

is a system of 3 3 1 6 1n n n+ − = −  equations. Hence, if we want to solve the trajectory equation, we have to find 
a function ( ),x t α

  with ( )1 6 1, , nα α α −=   that satisfies  

( ) ( ) ( )0 / /W t T t T t++
 

   

and then solve the system of equations  

( )
( )

0 0

0 0

,

/ / ,

x x t

x x t

α

α

 =











 

5 Conclusions 
We obtained an equation equivalent to Equation (3) (Equation (29)) and we called it the master equation. From 
this equation, we could deduce all the formalism. 

We saw that if Equations (37) and (44) were satisfied, then we could generalize the constants of motion given 
in Equations (4) and (5) in Equation (42). If the force comes from a potential, Equation (44) turns out to be 
Equation (45) and it can be satisfied only in the vacuum case or in the case where there is just one body. In these 
cases, we obtain the constants of motion of Equations (4) and (5) from Equation (42) and we can generalize 
them in Equation (53), provide that Equation (50) is satisfied. 

Then, we see another advantage of the master equation. We define the trajectory and the temporal Equations 
(Equations (8) and (58)) and we develop a more convenient algorithm for solving the equation of motion. 

Finally, we can say that we develop a new formalism of classical mechanics based on Equation (29). We can 
conclude that the main advantages and disadvantages of our formalism, compared to the two formalisms 
mentioned in the introduction are the following:  

• If the force does not come from a potential but it depends on the position, the formalism works well. This is 
an advantage compared to the Hamilton-Lagrange’s formalism.  

• It includes the friction with the medium, considering a drag force proportional to the square of the velocity. 
This is also an advantage compared to the Hamilton-Lagrange’s formalism which in this case works only in the 
one dimensional case [3].  

• It has a more convenient algorithm for solving the equation of motion. This is an advantage compared to the 
other two formalisms.  

• It does not work when there are constraint forces or even if the forces depend explicitly on the time or on the 
velocities (with the exception of the drag force). This is a disadvantage compared to the Hamilton-Lagrange’s 
formalism.  
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Appendix 
Definition: Let A, n mlR ×∈B . We will say that A is parallel to B ( / /A B ) if there exists λ  such that 
λ=A B  ( λ  can be null). If 0λ ≥  we shall write / /+A B , while if 0λ ≤  we shall write / /−A B .  

Note 1: if 0≠A  and 0≠B , then / /A B  if and only if / /B A .  
Note 2: / / 0A  if and only if 0=A .  
Note 3: 0 / /B  for any matrix A (taking 0λ = ).  
Remark: Let 0≠A , 0≠B n mlR ×∈  and let  

{ }:n mx lR x λ×= ∈ =A A  

{ }:n mx lR x λ×= ∈ =B B  

Let also ( ){ }1(1) , , nm−
A A , ( ){ }1(1) , , nm−

B B  be a base of A  and B  orthogonal subspace respec- 

tively where the dot product is given by  

ij ij
ij

⋅ = ∑A B A B  

Then, the following conditions are equivalent:  
1. / /A B   
2. ( ) 0 1 1k k nm⋅ = ∀ ≤ ≤ −A B   
3. ( ) 0 1 1k k nm⋅ = ∀ ≤ ≤ −B A   
Note 1: we can see in this remark that condition / /A B  is equivalent to a system of 1nm −  equations.  
Note 2: it is easy to find a base of A  orthogonal subspace. For example if 3n =  and 1m = , we can take 
( ) ( )1

2 1, , 0= −A A A  and ( ) ( )2
3 20, ,= −A A A . This holds analogously for B.  

Proposition: Let A, n mlR ×∈B  with 0ijB ≥ . The following conditions are equivalent:  
1. / /A B   

2. 
( ) ( )1 1

1 1
1 1 1 1

, , / / , , 1

, , / / , ,

i in i in

n n n n

j mj j mj
j j j j

i m

= = = =

∀ ≤ ≤

   
   
   
∑ ∑ ∑ ∑

 

 

A A B B

A A B B
  

Proof: 
1 ⇒  2) Since / /A B , then there exists λ  such that  

ij ijλ=A B  

On the one hand, this implies that  

( ) ( )1 1, , / / , ,i in i in A A B B  

On the other hand,  

1 1

n n

ij ij
j j

λ
= =

=∑ ∑A B  

Then, this also implies  

1 1
1 1 1 1

, , / / , ,
n n n n

j mj j mj
j j j j= = = =

   
   
   
∑ ∑ ∑ ∑ A A B B  

2 ⇒  1) On the one hand, since ( ) ( )1 1, , / / , ,i in i in A A B B , then there exists iλ  such that  

ij i ijλ=A B  

This implies  
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1 1

n n

ij i ij
j j

λ
= =

=∑ ∑A B  

On the other hand, since ( ) ( )1 11 1 1 1
, , / / , ,n n n n

j mj j mjj j j j= = = =∑ ∑ ∑ ∑ A A B B , then there exists λ  such that  

1 1

n n

ij ij
j j

λ
= =

=∑ ∑A B  

Let 1 i m≤ ≤ . There are two cases, 
1

0n
ijj=
=∑ B  or 

1
0n

ijj=
≠∑ B . 

In the first case, since 0ij ≥B  1 j n∀ ≤ ≤ , then 0ij =B  1 j n∀ ≤ ≤ . This implies 0ij =A  1 j n∀ ≤ ≤  
(since ij i ijλ=A B ) and then  

1ij ij j nλ= ∀ ≤ ≤A B  

In the second case we have  

1

1

n

ij
j

in

ij
j

λ λ=

=

= =
∑

∑

A

B
 

If we use again that ij i ijλ=A B  we also have  
1ij ij j nλ= ∀ ≤ ≤A B  

Since i was arbitrary, then  
1 , 1ij ij i m j nλ= ∀ ≤ ≤ ≤ ≤A B  

Therefore  
/ /A B  

Note 1: if 0ij ≤B  the above proposition holds analogously.  
Note 2: if we change / /  by / /+  or / /−  the above proposition also holds. 
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